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Abstract

Arithmetic circuits have been used as tractable representations of probability distributions,
either generated from models such as Bayesian networks, sum-product networks and Prob-
ability Sentential Decision Diagrams, or directly from data. An interesting question is
how we can incorporate uncertain evidence, which specifies that the marginal probabilities
of a variable has to undergo certain changes, directly into an arithmetic circuit and then
perform reasoning on it to compute the probability distribution after incorporating this
uncertain evidence. In this paper, we show that we can incorporate uncertain evidence on
a variable by setting indicators of this variable in the arithmetic circuit to non-negative
values based on the likelihood ratios in Pearl’s method of virtual evidence and the cur-
rent marginal probabilities of this variable. For tractable computation of these marginal
probabilities, the arithmetic circuit has to satisfy the properties of decomposability and
smoothness, and we show that an algorithm using a downward pass can compute these
marginal probabilities for all single variables. We show a procedure of how to incorporate
virtual evidence, including multiple pieces of virtual evidence.

Keywords: Arithmetic circuit; Bayesian network; Belief revision; Uncertain evidence;
Virtual evidence.

1. Introduction

Arithmetic circuits (AC) have been used recently to represent probability distributions in
a tractable form. These probability distributions may be generated by models such as
Bayesian networks (BN) (Pearl, 1988), sum-product networks (SPN) (Poon and Domingos,
2011) and Probability Sentential Decision Diagrams (PSDD) (Kisa et al., 2014), or directly
from data (Lowd and Domingos, 2008). After constructing the arithmetic circuit to rep-
resent the probability distribution, we can perform inference on it to find the answers to
various probability queries given different pieces of evidence.

In the problem of belief revision, beliefs represented by probability distributions may be
revised due to evidence received from different sources. This includes uncertain evidence,
where for some variable, instead of being certain of taking a value, its marginal probabilities
must satisfy the constraints as posed by this uncertain evidence. Incorporating uncertain
evidence may be based on different methods, including soft evidence (Jeffrey, 1990) and
virtual evidence (Pearl, 1988), although it has been shown both methods are based on the
principle of probability kinematics, and thus can be translated between each other (Chan
and Darwiche, 2005).
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The problem we address here is whether belief revision based on uncertain evidence can
be directly applied to an arithmetic circuit representing a probability distribution. The
answer is yes, if we set values of indicators to non-negative values other than 0 or 1 (in
all previous literature, values of indicators are set to only 0 or 1 based on whether the
indicator is consistent with the given evidence). To compute the values of the indicators
that we must set to, we have to know the strength of the uncertain evidence (for example,
in virtual evidence, the strength is given by likelihood ratios) and the marginal probabilities
of the variable where uncertain evidence is obtained. It has been proved previously that
marginal probabilities can be computed by an arithmetic circuit that satisfies the properties
of decomposability and smoothness (Choi and Darwiche, 2017). In this paper, we also show
that they can be computed in such arithmetic circuit by a downward pass that computes
partial derivatives (Darwiche, 2003). As the operations of upward pass and downward pass
can be done in time linear in the number of nodes in the arithmetic circuit, our procedure
of incorporating uncertain evidence is tractable.

Our paper is structured as follows. We first define the preliminaries including factors
and distributions. We next show how belief revision given uncertain evidence (in our case,
virtual evidence) can be incorporated into a probability distribution. We then discuss
how arithmetic circuits can be used to represent a probability distribution and how we
can compute marginal probabilities for an arithmetic circuit that is both decomposable
and smooth. We finally show our procedure of incorporating uncertain evidence into an
arithmetic circuit that is both decomposable and smooth.

2. Preliminaries

In this paper, upper-case letters X are used to denote variables and lower-case letters x
are used to denote possible values of X. The variable X is discrete and we assume may
take on mX possible values, which we denote as non-negative integers x ∈ {0, . . . ,mX − 1}.
Bold letters X and x are used to denote sets of variables and their possible instantiations
respectively.

We call the assignment of a variable X to any of its possible values x, denoted as X = x,
as evidence on X. An evidence X = x is consistent with instantiation y, denoted as x ∼ y,
if X ∈ Y and is assigned to x in y or X /∈ Y; otherwise, we denote x � y. In this paper,
we will use the function 1(x ∼ y), where 1(x ∼ y) = 1 if x ∼ y and 1(x ∼ y) = 0 if x � y.

