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Abstract

To improve the learning accuracy of parameters in a Bayesian network (BN) from limited
data, domain knowledge is often incorporated into the learning process as parameter con-
straints. Maximum a posteriori (MAP) based methods that use both data and constraints
have been studied extensively. Among those methods, the qualitatively maximum a pos-
teriori (QMAP) method exhibits high learning performance. In the QMAP method, when
the data are limited, estimation from the data often fails to satisfy all the parameter con-
straints, which makes the overall QMAP estimation unreliable. To ensure that the QMAP
estimation does not violate any given parameter constraint and further improve the learn-
ing accuracy, in this paper, we propose a qualitatively maximum a posteriori correction
(QMAP-C) estimation algorithm, which regulates QMAP estimation by replacing the data
estimation with a further constrained estimation. Experiments show that the proposed al-
gorithm outperforms most of the existing parameter learning methods when the parameter
constraints are correct.
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1 Introduction
A Bayesian network (BN) is a directed acyclic graph representing a model that combines
probability theory and graphical model theory. The BN was systematically introduced by
Judea Pearl (Pearl, 1988). Following approximately 30 years of global research, the BN has
become a powerful tool for uncertainty analysis, and has been applied to various problems,
such as gene analysis (Tamada et al., 2010), robot control (Infantes et al., 2011), fault
diagnoses (Ibrahim and Beiu, 2011), target tracking (Mascaro et al., 2014), signal processing
(Wachowski and Azimi-Sadjadi, 2014), ecosystem modeling (Landuyt et al., 2013), and
educational measurement (Almond et al., 2015).

In general, learning a BN from data requires a data set of reasonable size, which is
determined by the complexity of the network. With sufficient data, learning an accurate BN
is tractable and can be accomplished by conventional methods, such as maximum likelihood
(ML) (Redner and Walker, 1984). However, it is difficult to collect a large amount of data
for some decision-making problems, such as rare disease diagnosis (Seixas et al., 2014),
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earthquake prediction (Hu et al., 2015), and parole assessment (Constantinou et al., 2015).
In such cases, domain knowledge is often considered as supplementary information.

Domain experts find it convenient to provide qualitative parameter constraints in the
form of p1 > 0.8, p1 ≈ p2, p1 > p2, (p1+p2) > (p3+p4) (Helsper et al., 2004), etc., where p1,
p2, p3 and p4 are parameters in a BN. Although such constraints look simple, they are very
effective for improving BN modeling accuracy, especially when the given data is limited.
In this paper, we focus on learning BNs in cases where the data is insufficient and domain
experts have provided correct constraints on the parameters. By incorporating parameter
constraints into the limited data, we present an improved MAP method.

The remainder of the paper is organized as follows: In Section 2, the related work on
parameter learning with both sample data and parameter constraints is introduced. The
studied problem is formalized and described in Section 3. An improved MAP method is
presented in Section 4. In Section 5, experiments are presented to compare the proposed
algorithm with other parameter learning algorithms on four benchmark BNs. In the last
section, we summarize the presented work and note a few future research directions.

