
Proceedings of Machine Learning Research vol 72, 404-415, 2018 PGM 2018

Differential Networking with Path Weights in Gaussian Trees

Alberto Roverato ALBERTO.ROVERATO@UNIBO.IT
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Abstract
Marginal and partial correlations quantify the strength of the associations represented by the edges
of a graphical Gaussian model. The identification of changes in these quantities across different
multivariate distributions, defined on the same vector of random variables, is often used to analyze
regulatory networks in molecular biology, doing what is popularly known as differential network-
ing, or differential coexpression analysis. However, the strength of associations along the paths of
a graphical model has remained largely unexplored in this type of analysis. Here we investigate
how to quantify this strength over the paths of a Gaussian tree, leading to a factorization of what
we shall call path weights. We show that tree structures allow for an intuitive interpretation of path
weights and that the proposed factorization conveys information that is not captured by marginal
or partial correlations alone. Path weights can help to improve our understanding of a multivariate
system under study and provide a new tool for differential coexpression analysis.
Keywords: graphical Gaussian model; tree; path weight; inflation factor; inverse covariance.

1. Introduction

In many applications, data come from different distributions that share the same variables but differ
in their dependence structure. In this case it is often of interest to identify differences in the associ-
ation patterns of variables. A relevant example in the field of molecular biology is provided by the
comparison of gene expression values measured on different experimental conditions. The moti-
vation to follow such approaches is that the identification of changes in gene coexpression patterns
provides information that is complementary to the identification of significant changes in mean lev-
els of expression, commonly known as differential expression analysis (de la Fuente, 2010). The
existing techniques for differential coexpression analysis involve the comparison, across different
experimental conditions, of some measure of coexpression between two or more genes. Coexpres-
sion is commonly identified by using marginal measures of association such as Pearson or Spearman
correlation coefficients, ignoring the multivariate structure of gene expression levels, which can po-
tentially inform the quantification of coexpression.

Covariance and inverse covariance matrices, jointly with the mean vector, condense the infor-
mation of multivariate Gaussian distributions. Scaling their rows and columns provides matrices
of marginal and partial correlations, which have become the canonical units of interpretation of
associations between continuous random variables in a multivariate system. In graphical Gaussian
models (Whittaker, 1990; Lauritzen, 1996) an undirected graph is used to represent the association
structure of variables as a network, and if a pair of variables is not joined by an edge in the graph,
then the corresponding partial correlation is equal to zero. An analysis involving the comparison of
networks is commonly known as differential networking and in the context of graphical models this
has focused on learning and comparing graph structures (Guo et al., 2011; Danaher et al., 2014).
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Although in graphical Gaussian models the structure of the network can be inferred from the
zero pattern of the inverse covariance matrix, if the probability distribution of the variables is faith-
ful to the network, then paths along the network connect random variables with non-zero entries
in the covariance matrix. Paths of dependence were studied by Wright (1921) in directed graphs,
to understand how marginal associations between two random variables decompose through their
connecting paths. On the other hand, Jones and West (2005) developed the counterpart of Wright’s
decomposition, for undirected graphs, in terms of additive weights along undirected paths. In undi-
rected graphical models, little is known about the interpretation of path weights and their relation-
ship with covariance, inverse covariance, marginal and partial correlations. Recently, Roverato and
Castelo (2017) provided an interpretation of path weights for the trivial case of single-edge paths in
undirected graphical Gaussian models.

In this paper we focus on graphical Gaussian models with tree structure. Tree models can be
used to approximate arbitrary undirected graphical models (Edwards et al., 2010; Lauritzen et al.,
2018) and represent a starting point in the analysis of more complex graphical structures. The
Pearson (marginal) correlation can be regarded as a natural weight to be associated with the path of
a Gaussian tree because it can be computed as the product of the correlation coefficients associated
with the edges of the path. Here we show that the information provided by such a path weight in a
Gaussian tree, can be factorized as the product of a partial correlation and an inflation factor. The
separate analysis of these two quantities can help to improve our understanding of a multivariate
system under study and provide a new tool for performing differential networking.

The rest of this paper is organized as follows. Section 2 gives the required background on
Gaussian tree models and inflation factors. In Section 3 we derive the path weight factorization
and show some of its properties, which are illustrated through simulations in Section 4. Finally,
Section 5 shows a differential networking analysis with real gene expression data from yeast.

