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Abstract
Junction trees (JTs) are not only effective structures for single-agent probabilistic graphical mod-

els (PGMs), but also effective agent organizations in multiagent graphical models, such as multiply
sectioned Bayesian networks. A natural decomposition of agent environment may not allow con-
struction of a JT organization. Hence, re-decomposition of the environment is necessary. However,
re-decomposition incurs loss of agent privacy that ultimately translates to loss of intellectual prop-
erty of agent suppliers. We propose a novel algorithm DAER (Distributed Agent Environment
Re-decomposition) that re-decomposes the environment to enable a JT organization and incurs
significantly less privacy loss than existing JT organization construction methods.
Keywords: Multiply sectioned Bayesian networks; Multiagent systems; Multiagent PGMs;
Junction tree agent organization; Privacy in PGMs.

1. Introduction

JTs are not only effective structures for single-agent PGMs, but also effective agent organizations
(governing which pairs of agents communicate directly) in multiagent systems. Multiply sectioned
Bayesian networks (MSBNs, Xiang (1996)) are earliest multiagent PGMs based on JT organiza-
tions, where each agent uses a JT as the runtime model, and all agents are also organized into a JT
(referred to as hypertree). JT organizations are also applied to distributed constraint optimization
(Vinyals et al. (2010); Brito and Meseguer (2010)) and decentralized decision making (Xiang and
Hanshar (2015)). Some multiagent systems use pseudotrees (Hoang et al. (2016); Le et al. (2016)).
It has been shown (Vinyals et al. (2010)) that JT organizations are superior to pseudotrees.

Privacy is an important issue in multiagent systems (Faltings et al. (2008); Yokoo et al. (2005);
Maheswaran et al. (2006)). We identify two distinct types of privacy. In meeting scheduling by per-
sonal agents (Maheswaran et al. (2006)), information to be protected concerns private constraints
and preferences of humans, referred to here as user privacy. In equipment monitoring, e.g., a fer-
tilizer plant (Xiang (2008)), agents are built by independent developers who supply corresponding
plant subsystems. What is to be protected is the intellectual property of each supplier in terms of
domain knowledge built into the agent. This is referred to as agent privacy, which has rarely been
emphasized in literature, and is the focus of this work.

Very few work has been done on protecting agent privacy during JT organization construction.
Construction techniques in several frameworks that depend on JT organizations, e.g., Xiang (2002);
Vinyals et al. (2010); Brito and Meseguer (2010), compromise agent privacy on private variables,
shared variables, agent identities and adjacency relations, as shown in Xiang and Srinivasan (2016).

Two fundamentally different approaches on privacy exist. The first transmits private informa-
tion into the public domain, but makes it unintelligible to unintended receivers by cryptographic
techniques, e.g., Yokoo et al. (2005). It requires multiple external servers that may not always
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be available or justifiable for the benefit. The second approach minimizes the amount of private
information transmitted, e.g., Maheswaran et al. (2006).

Adopting the second approach, HTBS (HyperTree construction based on Boundary Set) algo-
rithm (Xiang and Srinivasan (2016)) determines whether a decomposition of agent environment
admits a JT organization. If so, HTBS constructs one without privacy loss on private variables,
shared variables, agent identities and adjacency relations. Hence, when environment admits a JT
organization, HTBS is superior than alternative construction methods, such as those in Action-GDL
(Vinyals et al. (2010)) and DCTE (Brito and Meseguer (2010)), which incur agent privacy loss.

A decomposition of agent environment may not admit a JT organization. In such cases, methods
in Action-GDL and DCTE revise the decomposition to construct a JT organization, while incurring
privacy loss. HTBS, on the other hand, terminates without constructing a JT organization.

The main contribution of this work is a novel algorithm DAER that builds on top of HTBS and
enables JT organization construction when agent environment decomposition does not admit one.
DAER does so by modifying the decomposition, as Action-GDL and DCTE do, but with less agent
privacy loss. This advancement significantly improves agent privacy in multiagent PGMs, such
as multiply sectioned Bayesian networks, as well as any multiagent systems that utilize JT agent
organizations.

The remainder is organized as follows. Section 2 reviews JT organization of agents and HTBS.
Sections 3 through 5 present DAER, its assessment on privacy loss, and analysis of its soundness.
The empirical evaluation of DAER is reported in Section 6, followed by conclusion in Section 7.