We now define the notions of factor and distribution, which can be most easily seen as
tables of values for each instantiation x of X.

Definition 1 A factor f(X) over variables X maps each instantiation x into a non-negative
number f(x). A factor is a distribution if

∑
X=x f(x) = 1.

The following operations can be applied to a factor or a distribution:

• Normalization: A distribution Pr(X) is said to be obtained from factor f(X) by
normalization if Pr(x) = f(x)/

∑
X=x f(x) for each instantiation x of X, where the

sum
∑

X=x f(x) is called the normalization constant.

• Marginalization: Given variable X ∈ X and Y = X \ {X}, the factor (
∑

X f)(Y)
is said to be obtained from factor f(X) by marginalization over X if (

∑
X f)(y) =
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A B Prα(A,B) Prβ(A,B)
0 0 0.1 0.24
0 1 0.2 0.48
1 0 0.3 0.12
1 1 0.4 0.16

Figure 1: Distributions over binary variables A,B. Prβ(A,B) is obtained from Prα(A,B)
based on probability kinematics over A.

A B Z Prγ(A,B,Z) Prγ(A,B,Z | Z = 1)
0 0 0 0.04 0
0 0 1 0.06 0.24
0 1 0 0.08 0
0 1 1 0.12 0.48
1 0 0 0.27 0
1 0 1 0.03 0.12
1 1 0 0.36 0
1 1 1 0.04 0.16

Figure 2: Distributions over binary variables A,B,Z. Prγ(A,B,Z) is constructed from
Prα(A,B) based on virtual evidence Z = 1 with likelihood ratios L(A = 0 | Z =
1) : λ(A = 1 | Z = 1) = 6 : 1. Note that Prα(A,B) and Prβ(A,B) in Figure 1
can be obtained from Prγ(A,B,Z) and Prγ(A,B,Z | Z = 1) respectively by
marginalization over Z.

∑
X=x f(x,y) for each instantiation y of Y, and for simplicity, we denote this as

f(Y) ≡ (
∑

X f)(Y). Marginalization is commutative, and thus can be applied over a
set of variables one by one in any order, and call the resulting factor a factor marginal.

• Conditioning : Given variable X ∈ X and evidence X = x, the distribution Pr(X |
X = x) is said to be obtained from conditioning on X = x by first constructing
a new factor f(X | X = x) where f(x | X = x) = 1(x ∼ x)Pr(x), and then
applying normalization on f(X | X = x) to obtain the distribution Pr(X | X = x).
Pr(X | X = x) is usually applied marginalization over X, which is trivial since only
values Pr(x | X = x) where x ∼ x may be non-zero. Conditioning is commutative,
and thus can be applied over a set of evidence one by one in any order, and call the
resulting distribution a conditional distribution.

3. Uncertain evidence

Given distribution Pr(X), the notion of having uncertain evidence on variable X ∈ X is
that the marginal probabilities of X have to undergo certain changes in order to incorporate
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this uncertain evidence. There are different ways to specify uncertain evidence. One such
method is soft evidence (Jeffrey, 1990), which specifies the marginal probabilities of the
variable X after the uncertain evidence is incorporated. Another method is to use virtual
evidence (Pearl, 1988), which recasts this uncertain evidence as evidence on some new
virtual variable and specifies the likelihood ratios of this evidence given each value of the
variable X. Both methods are based on probability kinematics, which enforces the rigidity
condition on the new distribution after incorporating the uncertain evidence.

Definition 2 Given two distributions Pr(X) and Pr′(X), Pr′(X) is said to be obtained
from Pr(X) based on probability kinematics over variable X if for every value x of X and
every instantiation y of variables Y ⊆ X, Pr(y | X = x) = Pr′(y | X = x) (Jeffrey, 1990).

For example, two distributions Prα(A,B) and Prβ(A,B) are shown in Figure 1. The
marginal probabilities of A are (Prα(A = 0), P rα(A = 1)) = (0.3, 0.7) and (Prβ(A =
0), P rβ(A = 1)) = (0.72, 0.28) respectively. We can check that Prβ(A,B) is obtained
from Prα(A,B) based on probability kinematics over A. For example, (Prα(B = 0 | A =
0), P rα(B = 1 | A = 0)) = (Prβ(B = 0 | A = 0), P rβ(B = 1 | A = 0)) = (1/3, 2/3) and
(Prα(B = 0 | A = 1), P rα(B = 1 | A = 1)) = (Prβ(B = 0 | A = 1), P rβ(B = 1 | A = 1)) =
(3/7, 4/7).