2. Notation and Background

2.1 Graphs and Paths

An undirected graph is a pair G = (V, E), where V is a set of vertices and E is a set of edges,
which are unordered pairs of vertices; formally E ⊆ V × V . The graphs we consider are simple,
which implies that they have no multiple edges and have no loops, i.e. {v, v} 6∈ E for any v ∈ V .
A path between x and y in G is a sequence π = 〈x = v1, . . . , vk = y〉 of k ≥ 2 distinct vertices
such that {vi, vi+1} ∈ E for every i = 1, . . . , k − 1. We denote, respectively, by V (π) ⊆ V and
E(π) ⊆ E , the set of vertices and edges of the path π. To improve the readability of V (π) in sub-
and superscripts, we will set P ≡ V (π). We write πxy when we want to make more explicit which
are the endpoints of the path. We denote by Πxy the collection of all paths from x to y in G. The
length of a path, |πxy|, is defined as the number of vertices forming the path, i.e. |πxy| = k for
πxy = 〈x = v1, . . . , vk = y〉. A path πxy becomes a cycle if the endpoints are allowed to be the
same, i.e. x = y, and |πxy| ≥ 3. The degree of a vertex v ∈ V , denoted by deg(v), is the number of
edges incident to v, and we define the degree of a path π as deg(π) = Σv∈V (π)deg(v). A tree is an
undirected graph where there is path between every pair of vertices but where there are no cycles,
i.e. |Πxy| = 1 for every x, y ∈ V , x 6= y. In the following, when we want to highlight that a graph
is a tree we will write it as T = (V, E). Although in this paper we focus on trees, results given also
hold true when the considered graph is the disjoint union of trees, i.e. it is a forest.

405



ROVERATO AND CASTELO

2.2 Inflation Factors

Let X = XV be a vector of continuous random variables indexed by a finite set V = {1, . . . , p} so
that for A ⊆ V , XA is the subvector of X indexed by A. The random vector XV has probability
distribution PV and covariance matrix Σ = {σuv}u,v∈V . For x, y ∈ V with x, y 6∈ A we denote by
ρxy·A the partial correlation coefficient of Xx and Xy given XA, which simplifies to the (marginal)
correlation coefficient ρxy when A = ∅. In the literature, different quantities have been introduced
in order to provide a generalization of the concept of (partial) correlation from pairs of variables to
pairs of vectors; see Mardia et al. (1979, Section 6.5.4), Timm (2002, p. 485) and Kim and Timm
(2006, Section 5.6) for a review of measures of correlation between vectors. Here we consider a co-
efficient, introduced by Rozeboom (1965). This turns out to be a building block for the computation
of inflation factors, which arise naturally in the theory developed in this paper. Formally, if B ⊆ V ,
with A ∩ B = ∅, the vector correlation of XA and XB is defined as ρ(A)(B) =

√
1− λ(A)(B),

where λ(A)(B) = |ΣA∪BA∪B|/ (|ΣAA| × |ΣBB|) is the vector alienation coefficient of Hotelling
(1936). It is straightforward to check that when A = {x}, ρ(A)(B) = ρ(x)(B) coincides with the
multiple correlation of Xx on XB , so that if also B = {y} then ρ2

(A)(B) = ρ2
xy (see also Timm,

2002, p. 485). We remark that the covariance matrices we consider are assumed to be positive def-
inite so that 0 ≤ ρ(A)(B) < 1; furthermore, we use the convention that λ(A)(B) = 1, and therefore
ρ(A)(B) = 0, whenever either A = ∅ or B = ∅. Throughout this paper many quantities involve the
computation of the determinant of a matrix whose rows and columns are indexed by a subset of V .
When such a subset is empty we use the convention that the determinant is equal to one.

Linear regression diagnostics use a quantity called the variance inflation factor to help detect
multicollinearity. More specifically, the variance inflation factor of Xv on XV \{v} is defined as
IFv = 1/(1 − ρ2

(v)(V \{v})) (see Belsley et al., 2005; Chatterjee and Hadi, 2012). The variance
inflation factor equals 1 when Xv and XV \{v} are uncorrelated so that ρ(v)(V \{v}) = 0; otherwise
IFv > 1 and its value increases as ρ(v)(V \{v}) increases. Here, we extend the definition of the
variance inflation factor to a pair of subsets A,B ⊆ V , with A ∩B = ∅, as follows

IFBA =
1

1− ρ2
(A)(B)

(1)

and call this quantity the inflation factor of A on B, written as IFA when B = V \ A. Note that
the inflation factor is a monotonically increasing function of the vector correlation. However, while
the vector correlation takes values between zero and one, it holds that IFBA ≥ 1. The name inflation
factor comes from the fact that this quantity is used as a multiplicative term to “increase” the value of
other quantities. It is desirable that the vector correlation, and therefore the inflation factor, should
not decrease if more variables are added to either A or B. The following lemma shows that this
basic requirement is satisfied.

Lemma 1 Let Σ be the covariance matrix of a random vector XV . If A′ ⊆ A ⊆ V and B ⊆ V is
a subset of V such that A ∩B = ∅ then it holds that IFBA′ ≤ IFBA .