2. Background

Let A = {A0, ..., Aη−1} be a set of cooperative (and independent) agents, whose environment is
described by a collection V of environment variables. The environment V is decomposed into a
set of overlapping subenvironments Ω = {V0, ..., Vη−1}, where ∪η−1i=0 Vi = V , such that agent Ai
controls Vi. A variable that appears in a unique subenvironment Vi is a private variable. Otherwise,
it is a shared variable. If Ai and Aj (j 6= i) share variables, their border is the set of variables that
they share, Iij = Vi ∩ Vj 6= ∅, and the two agents are adjacent.

Figure 1: (a) Environment decomposition cluster graph. (b) Undirected environment decomposi-
tion graph. (c) Communication graph. (d) Boundary graph.

Environment decomposition Ω can be depicted by an environment decomposition cluster graph
(Fig. 1 (a)), where each cluster is a subenvironment and each link between two clusters is a border.
It can also be depicted by an undirected environment decomposition graph (Fig. 1 (b)), obtained
from the above cluster graph by mapping each distinct cluster member (a variable) to a node and
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connecting members of each cluster pairwise. Fig. 1 (a) and (b) illustrate a (trivial) environment

Ω = {V0 = {a, b, u, y}, V1 = {c, d, u, w, y, z}, V2 = {g, h, x, y, z}, V3 = {e, f, v, w}, V4 = {i, j, v, x}}.

If the system is an MSBN (Xiang (2002)), each Vi will be encoded as a Bayesian subnet. For
distributed constraint optimization, each Vi will be encoded as a constraint subnet.

The boundary of an agent is the union of its borders. The boundary of A1 in the above example
is W1 = {u,w, y, z}. The boundary set of a multiagent system is the collection of boundaries of its
agents. The boundary set of the above example is

W = {W0 = {u, y},W1 = {u,w, y, z},W2 = {x, y, z},W3 = {v, w},W4 = {v, x}}.
A boundary set can be depicted by a cluster graph, called communication graph (CG), where each
cluster is a boundary and each link between two clusters is a border (see Fig. 1 (c)). It can also be
depicted by an undirected graph, called boundary graph (BG), obtained from CG by mapping each
distinct cluster member to a node and connecting members of each cluster pairwise (see Fig. 1 (d)).
CG and BG involve only shared variables.

A JT organization is a tree subgraph (with all clusters) of the environment decomposition clus-
ter graph with running intersection. A decomposition may not admit a JT organization. Hence,
construction of JT organization involves 3 related tasks: (a) Determine whether a JT organization
exists. (b) If so, construct one. (c) If not, revise environment decomposition to construct one.

When agents are developed by independent suppliers, e.g., in an MSBN system for monitoring a
fertilizer plant, a natural environment decomposition embeds 4 types of private information relative
to each agent: (1) private variables, (2) variables shared with adjacent agents, (3) agent identity, and
(4) bordering relations. These pieces of information may be leaked when conducting tasks (a), (b),
and (c), which we refer to as privacy loss. A private variable may be leaked to other agents, a shared
variable to non-sharing agents, or identity of an agent and its bordering relation to non-bordering
agents. Although other private knowledges exist, they are not involved during JT construction and
are immune to privacy loss during multiagent inference (Xiang and Srinivasan (2016)).

For instance, JT organization construction in MSBNs performs tasks (a) and (b). It leaks shared
variables, agent identities and bordering relations to a coordinator agent (Xiang (2002)). JT con-
structions in Action-GDL and DCTE perform tasks (b) and (c). Action-GDL is based on pseudotree
conversion and leaks information on private and shared variables (Vinyals et al. (2010)). DCTE
(Brito and Meseguer (2010)) is based on variable propagation and incurs privacy loss on all 4 types.

HTBS is a recent algorithm for tasks (a) and (b) without privacy loss (Xiang and Srinivasan
(2016)). It classifies boundary sets as follows. A (maximal) clique in a BG is boundary contained if
it is a subset of a boundary. A boundary set has one of 3 types. It is type 1 if the boundary graph is
chordal and its cliques are boundary contained. It is type 2 if the boundary graph is not chordal. It
is type 3 if the boundary graph is chordal but some clique is not boundary contained. The boundary
graph in Fig. 1 (d) is non-chordal. Hence, the above boundary set W is type 2. An environment
decomposition admits a JT organization iff its boundary set is type 1 (Xiang and Srinivasan (2016)).
Since W is type 2, no JT organization exists for the above decomposition Ω.