One main difference between soft evidence and virtual evidence is that the latter is
commutative while the former is not (Wagner, 2002). This means that the order in which
we incorporate the uncertain evidence does not matter if we specify them using virtual
evidence. For this reason, we use virtual evidence in this paper, which we define next.
For a review of the two methods and how we can translate between them, see Chan and
Darwiche (2005).

Definition 3 Given distribution Pr(X) and variable X ∈ X with possible values x ∈
{0, . . . ,mX − 1}, virtual evidence on X is specified in the form of evidence on a new vari-
able Z = 1 (we always assume Z is binary with possible values {0, 1}), and non-negative
likelihood ratios L(X) = (L(X = 0), . . . , L(X = mX − 1)) such that Pr(Z = 1 | X = 0) :
. . . : Pr(Z = 1 | X = mX − 1) = L(X = 0) : . . . : L(X = mX − 1), i.e., there is some
positive number k such that for all x ∈ {0, . . . ,mX−1}, Pr(Z = 1 | X = x) = k ·L(X = x).
Moreover, the evidence Z = 1 is independent of variables Y ⊆ X given X, i.e., Pr(Z = 1 |
X = x,Y = y) = Pr(Z = 1 | X = x) for all values x of X and instantiations y of Y. The
distribution after incorporating the virtual evidence is the one obtained by conditioning on
Z = 1, i.e., Pr(X | Z = 1) (Pearl, 1988).

For example, given distribution Prα(A,B) in Figure 1, we need to incorporate virtual
evidence on A which is specified in the form of evidence on a new variable Z = 1, and
likelihood ratios L(A) = (L(A = 0), L(A = 1)) = (6, 1). Based on this virtual evidence,
distribution Prγ(A,B,Z), shown in Figure 2, is constructed, from which we can apply
marginalization over Z to obtain Prα(A,B), shown in Figure 1. We can see that Prγ(Z =
1 | A = 0) = 0.6 and Prγ(Z = 1 | A = 1) = 0.1, satisfying the likelihood ratios Pr(Z =
1 | A = 0) : Pr(Z = 1 | A = 1) = L(A = 0) : L(A = 1) = 6 : 1, and Prγ(Z = 1 | A =
0, B = 0) = Prγ(Z = 1 | A = 0, B = 1) = Prγ(Z = 1 | A = 0) and Prγ(Z = 1 | A =
1, B = 0) = Prγ(Z = 1 | A = 1, B = 1) = Prγ(Z = 1 | A = 1), satisfying the independence
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condition. From Prγ(A,B,Z), if we apply conditioning on evidence Z = 1, we obtain
Prγ(A,B,Z | Z = 1), and after applying marginalization over Z (which is trivial), we
obtain Prβ(A,B), shown in Figure 1, which is the new distribution after incorporating the
virtual evidence on A.

It has been shown that given virtual evidence on X which satisfies the likelihood ratios
and the independence condition, there is a unique distribution after incorporating the virtual
evidence, and it has also been shown that this distribution is obtained from the original
distribution based on probability kinematics on X (Chan and Darwiche, 2005).

Corollary 4 Given distribution Pr(X) and virtual evidence Z = 1 on X ∈ X specified by
Definition 3, the probability of instantiation x of X after incorporating the virtual evidence,
if X = x ∼ x, is given by:

Pr(x | Z = 1) =
L(X = x)Pr(x)∑

X=x′∈{0,...,mX−1} L(X = x′)Pr(X = x′)
(1)

Incorporating virtual evidence in Equation 1 can be seen as first constructing a new
factor f(X | Z = 1) where f(x | Z = 1) = L(X = x)Pr(x), and then applying normalization
on f(X | Z = 1) to obtain the distribution Pr(X | Z = 1) (we can easily show the
normalization constant is the one given in Equation 1).