Proof We first notice that if we let ΣAA·B = ΣAA−ΣABΣ−1
BBΣBA then IFBA = |ΣAA||ΣBB|/|Σ| =

|ΣAA|/|ΣAA·B|, and that if we set A′′ = A \ A′, it follows from the Schur’s determinant identities
that |ΣAA| = |ΣA′′A′′·A′ ||ΣA′A′ | and that |ΣAA·B| = |ΣA′′A′′·A′∪B||ΣA′A′·B|. Hence, we have,
IFBA = (|ΣA′′A′′·A′ ||ΣA′A′ |)/(|ΣA′′A′′·A′∪B||ΣA′A′·B|) = (|ΣA′′A′′·A′ |)/(|ΣA′′A′′·A′∪B|) × IFBA′ ,
and the result follows because |ΣA′′A′′·A′ | ≥ |ΣA′′A′′·A′∪B|.
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2.3 Concentration Graph Models

The concentration (or precision) matrix K = {κuv}u,v∈V of the random vector XV is the inverse
of its covariance matrix, that is K = Σ−1. As in Σ, rows and columns of K are indexed by V and
we say that K is adapted to a graph G = (V, E) if for every κuv 6= 0, with u 6= v, it holds that
{u, v} ∈ E . The concentration graph model (Cox and Wermuth, 1996) with graph G = (V, E) is the
family of multivariate normal distributions whose concentration matrix is adapted to G. This model
has also been called a covariance selection model (Dempster, 1972) and a graphical Gaussian model
(Whittaker, 1990); we refer the reader to Lauritzen (1996) for details and discussion.

For A,B ⊆ V with A ∩B = ∅ the partial covariance matrix ΣAA·B = ΣAA − ΣABΣ−1
BBΣBA

is the covariance matrix of XA|XB , that is the residual vector deriving from the linear least square
predictor of XA on XB (see Whittaker, 1990, p. 134). We denote by σuv·B , for u, v ∈ A, the entries
of ΣAA·B and recall that, in the Gaussian case, ΣAA·B coincides with the covariance matrix of the
conditional distribution of XA given XB . Note that we use the convention that Σ−1

AA = (ΣAA)−1

and, similarly, Σ−1
AA·B = (ΣAA·B)−1. Furthermore, if Ā = V \ A is the complement of a subset

A with respect to V , then it follows from the rule for the inversion of a partitioned matrix that
Σ−1
AA·Ā = KAA and, accordingly, Σ−1

AA = KAA·Ā. We will focus on the case where the concentration
matrix K is adapted to a tree T = (V, E), which we shall also call the concentration tree model.

3. Path Weights in Concentration Tree Models

In the framework of concentration tree models, a key role is played by the relationship existing
between the correlation ρxy of two variables Xx and Xy, and the (unique) path π between x and y
in T . More specifically, ρxy can be factorized into the product of the marginal correlations along
the edges of π in T , as follows (see, e.g., Choi et al., 2011; Zwiernik, 2015),

ρxy =
∏

{u,v}∈E(π)

ρuv. (2)

For this reason, the (marginal) correlation ρxy can be regarded as a natural weight to be associated
with the path of a Gaussian tree.

Example 1 Consider the trees Ta and Tb in Figure 1, and assume that in the respective concen-
tration graph models the correlations for every pair of variables joined by an edge is constant and
equal to ρ = 0.5. It follows that the correlation associated with a path πxy is ρxy = 0.5|πxy | both
in Ta and Tb so that, for instance, because πa23 = πb23 = 〈2, 1, 3〉 then , ρa23 = ρb23 = 0.25. Further-
more, the fold changes between these quantities for the paths πaxy and πbxy are always of the form
2l, where l = |πaxy| − |πbxy|.

Here we show that ρxy can be also written as the product of a partial correlation and an inflation
factor, and describe the role played by these two quantities in the analysis of the information encoded
by a path of a tree. If K is adapted to a tree T = (V, E) and πxy is the unique path between x and y
in T , then we define the inflation factor associated with the path πxy as follows,

IFTxy =
IFP√

IFP̄x × IFP̄y

, (3)
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Figure 1: Comparison of two small trees. Ratios in the x and y-axis of panel (c) are calculated from
trees Ta in (a) and Tb in (b). Numbers x : y in (c) refer to the endpoints of paths πxy in
Ta and Tb. Solid lines in (c) correspond to values in x and y-axis for which the ratio of
marginal correlations ρaxy/ρ

b
xy is constant.

where P = V (π) and P̄ = V \ P . The application of Lemma 1 to (3) shows that IFTxy is a proper
inflation factor in the sense that it always takes values greater or equal to one.

Proposition 2 Let π be the unique path between x and y in the tree T = (V, E) and let K be the
concentration matrix of XV such that K is adapted to T . Then, it holds that IFTxy ≥ 1.

Proof This follows immediately from Lemma 1 because x, y ∈ P so that it holds both that IFP ≥
IFP̄x and IFP ≥ IFP̄y . This implies (IFP )2 ≥ IFP̄x × IFP̄y and therefore IFP ≥ (IFP̄x × IFP̄y )

1
2 .