HTBS is based on recursive agent self-elimination. An agent Ai with boundary Wi can be self-
eliminated relative to a bordering agent Aj with Wj , if Wi equals their border, Wi = Iij . After Ai
is eliminated, Wj is updated by removing any variable that Aj uniquely shared with Ai. In Fig. 1
(c), A0 can be self-eliminated relative to A1, and W1 is reduced to {w, y, z} (with u removed). A
boundary set is type 1 iff a single agent remains after all possible self-eliminations. In that case, a
JT organization emerges from the trace saved during HTBS. Otherwise, no JT exists.
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3. DAER for Environment Re-decomposition

For a multiagent PGM based on JT organization, if the environment decomposition does not admit
a JT organization, it must be revised. Assuming that no variable can be removed, the only option
is to share some variables beyond original scope. This results in privacy loss on these variables.
If they are shared with non-adjacent agents, privacy loss occurs on agent identity, as well as on
agent bordering relations, as shown below. The challenge is how to minimize such loss. We present
DAER, a novel algorithm suite, that re-decomposes the environment to construct a JT organization.
It differs form methods in Action-GDL and DCTE as follows: (1) DAER operates on CGs or BGs,
rather than on environment decomposition cluster graphs or their undirected equivalent. Hence,
DAER is free from privacy loss on private variables. (2) DAER is based on agent self-elimination,
which naturally extends HTBS. (3) DAER is based on a numerical evaluation of privacy loss, so
that agent developers can influence privacy loss and trade among different types of privacy loss.

3.1 Overview of DAER

Given an agent environment (A,Ω,W ), DAER (Algo. 1) takes (A,W ) as input. It runs in multiple
rounds. Each round consists of an HTBS stage and an elimination-expansion (EE) stage. Note that,
to fully utilize space, we include Algo. 2 here that is not referenced until Section 3.2. A pointer of
Algo. 2 will be placed there, when it is first referenced, to mitigate the inconvenience to reader.

Algorithm 1 DAER(A,W )

1 do
2 hasJT = HTBS(A, W);
3 if hasJT = true, halt;
4 each active agent plans a best neighbor

for expansion;
5 select one active agent AX with boundary X

and its active neighbor AY with boundary Y ;
6 AX shares X \ Y with AY , self-eliminates,

and be inactive;
7 AY expands Y into Y ∪X;

Algorithm 2 Lead(m, e)
Input: m is an incoming message; e is an event;

1 if e is external request to start HTBS,
2 initiate HTBS;
3 else if e is declaration of “no JT org” by Ag,
4 initiate search for best expansion;
5 else if m requests boundary expansion,
6 expand boundary of Ag relative to sender of m;
7 initiate HTBS;
8 else if e is declaration of “JT org exists” by Ag,
9 initiate halting of DAER;

The HTBS stage (lines 2 and 3) runs HTBS, during which agents self-eliminate (becoming
inactive), until no such elimination is possible. If a single active agent is left, then (A,Ω,W )
admits a JT organization, and one is constructed (Xiang and Srinivasan (2016)). Otherwise, the
EE stage (lines 4 to 7) is run, in which only remaining active agents participate. Before presenting
algorithmic details of the EE stage, we illustrate with the example in Fig. 1.

Suppose that HTBS starts by leader agent A0. From Fig. 1 (c), since W0 = I01, A0 self-
eliminates relative to A1, and A1 leads subsequent computation. Elimination will be attempted in
sequence by remaining agents, but none is able to. Eventually, A1 announces non-existence of JT.

During the EE stage, active agents operate on a reduced CG, without W0 and incident links (see
Fig. 2 (a)). First, each agent plans a best neighbor for boundary expansion. For instance, A2 has
two alternative options. It can share x with A1, expanding W1 into {w, x, y, z}, which allows A2

to self-eliminate relative to A1. Alternatively, A2 can share y and z with A4, expanding W4 into
{v, x, y, z}, which allows A2 to self-eliminate relative to A4.

The first option has a single newly shared variable, while the second option has two. If privacy
loss is measured only by the number of newly shared variables, then the first option is better. We
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Figure 2: Reduced communication graphs after elimination of A0 (a) and A3 (b). (c) Re-
decomposed communication graph.

elaborate on measures of privacy loss and the local option evaluation in Section 4. For now, it
suffices that each agent locally plans for a best neighbor to expand, assuming arbitrary tie-breaking.