For any virtual evidence on X, only the likelihood ratios L(X = 0) : . . . : L(X =
mX − 1) matter but not the individual values L(X = x). In fact, given L(X) = (L(X =
0), . . . , L(X = mX −1)) and Pr(X) = (Pr(X = 0), . . . , P r(X = mX −1)), we can compute
L1 = (L1(X = 0), . . . , L1(X = mX − 1)) which has the same likelihood ratios as L and the
normalization constant (from Equation 1) is equal to 1.

Corollary 5 Given L(X) = (L(X = 0), . . . , L(X = mX − 1)) and Pr(X) = (Pr(X =
0), . . . , P r(X = mX − 1)), we compute L1 = (L1(X = 0), . . . , L1(X = mX − 1)) as, for all
x ∈ {0, . . . ,mX − 1}:

L1(X = x) =
L(X = x)∑

X=x′∈{0,...,mX−1} L(X = x′)Pr(X = x′)
(2)

Since we have L1(X = 0) : . . . : L1(X = mX − 1) = L(X = 0) : . . . : L(X = mX − 1) and∑
X=x′∈{0,...,mX−1} L

1(X = x′)Pr(X = x′) = 1, the probability of instantiation x of X, if
X = x ∼ x, is given by (from Equation 1):

Pr(x | Z = 1) = L1(X = x)Pr(x) (3)

For example, when incorporating virtual evidence in Figure 2, since we have L(A) =
(L(A = 0), L(A = 1)) = (6, 1) and Prγ(A) = (Prγ(A = 0), P rγ(A = 1)) = (0.3, 0.7), we
can compute L1(A) = (L1(A = 0), L1(A = 1)) = (6/(6 ∗ 0.3 + 1 ∗ 0.7), 1/(6 ∗ 0.3 + 1 ∗ 0.7)) =
(2.4, 0.4). We can easily verify this by checking Figure 1, with Prβ(A = 0, B = 0) = L1(A =
0)Prα(A = 0, B = 0) = 2.4 ∗ 0.1 = 0.24, Prβ(A = 0, B = 1) = L1(A = 0)Prα(A = 0, B =
1) = 2.4∗0.2 = 0.48, Prβ(A = 1, B = 0) = L1(A = 1)Prα(A = 1, B = 0) = 0.4∗0.3 = 0.12,
and Prβ(A = 1, B = 1) = L1(A = 1)Prα(A = 1, B = 1) = 0.4 ∗ 0.4 = 0.16.

The following procedure shows how virtual evidence can be incorporated into a Bayesian
network. For a review of how uncertain evidence can be represented in Bayesian networks
in general, see Ben Mrad et al. (2015).
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Corollary 6 In Bayesian networks, the following procedure allows us to compute the prob-
ability values after incorporating virtual evidence on X (Pearl, 1988):

1. Adding a new node Z as a child of X.

2. Specifying the conditional probability table of Z given X such as that Pr(Z = 1 | X =
0) : . . . : Pr(Z = 1 | X = mX − 1) = L(X = 0) : . . . : L(X = mX − 1).

3. Conditioning on evidence Z = 1.

4. Arithmetic circuits

An arithmetic circuit (AC) is a structure that can be used to represent a factor f(X) (Dar-
wiche, 2003). The input of the arithmetic circuit is denoted as Λ, which we call indicators.

Definition 7 An arithmetic circuit AC over variables X is a rooted directed acyclic graph
whose internal nodes are either addition nodes labeled with + or multiplication nodes labeled
with *, and whose leaf nodes are either indicators λX=x ∈ Λ where x is a value of variable
X ∈ X, or parameters θ, which both must be non-negative values. For every node n in AC,
we denote vars(n) as all variables X ∈ X where some indicator λX=x appears at or under
node n.

To compute the value of the marginal f(y) using an arithmetic circuit, we first have to
compute the corresponding Λ(y), such that the values of each indicator are set to 0 or 1
based on whether the indicator is consistent with y.

Definition 8 Given instantiation y of Y ⊆ X, the corresponding indicators, which we
denote as Λ(y), are assigned as λX=x ← 1(x ∼ y), for all values x of all variables X ∈ X.

After setting the input of the arithmetic circuit AC as Λ(y), we can compute the output
of the arithmetic circuit AC(Λ(y)) by evaluating it using an upward pass (visiting children
before parents) according to the operations (+ or *) of the internal nodes (Darwiche, 2003),
and returning the value of the root node as AC(Λ(y)).

