
Proceedings of Machine Learning Research vol 72, 380-391, 2018 PGM 2018

Circular Chain Classifiers
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Abstract
Chain Classifiers (CC) are an alternative for multi-label classification that is efficient and provides,
in general, good results. However, it is not clear how to define the order of the chain. Different
orders tend to produce different outcomes. We propose an extension to chain classifiers called
“Circular Chain Classifiers” (CCC), in which the propagation of the classes of the previous binary
classifiers is done iteratively in a circular way. After the first cycle, the predictions from the base
classifiers are entered as additional attributes to the first one in the chain. This process continues
for all the classifiers in the chain, and it is repeated for a prefixed number of cycles or until con-
vergence. Using two datasets, we empirically established that CCC: (i) converges in few iterations
(in general, 3 or 4), (ii) the initial order of the chain does not have a significant impact on the
results. CCC performance was also compared against binary relevance and chain classifiers pro-
ducing statistically superior results. The main contribution of CCC is its independence from the
preestablished order of the chain, outperforming CC.
Keywords: multi-label classification; chain classifiers; class variables ordering.

1. Introduction

Several classification problems require assigning more than one class simultaneously to the feature
vector ~xu. For example: in affective computing, a photo can evoke a mixture of affective states
instead of just one affective state. This type of classification where the objects can be tagged with
several simultaneous classes is called multidimensional classification (Van Der Gaag and De Waal,
2006; Bielza et al., 2011; Sucar, 2015). Formally: Given the objects u = (~xu,~cu), where the
vector ~xu = (x1, x2, · · · , xd)u is the feature vector, with xi ∈ ΩXi = R (or Z), i ∈ {1, 2, ..., d},
and ~cu = (c1, c2, · · · , cq)u is the vector of class values assigned to ~xu, with cj ∈ ΩCj ⊆ Z (or
ΩCj = {−1, 1} or ΩCj = {0, 1}) , j ∈ {1, 2, ..., q}. The goal consists in learning the function
h : ΩX1×ΩX2×· · ·×ΩXd

→ ΩC1×ΩC2×· · ·×ΩCq , such that h(~xu) = ~cu ∀u, i. e. h assigns the
most likely combination of classes values to ~xu (that minimizes misclassification), as represented
in 1.

h(~xu) = arg max
(c1,c2,··· ,cq)u

(P (C1 = c1, C2 = c2, · · · , Cq = cq|~xu)) (1)

where P is the probability.

(x1, x2, · · · , xd)u 7→ (c1, c2, · · · , cq)u
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When the classes cj , j ∈ {1, 2, ..., q} are binary, the multidimensional classification problem is
called multi-label classification. There are two main approaches to tackle multi-label classification
(Sucar et al., 2014): binary relevance (BR) and label power-set. In binary relevance, the problem
is transformed into q binary classification problems, one for each class variable, C1, C2, · · · , Cq

(Zhang and Zhou, 2007). Each classifier independently creates a model for predicting its class and
the results of all of them are aggregated to produce the predicted class vector ~cu. This approach has
low computational complexity and common single valued classification techniques can be directly
applied, but its main drawback is that does not exploit potential interactions between classes (Sucar
et al., 2014). In contrast, the label power-set approach (Tsoumakas and Katakis, 2007) transforms
the problem into a single class problem defining a compound class variable C that represents the
combination of the individual class variables. The values of C are all the possible combinations
of values of the individual class variables. In this case, the interactions between class variables are
considered, but the computational complexity increases exponentially with the number of individual
class variables.

Intermediate strategies have been proposed to overcome the limitations of the two previous
approaches. One of these is chain classifiers (CC), which incorporates class interactions to the
binary relevance approach while maintaining computational efficiency (Read et al., 2009)

If the class vector is ~c = (c1, c2, · · · , cq), then a chain of q base binary classifiers (one per class)
is built and linked so that each classifier incorporates between its input features, the values of the
predicted classes by the preceding classifiers in the chain. The ordering of the class variables in
the chain affects the results (Gonçalves et al., 2013; Sucar et al., 2014) and usually an ensemble of
random orderings is developed, which requires more computational resources (Sucar et al., 2014).
Two different class variables orderings in the chain tend to produce different results because the
classifiers receive different previous class inputs (Dembczynski et al., 2010).