As well as IFP , also IFTxy is a measure of the association between XP and XP̄ . However, IFTxy in

(3) is computed by dividing IFP by (IFP̄x × IFP̄y )
1
2 with the consequence that IFTxy ≤ IFP .

Example 2 In the setting of Example 1, the path π23 = 〈2, 1, 3〉 is common to the two trees Ta and
Tb and furthermore, ρa23 = ρb23 = 0.25. On the other hand, the two inflation factors are different
because IFTa23 = 1.625 whereas IFTb23 = 1.938 thereby reflecting the different ways the two paths are
joined with the remaining vertices in the respective trees.

In a path, a different role is played by the endpoint vertices with respect to the inner vertices. In
IFP all the vertices of the path are considered to be on an equal footing whereas in the computation
of IFTxy the endpoints of the paths are considered explicitly and the value of IFP is adjusted so as
to reduce the relevance played by the endpoint vertices. The definition of the inflation factor IFTxy
associated with a path of a Gaussian tree T leads to the main result of this paper.

Theorem 3 Let π be the unique path between x and y in the tree T = (V, E) and let K be the
concentration matrix of XV such that K adapts to T . The correlation ρxy between Xx and Xy,
corresponding to the weight of the path π, can be decomposed as,

ρxy = ρxy·P̄ × IFTxy , (4)

where P = V (π).
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Proof Firstly, we notice that ΣPP ·P̄ = K−1
PP so that σxy·P̄ = cxy/|KPP | where cxy is the (x, y)-

cofactor ofKPP . SinceK is adapted to T , then if we order the rows and columns ofKPP from x to
y, following the ordering of vertices on π, then KPP is a tridiagonal matrix and it is straightforward
to see that the (x, y)-cofactor of KPP is equal to cxy = (−1)|P |+1

∏
{u,v}∈E(π) κuv. Hence,

σxy·P̄ =
(−1)|P |+1

∏
{u,v}∈E(π) κuv

|KPP |
. (5)

Secondly, we have

IFP =
|ΣPP |
|ΣPP |P̄ |

=
|KPP |P̄ |−1

|KPP |−1
=
|KPP ||KP̄ P̄ |
|KPP |P̄ ||KP̄ P̄ |

=
|KPP ||KP̄ P̄ |
|K|

. (6)

To obtain the desired result we exploit the formula of Jones and West (2005) for the covariance
decomposition over the path of an undirected graph introduced. More precisely, Theorem 1 of
Jones and West (2005) shows that one can write

σxy =
∑
π∈Πxy

(−1)|P |+1 |KP̄ P̄ |
|K|

∏
{u,v}∈E(π)

κuv

that in the case where there is only one path π between x and y simplifies to

σxy = (−1)|P |+1 |KP̄ P̄ |
|K|

∏
{u,v}∈E(π)

κuv

=
(−1)|P |+1

∏
{u,v}∈E(π) κuv

|KPP |
× |KPP ||KP̄ P̄ |

|K|
= σxy·P̄ × IFP , (7)

where (7) follows from (5) and (6). We can then divide both sides of (7) by (σxx σyy)
1
2 and

then multiply and divide the right hand side by (σxx·P̄ σyy·P̄ )
1
2 to obtain ρxy = ρxy.P̄ × IFP ×√

(σxx·P̄ σyy·P̄ )/(σxx σyy) = ρxy·P̄ × IFTxy, as required.

The identity in Equation (4) shows that ρxy can be decomposed into the product of ρxy·P̄ and IFTxy.
The first term is the correlation between Xx and Xy computed after these two variables have been
linearly adjusted for the variables outside the path in the network. On the other hand, IFTxy is a mea-
sure of the strength of the association between the path and the rest of the network. The stronger
the association of the path with the remaining variables the larger the inflation factor.

Example 3 Let πxy and πuv be two paths such that the vertices of πxy are disconnected from the
rest of the network (so that T is in fact a forest) whereas the vertices of πuv are highly connected
with the rest of the network. Clearly, the path πxy plays a different role in the multivariate system
with respect to πuv, but the values taken by the two correlation coefficients ρxy and ρuv fail to
highlight this feature. Equation (4) clarifies this aspect by computing the correlation coefficient as
an inflated partial correlation because IFxy = 1 whereas IFuv > 1.

Example 4 Consider again the setting of Example 2. In both trees it holds that P = V (π23) =
{2, 1, 3}, and therefore that P̄ = {4, 5, 6, 7}. Furthermore, the partial correlations in (4) are given
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Figure 2: Comparison of structural properties of two large trees. Path length distribution (a); path
degree distribution (b); and difference in path degree among the common paths between
the two trees, as function of their length (c).

by ρa
23·P̄ = 0.154 and ρb

23·P̄ = 0.129, respectively, so that ρa23 = ρa
23·P̄ × IFTa23 = 0.154× 1.625 =

0.25 and ρb23 = ρb
23·P̄ × IFTb23 = 0.129× 1.938 = 0.25. More generally, Figure 1c shows the ratios

of the quantities in the factorization given in (4) and how these quantities change while the ratio of
marginal correlations remains constant, even in the case of paths that are common to both trees.