Given a factor f(X), we say thatAC computes factor f(X) ifAC(Λ(x)) = f(x) for all full
instantiations x of X, and that AC computes marginals of factor f(X) if AC(Λ(y)) = f(y)
for all partial instantiations y of Y ⊆ X. While an arithmetic circuit that computes the
marginals of a factor also computes the factor, an arithmetic circuit that computes a factor
does not necessarily compute its marginals. It has been shown that an arithmetic circuit
must obey two properties for it to be able to compute marginals correctly: decomposability
and smoothness.

Definition 9 An arithmetic circuit is decomposable iff for every *-node n, vars(c1) ∩
vars(c2) = ∅ for every pair of children c1 and c2 (Darwiche, 2001).

Definition 10 An arithmetic circuit is smooth iff it contains at least one indicator for each
variable X ∈ X, and for every +-node n, vars(c) = vars(n) for every child c (Darwiche,
2001).
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Corollary 11 If an arithmetic circuit AC that computes factor f(X) is both decomposable
and smooth, then it also computes the marginals of factor f(X) (Choi and Darwiche, 2017).

For example, an arithmetic circuit that is both decomposable and smooth can be gener-
ated from a Bayesian network (Darwiche, 2003), and thus can be used to compute marginals.

Finally we show one more property of an arithmetic circuit that is both decomposable
and smooth. After computing the marginals of the factor f(y) by evaluating AC(y) using
an upward pass, we can differentiate it using a downward pass (visiting parents before chil-
dren) according to the operations (+ or *) of the internal nodes (Darwiche, 2003); for full
algorithm, see (Darwiche, 2009, Page 293, Algorithm 34). This differentiation computes the
partial derivative ∂AC(Λ(y))/∂λX=x for each indicator λX=x. We can show that given an
arithmetic circuit that is both decomposable and smooth, this partial derivative is equal to
f(y, x)/λX=x if X /∈ Y. The equivalent result was proved for arithmetic circuits represent-
ing Bayesian networks (Darwiche, 2003), but we believe this result for general arithmetic
circuits is original. A proof sketch is shown in the Appendix.

Theorem 12 If an arithmetic circuit AC that computes factor f(X) is both decomposable
and smooth, then for any value x of X and instantiation y of Y where X /∈ Y ⊆ X, we
have ∂AC(Λ(y))/∂λX=x = f(y, x)/λX=x.

For example, if no evidence has been set, i.e., indicator Λ(>) is set as λX=x ← 1 for all
values x of all variables X ∈ X, the marginal f(x) for some value x of variable X ∈ X can
be computed as ∂AC(Λ(>))/∂λX=x = f(x)/λX=x = f(x).

5. Incorporating uncertain evidence into arithmetic circuits

We showed in Equation 3 that the distribution after incorporating virtual evidence on X
can be computed if we know the marginal distribution Pr(X), and in Theorem 12 that this
marginal distribution can be computed by an upward pass followed by a downward pass of
an arithmetic circuit that is both decomposable and smooth. Therefore, we can develop a
procedure where we can directly incorporate virtual evidence into an arithmetic circuit that
is both decomposable and smooth, by allowing the indicators to take non-negative values
other than 0 or 1. A proof sketch is shown in the Appendix.

Theorem 13 Given variables X = {X1, . . . , Xn}, virtual evidence Z = 1 on X ∈ X
specified by Definition 3, and an arithmetic circuit AC which is both decomposable and
smooth and computes distribution Pr(X), the following procedure allows us to compute
marginal values after incorporating the virtual evidence, for example, the marginal value of
instantiation y of Y ⊆ X, i.e., Pr(y | Z = 1), and also Pr(y, Xi = xi | Z = 1) for all
values xi of all variables Xi /∈ Y:

1. Set values of the indicators Λ0(>) as λXi=xi ← 1 for all values xi of all variables
Xi ∈ X (no evidence has been set).