Subsequently, active agents select a best expansion plan globally through a distributed depth-
first-search (DFS) over the CG in Fig. 2 (a). Since A1 announces the outcome in the HTBS stage,
it acts as the leader and root of DFS. Suppose that agents are activated during DFS in the order
(A1, A2, A4, A3), where the expansion plan of A3 has the minimum privacy loss L. The search
organizes agents into a DFS tree, which is the chain (A1, A2, A4, A3). As agents report back the
best loss found to their parents, eventually A1 knows the best loss L. By propagating L down the
DFS tree, A3 knows that its expansion plan has been selected.

Suppose that the winning plan of A3 is to share w with A4. This expands W4 into {v, w, x},
and allows A3 to self-eliminate. Fig. 2 (b) shows the new CG. As the result of sharing w, a border
is introduced between A4 and A1. HTBS is run once again led by A4. Since no agent can self-
eliminate, A4 eventually announces non-existence of JT organization. During EE, suppose A2 is
selected by DFS. It shares x with A1 and self-eliminates. After expansion, W1 becomes {w, x}.

HTBS is then run the third time and concludes existence of JT organization. The re-decomposed
CG is shown in Fig. 2 (c). The resultant boundary set is type 1. It can be seen by tracing HTBS on
Fig. 2 (c). The boundaries can be self-eliminated in the order (W0,W2,W3,W1) with a single W4

remaining. After presenting relevant algorithms, we establish soundness of DAER in general.

3.2 Leader Agents

Although Algo. 1 seems centrally controlled (to ease comprehension), the computation is a sequence
of distributed HTBS and EE stages, each initiated by a leader agent. We describe how each leader
agent is selected and its role. Since any agent may be the leader for a given stage, we present Algo. 2
(at start of Section 3.1) that every agent Ag executes in response to relevant messages or events.

The first round of DAER starts with an HTBS stage. The HTBS computation assumes an ex-
ternally specified leader agent (Xiang and Srinivasan (2016)). DAER assumes the same. It may be
arbitrarily specified and the choice does not affect soundness of DAER. This agent is the only leader
agent externally specified for DAER. The only role of this agent is to lead the first HTBS stage in
the first round of DAER, as lines 2 and 3. Leaders of all HTBS stages in subsequent rounds are
internally determined during DAER, as shown below.

At end of an HTBS stage, an agent declares “no JT” or “JT exists”. In the original HTBS
(Xiang and Srinivasan (2016)), the agent then starts a halting process. DAER handles these events
differently. When HTBS ends with “no JT”, the announcing agent becomes leader of the next EE
stage, as indicated in lines 3 and 4. When HTBS ends with “JT exists”, the current, expanded
boundary set is type 1 (established later). Each agent has a possibly expanded boundary. Using the
trace saved, a JT is well defined and each agent knows its adjacent agents in the organization. Lines
8 and 9 encapsulate the corresponding computation.
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During EE stage, the best expansion among active agents will be determined, and the winning
agent AX (line 5 of Algo. 1) will be notified. AX runs line 6 of Algo. 1, and the expanding agent
AY runs line 7, which ends the EE stage. The next HTBS stage is initialized by lines 5 to 7 of
Algo. 2. Note that this is how the leader of each HTBS stage, except the first one, is selected.

3.3 Elimination-Expansion

Next, we present distributed algorithms for EE stage, which accomplish lines 5 to 7 of Algo. 1. We
mention how computation in line 4 is integrated, but will elaborate later.

At start of DAER, each agent knows adjacent agents in the current CG and the border with
each, and hence its own boundary. For the decomposition in Fig. 1 (c), agent A1 knows identities
of A0, A2, and A3, the borders {u, y}, {y, z}, and {w}, respectively, and its boundary {u,w, y, z}.
Since A0 is self-eliminated during the first HTBS, at start of the first EE stage, A1 maintains active
adjacent agents A2 and A3, and borders with them, as a partial view of the CG in Fig. 2 (a). Note
that the active boundary of A1 is reduced to {w, y, z}.

Each agent has a procedure GetBestExpP lan, which computes line 4 of Algo. 1 locally. We
elaborate GetBestExpP lan in Section 4. For now, it suffices to say that GetBestExpP lan re-
turns (among other things) the lowest (the best) privacy loss score of its alternative expansion plans.