In this work we propose an extension to chain classifiers called “Circular Chain Classifiers”
(CCC), in which the propagation of the classes of the previous binary classifiers is done in a circular
way. In CCC, after the first cycle, the predictions of all the classifiers are entered as additional
attributes to the first one in the chain. This process continues to classifier in position 2 and, so on,
and it is repeated, to all the classifiers, for N cycles or until convergence. We aim to alleviate the
problem of class variables ordering. We present empirical evidence that the performance of CCC
does not depend on the order of the chain and further improves the performance of CC.

This paper is organized as follows, section 2 summarizes related work. Sections 3 introduces
“Circular Chain Classifiers” (CCC). The methodology is presented in section 4. Section 5 highlights
the experiments and results obtained with CCC, including the convergence process, the performance
comparison with BR and CC, and the effects of the class variables ordering in CCC performance.
Section 6 contains the discussion and, finally section 7 summarizes the main findings and describes
future work.

2. Related Work

Multi-label classification has been reviewed in Tsoumakas and Katakis (2007) and in Zhang and
Zhou (2014). Two main algorithmic strategies are distinguished: (1) problem transformation meth-
ods, and (2) algorithm adaptation methods. According to the first algorithmic strategy, Read et al.
(2009) introduced chain classifiers as an option for multi-label classification, incorporating class
dependencies, meanwhile maintaining the computational efficiency of the binary relevance method
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(Zhang et al., 2018). In their work, they proposed a combination of several chain classifiers by
changing the order of the class variables, setting up an ensemble of chain classifiers. Thereby, k
chain classifiers, characterized by the variation of the class variables ordering in the chain and by
the training data (both were settled randomly), were trained, and the final class values vector was
obtained using a voting scheme; each class variable value cj , j ∈ {1, 2, ..., q} received a num-
ber of votes from the k chain classifiers, and a threshold was used to determine the final predicted
multi-label values. Afterwards, Dembczynski et al. (2010) proposed probabilistic chain classifiers
(PCCs), setting up chain classifiers under a probabilistic framework. Specifically, the chain rule of
probability theory was applied to the probability of the vector of the q class values given the feature
vector. Their approach provided better estimations than the chain classifiers, but with a much higher
computational cost. Another alternative, under a probabilistic framework, is using Bayesian chain
classifiers (Zaragoza et al., 2011), where the chain rule of probability theory is applied and the ex-
pression is simplified considering the independence relations between the class variables. A directed
acyclic graph (DAG) is built representing the dependency relations between the class variables and
only the parents of each class variable are included in the chain. The class variables ordering in
the chain are defined through the paths in the DAG with the class variables parents. Alternative
approaches use a genetic algorithm trying to search the best class variables ordering (Gonçalves
et al., 2013), in what was called a Genetic Algorithm for ordering Chain Classifiers (GACC). This
method outperforms BR and CC, but it is necessary to generate several orderings and search in the
corresponding search space. A variation of chain classifiers called ring-based classifier was devel-
oped by Escalante et al. (2013) on the problem of detecting sexual predators in chat conversations.
Each document that represented a chat conversation was divided into three parts for evaluating three
different stages that a predator uses when approaching a child. The classification strategy consisted
in training a local (base) classifier (they employed a neural network) for each part of a document
and then combining the outputs through the idea of chain classifiers. Their proposal of ring-based
classifier was developed through an iterative process where all the permutations of the 3 parts of
a document were generated and incorporated continuously in the chain classifiers. They reported
results that outperformed the results of traditional chain classifiers.