Interestingly, this decomposition preserves the factorization of the correlation along the path, in the
sense that also the partial correlation is the product of partial correlations associated with the edges
of the path. This shows that as well as ρxy, also ρxy·P̄ is a natural measure to be associated with a
path in a tree.

Corollary 4 Under the conditions of Theorem 3 the following relationships hold true

(i) |ρxy| ≥ |ρxy·P̄ |, (ii) sgn(ρxy) = sgn(ρxy·P̄ ) and (iii) ρxy·P̄ =
∏

{u,v}∈E(π)

ρuv·P̄ .

Proof Relationships (i) and (ii) follow from (4) because IFTxy ≥ 1. The equality (iii) follows from
(2) by noticing that KPP = Σ−1

PP ·P̄ is adapted to the tree TP and that π is a path in TP .

We close this section by showing that the relationships between marginal and partial correlations,
given in Corollary 4, extend to every pair of variables.

Corollary 5 Let K be the concentration matrix of XV . If K is adapted to the tree T = (V, E) then
for every u, v ∈ V it holds that |ρuv| ≥ |ρuv·V \{u,v}|; furthermore, sgn(ρuv) = sgn(ρuv·V \{u,v})
whenever ρuv·V \{u,v} 6= 0.

Proof If the pair {u, v} forms an edge in T , i.e. {u, v} ∈ E , then the result follows from Corollary 4
because every edge is a path. If {u, v} 6∈ E then the result is trivially true because ρuv·V \{u,v} = 0.
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4. Simulation Studies

We have conducted simulation studies to illustrate and understand the properties of the quantities
described in the previous section. More concretely, we address the following three questions:

• How partial correlations and inflation factors change due to tree structural differences only.

• How partial correlations and inflation factors change due to differences between parameter
values with a given tree structure.

• How partial correlations and inflation factors change due to differences in both, structure and
parameter values of the two compared trees.

We simulate covariance matrices whose inverse adapts to a given tree T = (V, E) using the
procedure described in (Tur et al., 2014, pg. 1380). Depending on the particular simulation, we will
enforce a constant marginal correlation ρ associated with present edges in T or simulate covariance
matrices with a mean correlation ρ among present edges.

1.0 1.5 2.0 2.5 3.0

0.4

0.6

0.8

1.0

1.2

1.4

ρxy.P
1 ρxy.P

2

IF
xy1

IF
xy2

●●

●

●

●●●

●

●●

●

●

●●

●●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●

●●●

●●
●

●●

●

●●●●●●

●

●●

●

●●●●●●

●●

●●

●

●●●●●●

●

●

●

●

●●

●

●●

●●●
●

●

●

●

●

●●

●

●●

●●●
●

●

●

●

●

●

●●

●

●●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●●●

●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●
●

●

●

●●
●

●

●●

●●●

●●

●

●

●●

●

●

●●

●

●●

●●●
●

●
●

●●

●

●

●

●●
●

●

●●
●●●

●●
●

●

●●

●

●

●

●●

●

●●

●●●
●

●
●

●●

●

●

●

●●
●

●

●●
●●●

●●
●

●

●●

●

●

●

●

●●

●

●●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●●
●●●

●●
●

●

●●

●

●●
●

●

●●

●

●●

●●●
●

●

●

●

●
●

●

●

●●

●

●

●●

●●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●
●

●
●

●

●
●

●●

●

●
●

●

●●
●●●

●●
●

●

●●

●●●

●

●

●

●

●●

●

●

●

●●●
●

●
●

●

●
●

●●

●

●
●

●

●●
●●●

●●
●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●●●
●

●
●

●

●
●

●

●●

●
●

●

●●
●●●

●●
●

●

●●

●●●

●

●●●

●

●

●●

●

●

●

●●●
●

●
●

●

●
●

●

●●

●
●

●

●●
●●●

●●
●

●

●●

●●●

●

●●●

●

●

●

●●

●●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●●●

●●
●

●

●●

●●●

●

●

●●●●

●

●

●●

●●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●●●

●●
●

●

●●

●●●

●

●

●●●●

●

●

●

●●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●
●

●

●●

●●●

●

●

●●●●

●●

●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●●

●●

●

●●●

●

●●

●

●

●●●●●●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●●

●●

●

●●●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●●●●●●

●

●●●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●●●●●●

●

●●●

●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●●

●

●

●●

●●

●

●●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●●

●●●

●

●

●●

●●

●

●●

●

●

●●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

XXXX

2
3
4
5
6
7
8
9

|πxy
1 ∩ 2|

a

−10 −5 0 5 10

−10

−5

0

5

10

log2(ρxy.P
1 ρxy.P

2 )

lo
g 2

(IF
xy1

IF
xy2

)