Below, we present a suite of algorithms executed by active agents in response to messages from
other active agents. They involve a distributed depth-first-search. Although depth-first-search is
well known, we specify key steps unique to current task. Since privacy loss is the main focus, the
presentation makes it transparent what information is distributed between agents and what is not.

We refer to the agent executing the algorithm as Ai and the message sender as Ac. Ai has a flag
visited for itself and one for each active adjacent agent, that are initialized to false.

Algo. 3 DFS is activated either by the leader agent of EE stage (see lines 3 and 4 in Algo 2), or
by an active agent in response to a DFS(inScore) message. In the first case, only lines 1 to 5 are
run. In the second case, line 1 and lines 6 to 14 are run. Once bestScore is initialized in line 1, Ai
maintains and updates this value.

Algorithm 3 DFS

1 run GetBestExpPlan to get bestScore;
2 if Ai is leader of the EE stage,
3 label self as root of DFS tree; visited = true;
4 run ForwardDFS(bestScore);
5 return;
6 retrieve inScore from message;
7 label Ac as visited;
8 if Ai is visited,
9 label Ac as non-adjacent on DFS tree;
10 send NonChildReport to Ac;
11 else
12 label Ac as parent on DFS tree;
13 bestScore = min(bestScore, inScore);
14 run ForwardDFS(bestScore);

Algorithm 4 ForwardDFS(bestScore)

1 select an unvisited active adjacent agent Ak;
2 if Ak exists,
3 send DFS(bestScore) message to Ak;
4 label Ak as visited;
5 else
6 if Ai is not the root of DFS tree,
7 send ChildReport(bestScore) to Ac;
8 else run Notify(bestScore);

Algorithm 5 RespondNonChildReport

1 label Ac as non-adjacent on DFS tree;
2 run ForwardDFS(bestScore);
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DFS calls Algo. 4 ForwardDFS. During DFS, to respond toNonChildReport,Ai runs Algo. 5.
During ForwardDFS, to respond to ChildReport, Ai runs Algo. 6.

Algorithm 6 RespondChildReport

1 label Ac as a child on DFS tree;
2 retrieve inScore from message and

associate it with Ac;
3 bestScore = min(bestScore, inScore);
4 run ForwardDFS(bestScore);

Algorithm 7 Notify(winningScore)

1 if Ai’s bestScore = winningScore,
2 run ShareVariable;
3 else
4 select a DFS tree child agent Ak such that

score associated with Ak = winningScore;
5 message Ak to run Notify(winningScore);

Execution of Algo. 3 through 6 ends with root agent of DFS tree knowing the best privacy loss
score among all agents (line 8 of Algo. 4). It initiates a forward message propagation along the DFS
tree to notify the winning agent. The root agent does so by running Algo. 7 (see line 8 of Algo. 4).
Any other agent that executes Algo. 7 is activated by message from its DFS tree parent (see line 5).

It may appear uncertain whether agent Ak in line 4 exists. It is guaranteed for the reason below.
Line 4 is only run if Ai is not the root. Hence, winningScore originates from a non-root agent on
the DFS tree. It must be associated with a DFS tree child of the root, and that agent is Ak when
the root executes line 4. The same argument can be applied recursively to the sub-DFS tree rooted
at Ak. Therefore, success of finding Ak in line 4 is certain, and line 5 is well defined. If multiple
expansion plans have the same winningScore, the ties are broken arbitrarily.

Propagation of Notify operation eventually reaches the agent whose expansion plan generated
winningScore. Note that throughout execution of Algo. 3 through 7, no agent knows the expansion
plan of any other agent. This condition holds since the expansion plan is not included in any message
among agents. As a consequence, no agent knows the expansion plan of the winning score, except
the agent that generated the plan.

We now continue with realization of the winning plan. By line 2 of Algo. 7, the winning agent
Ai runs Algo. 8. We refer to the agent to expand according to the winning plan as Ak.

Algorithm 8 ShareV ariable

1 compute Q = Wi \ Iik;
2 let SQ be the set of agents sharing

some variable in Q with Ai;
3 send message Expand(Q,SQ) to Ak;

Algorithm 9 RespondExpand

1 denote the set of adjacent agents of Ai by S;
2 initialize a set T to be the border between Ai and Ac;
3 for each agent Aj ∈ S such that Aj 6= Ac, T = T \ Iij;
4 retrieve Q and SQ from Expand message;
5 Wi = (Wi ∪Q) \ T ;
6 become adjacent to each agent in SQ if not already so;
7 S = S ∪ SQ;

Algo. 8 is a primary source of privacy loss. The set Q of variables is shared with a new agent
Ak. The identity of each agent in SQ, if not already adjacent to Ak, is revealed to Ak. In Algo. 9,
the identity of Ak is disclosed to them as well. We will elaborate on additional loss in Section 4.