3. Circular Chain Classifiers (CCC)

In this work, we propose an extension of CC where the class variables ordering does not matter
because the system involves a cyclic process in which all the base classifiers in the chain receive the
class information from all the other ones.

The circular chain classifier consists of q base binary classifiers linked circularly in a chain,
generating a ring architecture (see Figure 1). As in chain classifiers, each binary classifier in posi-
tions 2, 3, . . . , q incorporates the predicted classes of the previous classifiers as other attributes. The
circular configuration is obtained after the first iteration or “cycle” when the predicted classes of the
classifiers (in positions 2, . . . , q) are entered as additional attributes to the first one in the chain. The
propagation of the classes continues to classifier in position 2 and, so on. This process is repeated,
to all the classifiers, for N cycles or until convergence.
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Figure 1: Schematic depiction of the propagation process at the CCC classifier. 1) In the first iter-
ation, the predicted classes C ′j , j ∈ {1, 2, . . . , q − 1} are propagated as chain classifiers.
−→
A is the vector of attributes. 2) As from the second iteration, the classifier in position 1
receives the predicted classes from the last classifier (the one in position q) and the other
classifiers (positions 2, 3, ..., q−1). 3) the propagation process continues to the following
binary classifiers in the chain.

4. Methodology

Experimental description
The performance of CCC was evaluated against BR (used as baseline) and CC. Naı̈ve Bayes

(NB) was used as the base classifier for all the chain, and we made additional experiments using
Semi-Naı̈ve Bayesian classifiers (SNB) (Pazzani, 1996; Martı́nez-Arroyo and Sucar, 2006) to eval-
uate changes in the performance attributable to the base classifier for all the chain. The performance
comparison is described in Section 5.
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Datasets
BR, CC and CCC were tested on 2 benchmark multi-label data sets: flags (Gonçalves et al.,

2013) and emotions (Trohidis et al., 2008). Most of the features of these datasets are numeric and
we handled them using the Proportional k-Interval Discretization (PKID) method (Yang and Webb,
2001) which has been suggested to be a suitable discretization alternative for Bayesian classifiers
(Yang and Webb, 2001). All class variables of emotions and flags, are binary. The details of the
datasets are summarized in Table 1.

No Dataset p d q Domain Reference

1 flags 194 19 7 images (Gonçalves et al., 2013)
2 emotions 593 72 6 music (Trohidis et al., 2008)

Table 1: Multi-label datasets used in the experiments. p is the number of examples of the dataset, d
is the number of features, q is the number of binary class variables or labels.

Evaluation Metrics
To evaluate the performance of multi-label classifiers we used Global accuracy (GAcc), Mean

accuracy (MAcc), Multi-label accuracy (MLAcc) and F -measure; metrics for multi-label classi-
fication (Bielza et al., 2011; Sorower, 2010; Godbole and Sarawagi, 2004). The following notation
is adopted to describe the metrics:

p: number of examples in the dataset.
~cu: vector of true classes for example u.
~c ′u: vector of predicted classes for the example u.
cu,j : true value of the class variable j for the example u.
c ′u,j : value predicted of the class variable j for the example u.

Exact Match Ratio (EMR) or Global Accuracy (GAcc) represents the extension of accuracy
that is used in the traditional classification of a single class. GAcc is the accuracy by all the classes
of the examples.

GAcc =
1

p

p∑
u=1

q∧
j=1

(c ′u,j = cu,j) (2)

where the result of the operator
∧q

j=1 is 1 to indicate true in all the expressions depending on j and
0 to indicate false in any of the expressions depending on j.

Mean Accuracy (MAcc) represents the accuracy by class, in this case the results that are par-
tially correct are taken into account.

MAcc =
1

q

q∑
j=1

Accj =
1

q

q∑
j=1

1

p

p∑
u=1

δ(c ′u,j , cu,j) (3)

where Accj is the calculation of accuracy for the class j and δ(c ′u,j , cu,j) = 1 if c ′u,j = cu,j and 0
otherwise.
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Multi-label Accuracy (MLAcc), or Jaccard Measure is the proportion of predicted correct
labels to the total number of labels (predicted and true) for that example, averaged over all examples.