2. Use an upward pass to compute AC(Λ0(>)) = Pr(>) = 1.

3. Use a downward pass to compute ∂AC(Λ0(>))/∂λXi=xi = Pr(Xi = xi)/λXi=xi =
Pr(Xi = xi) for all values xi of all variables Xi ∈ X (from Theorem 12).
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4. Given L(X) = (L(X = 0), . . . , L(X = mX −1)) (from virtual evidence) and Pr(X) =
(Pr(X = 0), . . . , P r(X = mX − 1)) (from Step 3), compute L1(X) = (L1(X =
0), . . . , L1(X = mX − 1)) as, for all x ∈ {0, . . . ,mX − 1} (from Equation 2):

L1(X = x) =
L(X = x)∑

X=x′∈{0,...,mX−1} L(X = x′)Pr(X = x′)
(4)

5. Set values of the indicators Λ1(y) as:

• λX=x ← 1(x ∼ y)L1(X = x) for all values x of X.

• For all Xi 6= X, λXi=xi ← 1(xi ∼ y) for all values xi of Xi.

6. Use an upward pass to compute AC(Λ1(y)) = Pr(y | Z = 1).

7. Use a downward pass to compute ∂AC(Λ1(y))/∂λXi=xi = Pr(y, Xi = xi | Z =
1)/λXi=xi for all values xi of all variables Xi /∈ Y.

For example, in Figure 1, Prα(A,B) can be expressed by the arithmetic circuit AC(Λ) =
0.4 ∗ λB=0 ∗ (1/4 ∗ λA=0 + 3/4 ∗ λA=1) + 0.6 ∗ λB=1 ∗ (1/3 ∗ λA=0 + 2/3 ∗ λA=1), which is
both decomposable and smooth. The partial derivatives are given by ∂AC(Λ)/∂λA=0 =
0.1 ∗ λB=0 + 0.2 ∗ λB=1, ∂AC(Λ)/∂λA=1 = 0.3 ∗ λB=0 + 0.4 ∗ λB=1, ∂AC(Λ)/∂λB=0 =
0.1 ∗ λA=0 + 0.3 ∗ λA=1, and ∂AC(Λ)/∂λB=1 = 0.2 ∗ λA=0 + 0.4 ∗ λA=1. Assuming we have
virtual evidence on A in the form of Z = 1, and L(A) = (L(A = 0), L(A = 1)) = (6, 1), we
now follow the procedure in Theorem 13 to compute Prα(B = 1 | Z = 1) and Prα(A = 0 |
Z = 1) after incorporating this virtual evidence:

1. Set values of the indicators Λ0(>) as λA=0 ← 1, λA=1 ← 1, λB=0 ← 1, and λB=1 ← 1
(no evidence has been set).

2. Use an upward pass to compute AC(Λ0(>)) = Prα(>) = 1.

3. Use a downward pass to compute ∂AC(Λ0(>))/∂λA=0 = Prα(A = 0) = 0.3 and
∂AC(Λ0(>))/∂λA=1 = Prα(A = 1) = 0.7.

4. Given L(A) = (6, 1) and Pr(A) = (0.3, 0.7), compute L1(A) = (6/(6 ∗ 0.3 + 1 ∗
0.7), 1/(6 ∗ 0.3 + 1 ∗ 0.7)) = (2.4, 0.4).

5. Set values of the indicators Λ1(B = 1) as λA=0 ← L1(A = 0) = 2.4, λA=1 ← L1(A =
1) = 0.4, λB=0 ← 0, and λB=1 ← 1.

6. Use an upward pass to compute AC(Λ1(B = 1)) = 0.4∗0∗(1/4∗2.4+3/4∗0.4)+0.6∗1∗
(1/3 ∗ 2.4 + 2/3 ∗ 0.4) = 0.48 + 0.16 = 0.64 (same as computed by Prβ(B = 1 | Z = 1)
in Figure 1).

7. Use downward pass to compute ∂AC(Λ1(B = 1))/∂λA=0 = 0.1 ∗ λB=0 + 0.2 ∗ λB=1 =
0.2 = Pr(A = 0, B = 1 | Z = 1)/λA=0, which means Pr(A = 0, B = 1 | Z = 1) =
0.2 ∗ λA=0 = 0.2 ∗ 2.4 = 0.48 (same as computed by Prβ(A = 0, B = 1 | Z = 1) in
Figure 1).
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If we are given multiple pieces of virtual evidence, due to its commutative property,
we can use our procedure in Theorem 13, with some slight changes, to incorporate the
pieces of virtual evidence in any order, which we give a sketch here. After having already
incorporated the first piece of virtual evidence Z1 = 1, if we want to incorporate the second
piece of virtual evidence Z2 = 1, steps 1 to 3 should be modified such that, instead of the
default case Λ0(>) where no evidence has been set, we now set the values of the indicators
as Λ1(>), i.e., λX=x ← L1(X = x) as computed by step 5 for virtual evidence Z1 = 1
(since we have incorporated virtual evidence Z1 = 1). The procedure continues so on for
the remaining pieces of virtual evidence, where we must take into account of all previous
pieces of virtual evidence that have been incorporated. Note that if we have multiple
pieces of virtual evidence on the same variable X, then the indicator should be updated by
multiplying into its original value, i.e., λX=x ← λX=xL