●

●

●

●

●

●

●

●●●

●

●●

●●●

●●●

●●●

●●●●●●●●●

●●

●

●

●

●

●

●

●●

●●●
●

●

●

●●●

●●●●●●

●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●●

●

●●

●●●

●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●●

●

●

●

●●●

●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●●

●

●●

●●●

●●●●●●●●●
●●

●

●

●

●

●●●

●

●
●●●

●●

●

●●

●

●●●●●●●●●

●●●●●●

●
●

●

●●
●●●

●
●

●

●

●

●

●

●

●●

●

●●

●●●

●
●●

●●●●●●

●

●

●

●●●●●●

●●
●●●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●●

●
●●

●●●●●●

●

●●

●●●●●●

●●
●●●

●
●

●

●

●
●●●●

●

●

●
●●●●●●

●
●●

●●

●

●●●●●●●●●●●●
●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●●

●

●●●●
●●●

●●●●●●

●

●

●
●●●●●●●●●●●●●●●
●●

●

●

●

●
●

●
●

●●

●●●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●●

●●

●

●●●

●●

●

●●●●●●

●●●●●●

●●●

●●
●●●

●
●

●

●

●●

●●●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●●●

●

●

●●●●●●
●●●

●

●●

●

●

●

●●●●●●●●●
●●

●

●

●
●

●
●

●
●●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●
●

●

●●●

●●●

●●●

●●●

●●
●●●

●
●

●

●
●●

●●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●
●

●

●●●

●

●●

●●●●●●

●●
●●●

●
●

●

●

●

●

●●●
●

●

●

●

●●●
●

●●●●●
●
●

●●●●●●
●●●

●

●
●
●●●●●●●●●●●●
●●

●

●

●

●
●

●

●
●●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●●●
●●●●●●●●●

●●

●

●

●
●

●
●

●
●●●●●

●
●

● ●

●●●
●

●●

●

●

●

●
●

●

●
●●

●

●

● ●

●
●

●

●

●●
●

●
●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●●

●●●

●●

●

●●●

●●
●●●

●
●

●

●
●●

●●●
●

●

●

●
●●●

●

●

●●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●

●

●●●

●
●

●

●●●

●●
●●●

●
●

●

●
●●

●●●
●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●

●●

●

●

●
●

●
●

●
●●●●●

●
●

● ●
●●●

●
●●●

●

●

●●●
●

●

●●●●

●

●

●
●●●●●●

●

●

●

●●●

●●

●

●●●●●●●●●
●●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●

●●●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●●

●

●●

●●●●●●

●●

●

●●●●●●●●●

●
●

●

●

●
●

●
●

●
●●●●●

●
●

● ●
●●●

●
●●●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●●●●●

●●

●

●●●●●●

●

●●

●●
●●●

●
●

●

●

●●

●●●
●

●

●

●
●●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●●●●
●

●

●

●●●●●●●●●●●●

●

●●

●●●

●

●●

●●
●●●

●
●

●

●

●●

●●●
●

●

●

●
●●●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●●●●●

●

●●

●

●●

●●●●●●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●

●●

●

●●●●

●

●●

●●●●●●●●●●●●

●

●

●

●●●●●●

●●
●●●

●
●

●
●●●●●●

●
●

● ●
●●●

●
●●●

●

●●●●
●

●

●

●
●

●

●● ●●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●●●●●●●●●

●

●

●

●●●●●●

●
●

●

●

●
●

●
●

●●●●●●
●

●
● ●

●●●
●

●●●

●

●●●●
●

●

●

●

●

●

●● ●

●

●

●●
●

●●●●
●●●●●●●●●●●●●●●
●●

●
●●●●●●●●

●●●
●

●
●

●

●●

●●●
●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●●

●

●

●

●●●●●●●●●

●●

●

●●●●●●

●●

●

●

●
●

●
●

●●●●●●
●

●
● ●

●●●
●

●●●

●

●●●●
●

●

●

●

●

●

●● ●

●

●

●

●

●●
●

●●●●
●

●

●●●●●●●●●●●●●
●●

●

●●

●

●●●●●
●●●

●
●

●

●●●

●●●
●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●●●

●●●

●

●●

●●●

●●

●

●

●

●
●

●

●●●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●● ●

●

●●

●
●

●
●●

●
●

●●
●
●●●●

●

●

●●●●●●●●●●●●●
●●●

●

●●

●●●●●
●●●

●
●

●

●●●

●●●
●

●

●

●
●●●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●●
●

●●●●

●

●

●●●●●●●●●●●●●

●●
●

●

●●

●●●●●
●●●

●
●

●

●

●●

●●●
●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●●

●●●

●

●

●

●●●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●●

●

●

●
●●

●
● ●●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●●

●
●

●
●●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●●●

●●●

●

●

●

●●●

●●

●

●

●

●
●

●

●●●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●● ●

●

●●

●
●

●
●●

●
●

●

●
●●●

●●
●

●●●●
●

●

●

●●●●●●●●●●●●
●●●

●●

●

●●

●

●●
●●●

●
●

●

●

●●

●●●
●

●

●

●
●●●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●● ●

●●
●

●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●●

●●●

●●

●

●●●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●●

●

●

●
●●

●
● ●●

●

●

●

●

●

●●
●

●●●●
●

●

●
●●●●●●●●●●●●

●●●

●
●●

●

●●

●●
●●●

●
●

●

●●●

●●●
●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●●●●●