MLAcc =
1

p

p∑
u=1

|~c ′u ∧ ~cu|
|~c ′u ∨ ~cu|

(4)

where |~c ′u ∧ ~cu| =
∑q

j=1 (c ′u,j ∧ cu,j) and |~c ′u ∨ ~cu| =
∑q

j=1 (c ′u,j ∨ cu,j).

F-measure is the harmonic mean between precision and recall.

F −measure =
1

p

p∑
u=1

2 |~c ′u ∧ ~cu|
|~c ′u|+ |~cu|

(5)

Internal validity of the BR, CC and CCC models was established using the stratified 10 fold
cross-validation across all the examples.

Three experiments were carried out with the following purposes:

1. Determine experimentally the convergence of CCC on the aforementioned datasets, using as
stopping criteria a fixed number of iterations.

2. Performance comparison of the three classifiers: BR, CC and CCC. First, using naı̈ve Bayes
(NB) as base classifier for all the classifiers, and then using the Semi-Naı̈ve Bayesian classifier
(SNB) as base classifier for all the classifiers.

3. Evaluation of the class variables ordering in the CCC. We want to determine whether the
order is or not relevant for the results of CCC.

All the experiments were executed in both datasets.

5. Experiments and Results

Experiment 1: Determine experimentally the convergence of CCC:
Convergence was studied empirically setting a fixed number of iterations N and observing

whether the metrics (GAcc, MAcc, MLAcc and F -measure) outcomes tended towards a fixed
value asymptotically. CCC was executed for N = 8, 20 and 30 iterations. Figures 2 and 3 show
that at iteration 3 the system reaches a fixed point in almost all the cases. The CCC behaviour when
NB was used as base classifier was stable for both datasets, it got a fixed value at iteration 3 and it
maintained it over all the following iterations for the cases of 8, 20 and 30 iterations. When SNB
was used as base classifier, CCC exhibited the same behaviour in the flags dataset. For the emotions
dataset, convergence occurred at iteration 4 but got minimal fluctuations within the range of the
value achieved (see Figure 3).
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Figure 2: Convergence process of CCC over flags dataset when NB is the base classifier and then
when SNB is the base classifier. In both cases, 8 iterations are showed and the system
reached a fixed value at iteration 3 or 4.

Experiment 2: Performance comparison of BR, CC and CCC:
The class variables ordering for CC and for CCC was defined considering the BR results of ROC

area under the curve (AUC) of each class variable. They were sorted in decreasing order according
to AUC of BR results, interpreting that the class variables with worse results should be in the last
positions so they could receive more information from the class variables of the preceding positions.
Table 2 describes the ordering for each dataset and each base classifier.

Table 3 summarizes the classification results, mean ± std deviation (across the 10 folds of
the cross-validation), of BR, CC and CCC, for both base binary classifiers: NB and SNB. The best
mean results for each performance metric, each dataset and each base classifier are highlighted in
bold type. CCC outperformed BR and CC for all the metrics whether using NB and SNB. Bet-
ter results were obtained when SNB was the base classifier. Significant differences (Friedman test,
p < 0.05, post hoc analysis with Wilcoxon signed-rank tests with Bonferroni correction, p < 0.017)
were obtained for CCC (with SNB) when emotion dataset was used. CCC was run with 8 iterations.
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Figure 3: Convergence process of CCC over emotions dataset using NB as base classifier and then
SNB as base classifier. 8 iterations are showed and the system reached a fixed value at
iteration 2 for NB. In the case of SNB, CCC generated values close to a fixed point from
iteration 4.

Dataset class variables ordering for NB ordering for SNB

flags 1-Red, 2-Green, 3-Blue, 4-Yellow, 5-White, 6-Black, 7-Orange 2-3-6-4-7-5-1 2-7-6-4-3-5-1

emotions 1-amazed, 2-happy, 3-calm, 4-quiet, 5-sad, 6-angry 3-6-1-4-5-2 4-6-3-1-5-2

Table 2: Class variables ordering for each dataset and each base classifer.