In response to the Expand message from Algo. 8, Ak (which we now refer to by Ai according
to our convention) will perform Algo. 9. Lines 1 through 3 compute the set T of variables that
Ai shared uniquely with Ac. Line 5 adds variables received from Ac to the boundary of Ai, and
removes those in T . The execution of Algo. 9 ends an EE stage.
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4. Evaluating Privacy Loss

We have assumed that each agent can select an expansion plan by a method GetBestExpP lan,
which depends on a measure of privacy loss for expansion plans. As stated in Section 2, JT con-
struction may suffer from agent privacy loss on private and shared variables, on agent identities,
and on agent bordering relations. Few measures exist to evaluate such privacy loss. The measure
in Maheswaran et al. (2006) assumes that agent identities and their state spaces are publicly known,
and is not applicable. The measure in Xiang and Srinivasan (2016) assumes that leak of each piece
of private information contributes one unit to the total loss. The scheme does not admit that some
information is more sensitive than others. It is suited for loss evaluation at the system level, but does
not support evaluation at the agent level. We develop a new measure of privacy loss such that (1) it
allows agents to trade off disclosure of private information of different sensitivity, and (2) privacy
loss of each boundary expansion can be evaluated locally by the relevant agent.

In particular, each private variable x has a privacy weight ωx ∈ [0, 1], assigned by agent in
charge of x. Each shared variable x has a weight ωx ∈ [0, 1], agreed by sharing agents. Each agent
A has a weight ωA ∈ [0, 1] for its identity. Value of ωA is assigned byA and known to each adjacent
agent. Each pair of adjacent agentsA andB assign a weight ωAB ∈ [0, 1] to their bordering relation.

[Variable based loss] Next, we consider how an agent evaluates expansion plans by the mea-
sure. When an agent leaks a private variable x to another agent, it incurs ωx units of privacy loss.

Let S be a set of variables, where each x ∈ S is shared between agent A and some adjacent
agent. Let B be an agent that does not share any variable in S with A. When A discloses S to B,
the shared variable (sv) based loss is Losssv =

∑
x∈S ωx.

[Agent identity based loss] When a set S of variables is shared with a new agent, it also incurs
identity based loss, mentioned after Algo. 8. Suppose variable x is shared by agents A and B,
but not by C. When A newly shares x with C, potential identity loss arises. If B already shares
variables with C, no identity loss occurs. Otherwise, identity of B is leaked to C, and identity of C
is leaked to B, since B and C are now adjacent. No identity loss is incurred relative to agent A.

Since the identity loss depends on whether B and C already share variables, we denote their
relation by a binary function ncv(B,C) (no common variable). IfB andC have a common variable,
then ncv(B,C) = 0, and otherwise ncv(B,C) = 1. Similarly, we define a function ncv(A,B,C).
If A, B and C have a common variable, then ncv(A,B,C) = 0, and otherwise ncv(A,B,C) = 1.
Note that if ncv(B,C) = 1, then ncv(A,B,C) = 1.

Since agent A needs to evaluate the loss due to sharing x with C, we describe knowledge state
of A through the ncv function. If A shares a variable y 6= x with both B and C, then A knows that
sharing x with C will not cause identity loss. This condition is described by ncv(A,B,C) = 0,
and identity loss relative to B and C is ruled out. If A has no common variable with B and C, i.e.,
ncv(A,B,C) = 1, then B and C may or may not share variables. Here, ncv(A,B,C) is known
to A, but ncv(B,C) is not. As the value of ncv(B,C) is unknown to A, it does not know whether
sharing x with C causes identity loss. Therefore, when A newly shares a set S of variables with
C, the agent identity based loss is Lossid =

∑
AS
ncv(AS , C) (ωAS

+ ωC), where AS is an agent
that contains some variable in S (hence adjacent to A) and ncv(A,AS , C) = 1. Since the value of
ncv(AS , C) is unknown to A, so is that of Lossid. We let each agent evaluate identity based loss
according to MaxLossid =

∑
AS

(ωAS
+ ωC), to minimize the maximum loss.