2 Related Work
BN parameter learning methods from insufficient data can be grouped into two types:
MAP-based methods and non-MAP-based methods. In non-MAP-based methods, the BN
parameters are computed by optimizing or regulating the constrained parameter estimation
models. Among those methods, Wittig (Wittig and Jameson, 2000) proposed a constrained
parameter learning algorithm. This algorithm can be applied to the cross-distribution pa-
rameter constraints, which define the relative relations between a pair of parameters over
two different distributions. First, parameter constraints are constructed from qualitative
expert knowledge. Then, an optimization model consisting of an entropy function and the
parameter constraints is built. Finally, the built optimization model is optimized using
the adaptive probabilistic networks method. Altendorf (Altendorf et al., 2005) also dis-
cussed a parameter learning method applicable to the cross-distribution constraints. What
is interesting about the method is that it defines an objective function that integrates the
parameter constraint model into the entropy function, and the function is then solved using
the gradient-descent algorithm. Feelders (Feelders and Gaag, 2005) proposed an isotonic
regression estimation (IRE) method for the cross-distribution constraints. Their algorithm
employs the ML method to learn a set of initial parameters, and then elicits parameter
orders from parameter constraints. The initial parameters are regulated by the algorithm
so that the regulated parameters satisfy all the parameter orders. Isozaki (Takashi et al.,
2009) suggested an minimum free energy (MFE) method that is suitable for axiomatic pa-
rameter constraints. Essentially, this method starts by constructing a free energy function,
which consists of the Kullback-Leibler divergence and the entropy function, and is used as
the objective function. Furthermore, the energy function and parameter constraints are in-
tegrated by the Lagrange multipliers, and the gradient-descent method is employed to solve
the problem. The constrained maximum likelihood (CML) method was proposed by Campos
(Campos et al., 2008). This method works to any convex parameter constraints. A convex
optimization model is constructed with likelihood function and parameter constraints and
the model is optimized using the convex optimization method. Campos discussed the con-
strained maximum entropy (CME) method applicable to any convex parameter constraints
(Campos and Ji, 2008). In this method, an imprecise Dirichlet model (Walley, 1996) that
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combines the prior information and the data is created as a supplementary parameter con-
straint. Further, a convex optimization model containing the entropy function and the
convex parameter constraints is constructed. The convex optimization method is applied to
solve the formulated model. Zhou (Zhou et al., 2016) suggested a method for dealing with
the cross-distribution constraints, named constrained optimization with flat prior (COFP).
An objective function is considered in this method that combines the likelihood function and
the penalty function derived from constraint violations. The objective function is solved
using the sequential quadratic programming and the solutions are taken as the optimal
parameters.

In MAP-based methods, BN parameters are computed as linear interpolation values of
the sample observations and the prior information. Among them, the qualitative maximum
a posteriori (QMAP) method (Chang and Wang, 2010) was designed to tackle any convex
parameter constraints. The method requires a certain amount of possible parameters sam-
pled from the parameter constraints. In addition, hyper-parameters of the prior Dirichlet
distribution are determined as the products of a equivalent sample size and the mean values
of the sampled parameters. The optimal parameters are then computed as the interpo-
lations of the sample observations and the hyper-parameters. A method, named as Beta
distribution approximation-based Bayesian estimation (BABE) was presented to address the
intra-distribution parameter constraints (Di et al., 2014). Assuming the prior distribution
obeys a uniform distribution under parameter constraints, this method approximates the
prior distribution using the beta distribution. The optimal parameters are further comput-
ed as the interpolation values of the sample observations and the prior parameters. Other
methods dealing with the intra-distribution constraints include the multi-nominal parame-
ter learning with constraints (MPL-C) method (Zhou et al., 2014). This method counts the
frequency of the configuration states of certain child and parent nodes, and then, an auxil-
iary BN model is built by integrating both the sample data and the parameter constraints.
Furthermore, the optimal parameters are computed as the mean values of the probability
distribution.

To the best of our knowledge, the QMAP method is one of the best performing al-
gorithms. Essentially, QMAP estimation can be expressed as

Nijk+Mijk

Nij+Mij
, where

Nijk

Nij
and

Mijk

Mij
are the estimates from the data and the parameter constraints, respectively. Nij , Mij ,

Nijk and Mijk are the number of observations from the data set and the equivalent data
set. In this paper, we assume that the parameter constraints are all correct, which means
the estimation

Mijk

Mij
satisfies all the parameter constraints. Then, when the given data are

limited, the data estimation
Nijk

Nij
often violates the parameter constraints. In such cases,

the estimation
Mijk

Mij
will be negatively influenced by

Nijk

Nij
, which causes the overall QMAP

estimation to fail to satisfy all the parameter constraints. To solve that problem, we propose
a qualitatively maximum a posteriori correction (QMAP-C) estimation algorithm.

3 Preliminaries
3.1 Bayesian Network

A BN is characterized by its structure and parameters. Figure 1 shows a typical BN, i.e., the
brain tumor BN (Cooper, 1984), whose nodes C, BT , SH, MC, CT and ISC denote coma,
brain tumor, severe headaches, metastatic cancer, computed tomography scan, respectively.
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In the brain tumor BN, nodes such as BT, MC, and ISC represent disease symptoms or
diagnoses. Arrows from one node to another represent the influence of the top nodes on
the bottom nodes. Parameters such as P (C|BT, ISC) represent the strength of the joint
influence exerted by the symptom nodes BT and ISC on the diagnosis node C. In this
study, our objective is to learn the parameters of a discrete BN, whose structure is known
beforehand.