1(X = x) for example.
Finally, we note that the method of incorporating virtual evidence into a Bayesian

network in Corollary 6 is equivalent to Theorem 13. This is because if we add a new
variable Z as a child of X, we are in effect modifying the arithmetic circuit by replacing
the original indicator node λX=x with a multiplication node of two children, where one
child is the new indicator node λX=x, and the other child is a product of terms, that after
conditioning on Z = 1 and evaluating accordingly, can be shown to compute the same as
Equation 4.

6. Conclusion

In this paper, we showed how to incorporate uncertain evidence in the form of virtual
evidence to a decomposable and smooth arithmetic circuit representing a probability dis-
tribution using a procedure which sets the indicators to non-negative values (other than 0
or 1) and then runs tractable operations of upward and downward passes, which takes time
linear in the size of the arithmetic circuit.

In the future, we will look at incorporating uncertain evidence into arithmetic circuits
which satisfy more or fewer properties than decomposability and smoothness. There are
two reasons. The first reason is that arithmetic circuits of smaller sizes may not satisfy
the properties of decomposability and smoothness, and we would like to find a procedure
that allows us to incorporate uncertain evidence effectively. The second reason is that if we
want to compute queries other than probabilities after incorporating uncertain evidence,
the arithmetic circuit may need to satisfy further properties. For example, to find the most
probable explanation (MPE) (Chan and Darwiche, 2006), i.e., the full instantiation with the
highest probability given some evidence (including virtual evidence), the arithmetic circuit
also needs to satisfy the property of determinism (Choi and Darwiche, 2017). We would also
like to look at the problem of finding the maximum a posteriori probability (MAP) (Park
and Darwiche, 2004), which are proved to NPPP-complete (as opposed to PP-complete for
MAP and NP-complete for marginal probability), after incorporating uncertain evidence.
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Appendix: proof sketches

Before we proceed with the proofs, we define a complete sub-circuit of an arithmetic circuit
that is both decomposable and smooth (Chan and Darwiche, 2006; Choi and Darwiche,
2017).

Definition 14 A complete sub-circuit of an arithmetic circuit is obtained by traversing the
circuit top-down, while choosing one child of each visited +-node and all children of each
visited *-node.

Similar to an arithmetic circuit, we can consider the output of a complete sub-circuit
by traversing the sub-circuit bottom-up and compute the value of the root node. It can be
shown that the output of an arithmetic circuit is the sum of the outputs of all complete
sub-circuits (Choi and Darwiche, 2017). Moreover, given X = x, we say a complete sub-
circuit is x-consistent if λX=x is a leaf node in the complete sub-circuit, and not x-consistent
otherwise.

Corollary 15 If the output of an arithmetic circuit is f(y), then the sum of the outputs
of all complete sub-circuits that are x-consistent is f(y, x) and the sum of the outputs of
all complete sub-circuits that are not x-consistent is f(y) − f(y, x) (Choi and Darwiche,
2017).

Proof of Theorem 12

For each node n, there are two registers:

• vr(n) to store the partial values of the arithmetic circuit during the upward pass

• dr(n) to store the partial derivatives of the arithmetic circuit during the downward
pass

We make two observations. First, when computing the dr value for each node n during
the downward pass, its dr value depends on the dr values of its parents, and recursively its
ancestors only. Therefore, as our proof only considers the dr value of the indicator node
λX=x, we can ignore the parts of the algorithm which compute the dr values of non-ancestors
of the indicator node λX=x.