[Border relation based loss] Algos. 8 and 9 explicitly disclose private information over shared
variables and agent identities. Agent bordering relations are implicitly disclosed as well. Suppose a
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variable x is shared by agents A and B, but not by C. Furthermore, A, B, and C have no common
variables, i.e., ncv(A,B,C) = 1. Hence, C does not know that A and B are adjacent. When A
shares xwith C,A informs C to become adjacent withB. This allows C to infer theA-B bordering
relation (a privacy loss). This loss does not depend on whether B and C already share variables.
That is, the value of ncv(B,C) is irrelevant.

In the above case, B did not know that A and C are adjacent either. By being adjacent with
C due to sharing x and observing A becoming self-eliminated, B can also infer the A-C border-
ing relation. On the other hand, if ncv(A,B,C) = 0, adjacency between any pair among A,
B and C is a prior knowledge of the third. Hence, the sharing does not incur border relation
based loss. Therefore, when A newly shares a set S of variables with C, the border relation (br)
based loss is Lossbr =

∑
AS

(ωA,AS
+ ωA,C), where AS is an agent with some variable in S and

ncv(A,AS , C) = 1.
In summary, when agent A proposes to newly share a set S of variables with an adjacent agent

C, the expansion plan is evaluated by procedure GetBestExpP lan according to

MaxLoss = Losssv +MaxLossid + Lossbr.

Consider an example where A2 in Fig. 2 (a) evaluates the expansion plan of sharing y and z with
A4. Let the relevant privacy weights be the following:

ωx = 0.806, ωy = 0.622, ωz = 0.875, ωA0 = 0.723, ωA1 = 0.237, ωA2 = 0.991, ωA4 = 0.253,

ωA0,A2 = 0.716, ωA1,A2 = 0.162, ωA2,A4 = 0.682.

We have included weights relevant to A0 since it is adjacent to A2 in the CG in Fig. 1 (c), even
though A0 has been eliminated in the first HTBS stage. The privacy loss is evaluated as follows:

Losssv = 0.622 + 0.875, MaxLossid = (0.723 + 0.253) + (0.237 + 0.253),

Lossbr = (0.716 + 0.682) + (0.162 + 0.682), MaxLoss = 5.207.

A DAER execution consists of K ≥ 1 rounds. If environment decomposition Ω has a JT, then
K = 1 and the first round consists of the HTBS stage only. The total privacy loss is 0. If Ω does not
admit a JT organization, the first HTBS stage will conclude accordingly, an EE stage will follow,
and K > 1. After K − 1 rounds with alternating HTBS and EE stages, the Kth round consists of
the HTBS stage only, that has no privacy loss. The HTBS stages do not have privacy loss. Hence,
the total privacy loss is accumulated from the first K − 1 EE stages. Since loss of each expansion is
independent of other expansions, the total loss is the sum of losses from the K − 1 EE stages.

5. Soundness and Complexity

Assuming that the initial environment decomposition Ω does not admit a JT organization, Theorem 1
below shows that upon termination of DAER, the final expanded environment decomposition Ω′ has
a JT organization, while the privacy loss is greedily minimized. Due to space limit, we omit proof.

Theorem 1 Let Ω be an environment decomposition that does not admit a JT organization and
DAER be run on Ω to completion. Let Ω′ be the environment decomposition obtained by enlarging
those boundaries of Ω as expanded by DAER. Then (1) no privacy loss is incurred at the HTBS
stage of each round; (2) privacy loss at the EE stage of each round is upper bounded by that of the
winning plan, (3) the upper bound is optimal for the round, and (4) Ω′ has a JT organization.
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By Theorem 1, DAER re-decomposes the environment to enable construction of a JT organiza-
tion. A JT organization can be specified distributively from the trace saved during HTBS (Xiang
and Srinivasan (2016)), which can be directly extended to DAER. We omit the details due to space.

Let η be the initial number of boundaries and e be the initial number of borders (we omit newly
created borders during DAER as they are not substantial). Each round consists of an HTBS stage
and an EE stage, each of which involves a DFS over the currently active CG). In each DFS, O(e)
messages are passed. Each round eliminates at least one boundary and a single boundary is active at
the end of DAER. Hence, DAER concludes in O(η) rounds. Its overall time complexity is O(e η).