Experiment 3: Evaluation of the class variables ordering in the CCC:
Permutation tests (Ojala and Garriga, 2010), p < 0.05, were performance and there were not

significant differences with the results of random permutations of the class variables in each dataset.
As an example, four permutations of class variables ordering in the CCC are presented: Permk,

k ∈ {1, 2, 3, 4}.
Table 4 summarizes the results for the different permutations of the example. The results are

similar for the different class variables ordering between each metric, each dataset and each base
classifier.
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Dataset GAcc MAcc MLAcc F -measure

flags

base classifier: naı̈ve Bayes
BR 0.1288± 0.0661 0.7259± 0.0437 0.5518± 0.0603 0.6687± 0.0637
CC 0.1480± 0.0552 0.7302± 0.0369 0.5672± 0.0471 0.6830± 0.0498
CCC 0.1691± 0.0652 0.7372± 0.0421 0.5831± 0.0535 ∗ 0.6963± 0.0517 ∗

base classifier: Semi-Naı̈ve Bayes
BR 0.4707± 0.1073 0.8898± 0.0290 0.8071± 0.0471 0.8750± 0.0326
CC 0.4942± 0.0828 0.8906± 0.0181 0.8131± 0.0276 0.8788± 0.0197
CCC 0.5741± 0.0869 ‡ 0.9058± 0.0263 0.8441± 0.0422 0.8986± 0.0303

emotions

base classifier: naı̈ve Bayes
BR 0.2483± 0.0605 0.7873± 0.0221 0.5022± 0.0448 0.5840± 0.0400
CC 0.2568± 0.0636 0.7865± 0.0229 0.5049± 0.0483 0.5854± 0.0427
CCC 0.2635± 0.0704 ∗ 0.7887± 0.0234 0.5123± 0.0495 ∗ 0.5931± 0.0424 ∗

base classifier: Semi-Naı̈ve Bayes
BR 0.3848± 0.0617 0.8435± 0.0188 0.6267± 0.0409 0.7016± 0.0388
CC 0.4740± 0.0611 0.8705± 0.0187 0.6834± 0.0338 0.7475± 0.0297
CCC 0.5583± 0.0676 ‡ 0.8958± 0.0154 ‡ 0.7384± 0.0351 ‡ 0.7921± 0.0293 ‡

Table 3: Performance comparisons between BR, CC and CCC (mean± std.deviation). CCC was
run with 8 iterations. The best results for each metric, each dataset and each base classifier
are highlighted in bold type. “*” means significant difference between the three multi-label
classifiers (Friedman test, p < 0.05) but without significant difference by pairs, “‡” means
significant difference between CCC and CC, and between CCC and BR (Friedman test,
p < 0.05, post hoc analysis with Wilcoxon signed-rank tests with Bonferroni correction,
p < 0.017).

6. Discussion

Convergence of CCC occurred within few iterations: 3 when NB was the base classifier and 4
iterations when using SNB. According to these experiments it seems that CCC converges in few
iterations, although a formal proof of convergence is left as future work. The results of CCC for the
both datasets outperformed CC and BR, and in some cases, the results were significantly better than
CC and BR. With respect to the base classifier, SNB outperformed NB, as it was expected; but the
drawback of SNB is the combinatorial explosion when the number of attributes increases.