Second, we can modify the arithmetic circuit without having any impact on the final
vr value of the root (i.e., the output of the arithmetic circuit) or the final dr value of the
leaf nodes (i.e., the partial derivatives with respect to the leaf node). First, if two nodes
are parent and child and are of the same type (i.e., both +-nodes or both *-nodes), we
can combine them together (meaning that each path in the arithmetic circuit must now
alternate between +-nodes and *-nodes). Second, if an internal node has multiple parents,
we can split this internal node into multiple nodes such that each internal node has only
one parent (meaning that only leaf nodes are allowed to have multiple parents).

We now set the current nodes, denoted as v, and the sum of the product of dr and
vr of all current nodes, denoted as p =

∑
v dr(v)vr(v). We start with the root node as

the current nodes, which is initialized as vr(root) = f(y) and dr(root) = 1, meaning
p = dr(root)vr(root) = f(y). Since our arithmetic circuit alternates between +-nodes and
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*-nodes, all current nodes are either all +-nodes or *-nodes if we go down one level, before
we reach the indicator node λX=x.

If the current nodes are *-nodes, due to decomposability, for each current node v at most
one of its children is an ancestor of λX=x, which we denote this child as c, and all other
children that are not ancestors of λX=x are denoted as c′. By the algorithm of the downward
pass, dr(c)← dr(c)+dr(v)vr′, where vr′ =

∏
c′ vr(c

′). By the algorithm of the upward pass
we have finished, we know that vr(n) = vr(c)vr′. Since dr(c) is initialized as 0 and c has
one parent only, this means dr(c) = dr(v)vr′ and dr(c)vr(c) = dr(v)vr(c)vr′ = dr(v)vr(v).
We then choose c as the new current nodes to replace v, and this means the new p value is
unchanged from before.

If the current nodes are +-nodes, due to smoothness, for each current node v at least
one of its children is an ancestor of λX=x, which we denote these children as c, and all other
children that are not ancestors of λX=x are denoted as c′. By the algorithm of the downward
pass, dr(c) ← dr(c) + dr(v). Since dr(c) is initialized as 0 and c has one parent only, this
means dr(c) = dr(v). By the algorithm of the upward pass we have finished, we know that
vr(v) =

∑
c vr(c)+

∑
c′ vr(c

′). We then choose c as the new current nodes to replace v, and
this means the new p value is decreased from before. In fact, we have removed

∑
c′ vr(c

′),
where we can consider as the sum of the outputs of a subset of complete sub-circuits that
are not x-consistent.

Throughout the downward pass, we visit the arithmetic circuit top-down, alternat-
ing between *-nodes (which keeps p unchanged) and +-nodes (which decreases p by effec-
tively removing the sum of the outputs of a subset of complete sub-circuits that are not
x-consistent). When we reach the indicator node λX=x, all outputs of complete sub-circuits
that are not x-consistent are removed from p, keeping only the outputs of complete sub-
circuits that are x-consistent, which sums to f(y, x). Therefore, when we reach the indicator
node λX=x, we have p = f(y, x). Since p = dr(λX=x)vr(λX=x) and vr(λX=x) = λX=x, we
have ∂AC(Λ(y))/∂λX=x = dr(λX=x) = p/vr(λX=x) = f(y, x)/λX=x.

Proof of Theorem 13

In the arithmetic circuit, the sum of the outputs of complete sub-circuits that are x-
consistent is Pr(x). Due to decomposability and smoothness, the output of each of these
sub-circuits that are x-consistent is in effect a product of terms, where one and only one of
the terms is the indicator λX=x where x ∼ x. Since the value of λX=x is changed from 1 to
L1(X = x) (from Equation 4), this in effect computes the product L1(X = x)Pr(x), which
is equivalent to the incorporating virtual evidence in Equation 3.

For Pr(y), it is the sum of Pr(x) for all instantiations x that are consistent with y, which
for each instantiation have probability multiplied by the corresponding L1(X = x)Pr(x)
after incorporating virtual evidence. It can also be computed by the arithmetic circuit,
AC(Λ(y)), which is the sum of the complete sub-circuits that are y-consistent, where each
of them has the value of λX=x changed from 1 to L1(X = x). Due to this one-to-one
correspondence, the procedure of Theorem 13 computes AC(Λ1(y)) = Pr(y | Z = 1) during
the upward pass (Step 6), and ∂AC(Λ1(y))/∂λXi=xi = Pr(y, Xi = xi | Z = 1)/λXi=xi for
all values xi of all variables Xi /∈ Y during the downward pass (Step 7).
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