●●●

●●●●●●

●

●●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●●

●
●

●
●●

●
●

●●
●

●●

●

●●

●

●

●●
●

●
●

●

●●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●● ●

●

●
●

●

●●

●

●

●●●

●●

●

●●●

●●●●●●●●●

●●●●●●

●

●
●

●●

●

●

●
●

●
●

●●●●●●
●

●
● ●

●●●
●

●●●

●

●●●●
●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●
●

●● ●●● ●
●●

●

●

●

●

●

●●●

●●

●

●●●

●●●●●●●●●

●●●●●●

●

●
●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●●

●
●

●●
●

●●

●

●
●

●
●● ●

●

●●

●
●

●
●●

●
●

●●
●

●● ●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●●●●●●

●●●●●●

●

●
●

●●

●

●

●

●
●

●
●●●

●

●
●

●
●

●

●

●●●

●
●

●●
●

●●

●

●
●

●
●

●

●
●

●●

●
●

●
●●

●
●

●●
●

●● ●

●●

●

●

●

●●

●
●●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●
●

●
●●

●

●●
●

●
●

●

●●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●
●

●
●●

●

●

●

●

●

●●

●

●●

●

●●●

●●●●●●

●●
●

●●●●●●

●●

●

●●

●

●

●
●

●
●

●●●

●●●
●

●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●● ●
●

●●

●
●

●
●●

●
●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●●●

●●

●

●

●●
●●●●●●●●●

●●●●●●

●●

●

●

●
●

●●
●

●
●

●●●

●●●
●

●

●

●
●●●

●
●

●●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●●●

●

●●

●●

●

●●●●●●

●●●●●●●●●

●

●

●●

●

●
●

●
●

●●

●

●●
●

●

●

●

●●●

●
●

●●
●

●●

●

●
●

●
●

●

●
● ●●

●
●

●
●●

●
●

●●
●

●● ●

●●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●●●●●

●●●●●●●●●

●

●

●●

●

●
●

●
●

●●

●

●●
●

●

●

●

●●●

●
●

●●
●

●●

●

●
●

●
●

●

●
● ●●

●
●

●
●●

●
●

●●
●

●● ●

●●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●
●●●

●

●●

●

●●
●●●●●●●●●

●

●

●

●●●●●●

●

●
●

●●
●

●
●

●

●

●

●●●
●

●

●

●
●●●

●

●

●●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●●

●

●

●
●●●

●

●●
●

●

●●

●●

●

●
●●●

●●

●

●

●●
●●●●●●●●●

●●●●●●

●●

●

●

●
●

●●
●

●
●

●●●

●●●
●

●

●

●
●●●

●
●

●●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●●●
●

●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●● ●

●
●

●

●
●

●
●

●

●●●●●
●

●
● ●

●●●
●

●●●

●

●●●●
●

●

●

●

●

● ●● ●

●

●

●

●

●

● ●

●
●

●● ●●● ●
●●

●

●

●

●●●
●

●●●

●●

●

●

●

●

●

●

●

●

XXXXXXX

2
3
4
5
6
7
8
9

|πxy
1 | − |πxy

2 |

b

Figure 3: Comparison with constant marginal correlation. The ratio of path inflation factors is
shown on the y-axis as function of the ratio of partial correlations given the vertices
outside the path, on the x-axis. Values are shown separately for paths that are common
(a) and different (b) between the two trees. Dotted lines across the diagonal indicate
values of the x and y-axes at which the ratio of marginal correlations ρ1

xy/ρ
2
xy is constant.

In the first simulation study we built a tree T1 of p = 100 vertices with a nearly constant degree
d = 3 on each vertex. Then we randomly selected 50 vertices among those with degree d = 1,
i.e. leafs in T1, and built a second tree T2 starting from T1 by removing the edges that connect leaf
vertices and adding edges to them from 50 other randomly selected vertices. The tree T2 does not
retain anymore the high degree of regularity in the connections of T1 as reflected in the comparison
of path length and degree distributions shown in Figure 2. Using these two trees T1 and T2 we built
two covariance matrices, whose inverse adapt to them with a constant marginal correlation ρ = 0.5,
and calculate the ratio between partial correlations and inflation factors of the two trees, for every
path. Figure 3 shows these ratios separately for common and disjoint paths between T1 and T2.
In the case of common paths, we can see that despite ρ1

xy = ρ2
xy, there are paths with over 2-fold
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Figure 4: Comparison of marginal correlations within the same tree. Panels (a, c) show the ratio of
inflation factors as function of the ratio of partial correlations, while panels (b, d) show
differences between the ratio of the partial correlations and the ratio of inflation factors,
as function of the marginal correlation. Ratios are compared between covariance matrices
with constant ρ = 0.5 and ρ = 0.25 for tree T1 (a, b) and T2 (c, d). Shading indicates
density of values and white dots are actual values.