As it was explained in the introduction, different class variables ordering can potentially change
the results when we are using CC; but we provided empirically evidence that CCC outcomes were
robust to different class variables orderings, at least in the datasets used in this research. In CCC,
the class variables ordering does not matter because the system involves a cyclic process in which
all the base classifiers, in the chain, receive the class information from all the other ones, until the
convergence is reached. Although there are other alternative approaches not so dependent on class
order, such as ensemble methods (Read et al., 2009) or using a genetic algorithm (Gonçalves et al.,
2013), the proposed CCC is simpler and computationally efficient.
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Dataset Permutation GAcc MAcc MLAcc F -measure

flags

base classifier: naı̈ve Bayes
Perm1 2-3-6-4-7-5-1 0.1691± 0.0652 0.7372± 0.0421 0.5831± 0.0535 0.6963± 0.0517
Perm2 1-2-3-4-5-6-7 0.1691± 0.0652 0.7349± 0.0416 0.5811± 0.0515 0.6946± 0.0503
Perm3 7-6-5-4-3-2-1 0.1691± 0.0652 0.7349± 0.0446 0.5799± 0.0579 0.6926± 0.0559
Perm4 1-2-3-4-7-6-5 0.1691± 0.0652 0.7364± 0.0425 0.5832± 0.0532 0.6963± 0.0515

base classifier: Semi-Naı̈ve Bayes
Perm1 2-7-6-4-3-5-1 0.5741± 0.0869 0.9058± 0.0263 0.8441± 0.0422 0.8986± 0.0303
Perm2 1-2-3-4-5-6-7 0.5741± 0.0869 0.9073± 0.0235 0.8474± 0.0366 0.9005± 0.0265
Perm3 7-6-5-4-3-2-1 0.5951± 0.0987 0.9103± 0.0242 0.8531± 0.0382 0.9037± 0.0270
Perm4 1-2-3-4-7-6-5 0.5741± 0.0869 0.9073± 0.0235 0.8474± 0.0366 0.9005± 0.0265

emotions

base classifier: naı̈ve Bayes
Perm1 3-6-1-4-5-2 0.2635± 0.0704 0.7887± 0.0234 0.5123± 0.0495 0.5931± 0.0424
Perm2 1-2-3-4-5-6 0.2685± 0.0750 0.7901± 0.0248 0.5157± 0.0538 0.5956± 0.0463
Perm3 6-5-4-3-2-1 0.2635± 0.0704 0.7881± 0.0239 0.5117± 0.0497 0.5923± 0.0428
Perm4 1-2-3-6-5-4 0.2652± 0.0717 0.7887± 0.0238 0.5129± 0.0519 0.5931± 0.0449

base classifier: Semi-Naı̈ve Bayes
Perm1 4-6-3-1-5-2 0.5583± 0.0676 0.8958± 0.0154 0.7384± 0.0351 0.7921± 0.0293
Perm2 1-2-3-4-5-6 0.5498± 0.0681 0.8913± 0.0166 0.7314± 0.0353 0.7864± 0.0277
Perm3 6-5-4-3-2-1 0.5632± 0.0591 0.8977± 0.0140 0.7413± 0.0307 0.7948± 0.0269
Perm4 1-2-3-6-5-4 0.5515± 0.0671 0.8941± 0.0159 0.7360± 0.0357 0.7912± 0.0286

Table 4: Performance comparison of CCC (mean ± std.deviation) when the class variables are
settled in different orderings. The results are similar within each metric, each dataset and
each base classifier.

7. Conclusions and Future Work

The main contribution of this work is our proposal of extending chain classifiers to what we called
“Circular Chain Classifiers” (CCC) which, according to the empirical evidence, do not depend on
the class variables ordering of the chain, improving the performance of CC and maintaining the
CC efficiency for the datasets used. The proposed extension is simple and easy to implement.
The results are promising because CCC had fast convergence (just about 3 or 4 iterations), and
outperformed CC and BR for the datasets used. Further experiments are necessary to have more
conclusive evidence. In the future we will explore CCC performance with other datasets. A formal
proof of convergence will be explored. Comparisons with ensemble of CC (Read et al., 2009) and
with the genetic algorithms proposed by Gonçalves et al. (2013) will be done too.
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predator detection in chats with chained classifiers. In Proceedings of the 4th Workshop on Com-
putational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 46–54, 2013.

S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. In Proceed-
ings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 22–30.
Springer, 2004.
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