6. Experimental Evaluation

We evaluated DAER with 14 batches (Table 1) of randomly generated agent environments that do
not admit a JT organization. Batches 1 to 7 have smaller boundaries, and batches 8 to 14 have
larger ones. They are indexed in Table 1 by column B. Each batch contains 20 environments,
whose numbers of agents (# Agents) and maximum boarder sizes (MxBdr) are shown in Table 1.
The 20 environments are divided in 2 groups of 10 each. Each subenvironment in Group 1 has as
many private variables as shared variables. Each in Group 2 has twice as many private variables. The
maximum sizes of subenvironments in each group are indicated in columns MxSe1 and MxSe2. For
each environment, privacy weights for variables, agent identities, and border relations are simulated.
The total number of environments is 280, with the numbers of agents per environment between 4
and 306, the sizes of subenvironments between 6 to 54, and the border sizes between 2 and 15.

Table 1: Summary of experimental environments
B # Agents MxSe1 MxSe2 MxBdr
1 8 ∼ 13 6 ∼ 8 9 ∼ 12 2 ∼ 3
2 30 ∼ 37 8 ∼ 10 12 ∼ 15 3 ∼ 4
3 63 ∼ 74 10 ∼ 14 15 ∼ 21 3 ∼ 5
4 96 ∼ 123 10 ∼ 12 15 ∼ 18 4 ∼ 5
5 149 ∼ 173 12 ∼ 14 18 ∼ 21 4 ∼ 5
6 203 ∼ 233 12 ∼ 14 18 ∼ 21 5 ∼ 5
7 282 ∼ 306 14 ∼ 14 21 ∼ 21 5 ∼ 6

B # Agents MxSe1 MxSe2 MxBdr
8 4 ∼ 7 12 ∼ 16 18 ∼ 24 5 ∼ 6
9 18 ∼ 26 18 ∼ 22 27 ∼ 33 7 ∼ 9

10 35 ∼ 45 22 ∼ 26 33 ∼ 39 9 ∼ 12
11 56 ∼ 74 26 ∼ 28 39 ∼ 42 11 ∼ 12
12 92 ∼ 110 28 ∼ 32 42 ∼ 48 11 ∼ 13
13 125 ∼ 146 30 ∼ 32 45 ∼ 48 12 ∼ 15
14 165 ∼ 183 32 ∼ 36 48 ∼ 54 13 ∼ 15

For comparison, each environment is run by DAER, ActionGDL, and DCTE, until a JT orga-
nization is constructed (a total of 840 runs). DCTE leaks identities of some variables, but not their
domains. It can leak both identity and domain for other variables. For fair comparison, 2 weights
are associated with each variable, one for leak of its identity and another for leak of its domain.

Figs. 3 and 4 show privacy losses (in log10) by each algorithm, where the x-axis is indexed by
the corresponding 70 environments. DAER has significantly less privacy loss than ActionGDL and
DCTE. As subenvironments becomes larger (Fig. 4), privacy losses by DAER are further reduced by
about one order of magnitude. It reveals that DAER can better utilize increased expansion options.
Privacy losses by DCTE is almost doubled (1.8 times higher) moving from Group 1 to 2, as numbers
of private variables are doubled. On the other hand, privacy losses by DAER are unchanged, as it
does not suffer from loss by private variables.

Fig. 5 shows runtimes (msec in log10) by each algorithm over batches 8 to 14. ActionGDL is
the fastest, while DAER and DCTE have comparable runtimes. Runtimes over batches 1 to 7 are
similar and are omitted due to space limit.
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Figure 3: Privacy losses for batches 1 to 7 (smaller subenvironments)

Figure 4: Privacy losses for batches 8 to 14 (larger subenvironments)

Figure 5: Runtimes for batches 8 to 14

7. Conclusion

The main contribution of this work is the DAER algorithm suite: a novel solution to re-decompose
agent environment when it does not admit a JT organization. DAER allows each agent to quantify
sensitivity of different pieces of private information, so that less sensitive information is disclosed
when it is necessary to disclose some. DAER minimizes the total privacy loss by taking a greedy
approach in selecting each boundary expansion among alternatives. Although DAER does not guar-
antee the minimal total privacy loss, our experiments show that DAER dominates the alternative
methods with significantly lower privacy loss (up to 3 orders of magnitude relative to DCTE). It is
categorically superior to alternative methods by being immune to privacy loss over private variables.
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DAER is efficient with linear time on the number of agents and the number of adjacent agent
pairs. Experimentally, it takes longer runtime than ActionGDL, but is comparable with DCTE.
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