differences in inflation and partial correlation ratios, associated with longer paths. In the case of
paths that differ between T1 and T2, fold-changes in these quantities are much larger, reason why
they are displayed in logarithmic scale, and also proportional to path length.

In the second simulation study we use the previously built trees T1 and T2, and simulate for each
of them two covariance matrices with constant marginal correlations ρ = 0.25 and ρ = 0.5. Then,
we compare partial correlations and inflation factors between covariance matrices with different ρ
parameter values within each tree. We can see in Figure 4 that there are important differences in the
compared quantities across identical ratios of the marginal correlation, specially in the case of T2,
shown in panels (c) and (d). The smaller degree of regularity in the connections of T2 increases the
diversity of these quantities.

In the third and last simulation study, we have again compared trees T1 and T2 simulating two
covariance matrices with nonconstant marginal correlations on the present edges, but average ρ =
0.5. Thus, in this case, both structure and parameter values change. Figure 5 shows ratios of the
investigated quantities and we can see that a fraction of their differences accumulate on x = 0,
where ρ1

xy = ρ2
xy, but away from y = 0. These are paths that while they have similar marginal

correlations, structural differences are reflected through the quantities introduced in this paper.
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Figure 5: Comparison of two trees that differ in both, structure and marginal correlations. Dif-
ferences between the ratio of the partial correlations and the ratio of inflation factors, as
function of the marginal correlation, in logarithmic scale, where both covariance matrices
have been simulated with marginal correlations that on average have ρ = 0.5 for present
edges. Shading indicates density of values.

5. Differential Networking in Yeast Expression Data

Here we show a differential networking analysis from gene expression data in yeast, using the
quantities introduced in this paper. We downloaded yeast RNA-seq count data from Schurch et al.
(2016) and, using standard procedures (Robinson and Oshlack, 2010), we transformed integer read
counts into normalized expression values in units of log2 counts per million (CPM) reads, adding
a prior count value of 3 units to stabilize the variance. Schurch et al. (2016) produced the data
using two strains of yeast, a wild type (BY4741 strain, WT) and a ∆snf2 knock-out (KO) from the
same genetic background. They grew these two strains in rich media and derived 48 independent
biological replicates from each strain, resulting in two datasets of n = 48 observations each, on two
genotype conditions, WT and KO. The SNF2 gene is involved in the transcriptional activation of
genes and its deletion leads to significant changes in expression of many other genes.

We reduced the initial set of p = 5, 983 genes to p = 5, 600 by removing genes that do not code
for proteins or have co-linearities in either dataset. We further reduced the gene set to those with
significant Pearson correlation (Holm’s adjusted p-value< 1%) in WT with the SNF2 gene, leading
to a final gene set of p = 970 genes, including SNF2. We applied the Chow-Liu algorithm (Chow
and Liu, 1968) on the WT dataset using the absolute Pearson correlation as edge weight, obtaining
a tree TWT . We did the same on the KO dataset, but excluding the SNF2 gene, obtaining another
tree TKO. We selected the paths traversing SNF2 in TWT , which were 1,936, and the corresponding
ones with the same endpoints in TKO. For each set of paths, we estimated inflation factors in the
corresponding data set. To that end, because in our setting p� n, we relied on the same tecniques
used by Roverato and Castelo (2017) to estimate vector correlations from such data.

Figure 6 shows the results where most paths have less than 50% difference in their marginal
correlation. However, these paths show differences in the quantities introduced in this paper, the
largest ones associated with differences in path length.
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Figure 6: Differential networking in yeast. Quantities as in Figure 5, calculated from yeast gene
expression data in two conditions, WT and KO. Marginal and partial correlations are
shown in absolute value, where only 6 of them have opposite signs between WT and KO.

6. Conclusions

In this paper we have investigated the decomposition of the marginal correlation along paths of
Gaussian trees. Our main result in Theorem 3 shows that marginal correlations between two vertices
x and y in a tree, can be written as the product of the their partial correlation given the vertices
outside the path, ρxy.P̄ , and an inflation factor associated with the path, IFTxy. Using simulations and
real gene expression data, we have shown that these two quantities capture structural differences
between two trees even when the path in question, or the ratio of marginal correlations, are identical
between the trees. In our view, this result opens up new ways to identify differential networking
events that we may miss with current methods to address this question.
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