Figure 1: Brain tumor Bayesian network

3.2 Parameter Learning in a Bayesian Network
Parameter learning in a BN entails parameter estimation from a given sample data set. In
this paper, samples with missing values are not considered. For a network with n node
variables, parameter estimation can be expressed as a maximization problem of the log-
likelihood function, which is

logP (D|θ,G) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklogθijk. (1)

where θ denotes the parameters, G represents the network structure and ri is the total state
number of node i. Based on the BN decomposability property, the parameter estimation of
a network can be decomposed into the product of the independent estimation of individual

variable nodes and the ML estimation θ̂ijk equals
Nijk

Nij
, where Nij =

ri∑
k=1

Nijk.

3.3 Common Bayesian Network Parameter Constraints
Generally, eight types of parameter constraints (Wellman, 1990; Chang and Wang, 2010)
can be formalized from qualitative domain knowledge, which are defined in Table 1.

Type Form Property Type Form Property

1 θijk ≤ θijk′ convex 5 θijk ≤ θij′k convex
2 θijk ≤ θi′j′k′ convex 6 θijk ≈ θi′j′k′ convex

3
ri∑

k=1

θijk = 1 convex 7 αijk ≤ θijk ≤ βijk convex

4 θij1k + θij2k ≤ θij3k + θij4k convex 8 θij1k ∗ θij2k ≤ θij3k ∗ θij4k concave

Table 1: Common Bayesian network parameter constraints.
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In Table 1, parameter constraints of type (1-8) represent the intra-distribution con-
straint, inter-distribution constraint, axiomatic constraint, additive synergy constraint,
cross-distribution constraint, approximate-equality constraint, range constraint, and prod-
uct synergy constraint, respectively.

4 The Method
4.1 Qualitatively Maximum a Posteriori Estimation
The QMAP estimation is a posteriori estimation that incorporates both quantitative data
and qualitative constraints. Its log-form score function is expressed by Eq. (2) and can be
decomposed into a data likelihood and prior probability distribution:

logP (θ|G,D,Ω) = logP (D|θ,G) + logP (θ|Ω, G)− P (D|Ω, G), (2)

where Ω is the set of parameter constraints. The data likelihood equals the conventional log-
likelihood function expressed by Eq (1). The prior distribution is defined by the parameter
constraints, from which independent prior parameter instances can be sampled. Thus, the
log-likelihood prior probability distribution can be expressed as

logP (θ|Ω, G) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Mijklogθijk, (3)

where Mijk = Â · αijk, Â is the optimal equivalent sample size and αijk is the mean value
of the parameters sampled from the parameter constraints. As such, the overall QMAP
log-likelihood score function can be expressed as

logP (θ|G,D,Ω) =
n∑

i=1

qi∑
j=1

ri∑
k=1

(Nijk +Mijk)logθijk − P (D|Ω, G). (4)

Finally, the maximum estimation of the QMAP score function is computed as

θ̂ijk =
Nijk +Mijk

ri∑
k=1

(Nijk +Mijk)

=
Nijk + Â · αijk

Nij + Â
. (5)

4.2 Qualitatively Maximum a Posteriori Correction Estimation
The qualitatively maximum a posteriori correction (QMAP-C) estimation is a improved
QMAP estimation, whose score function can be expressed as

P (θ|G,D,Ω) = P (D|θ,G,Ω)P (θ|G,Ω)/P (D|Ω, G). (6)

The log-form score function of the QMAP-C estimation can be further expressed as

logP (θ|G,D,Ω) = logP (D|θ,G,Ω) + logP (θ|G,Ω)− logP (D|Ω, G), (7)

where logP (D|θ,G,Ω) is not the conventional log-likelihood function but a constrained
log-likelihood model, given by

logP (D|θ,G) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklogθijk, (8)
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s.t.
f(θ) = 0

h(θ) ≤ 0.
(9)

Thus, the overall QMAP-C log-likelihood score function can be expressed as

logP (θ|G,D,Ω) =

n∑
i=1

qi∑
j=1

ri∑
k=1

(N ′
ijk +Mijk)logθijk − logP (D|Ω, G). (10)

Finally, the maximum estimation of the QMAP-C score function is given by

θ̂ijk =
N ′

ijk +Mijk

ri∑
k=1

(N ′
ijk +Mijk)

=
Nij · θ′ijk + Â · αijk

Nij + Â
, (11)

where θ′ijk are the optimization solutions of the model expressed by Eqs. (8-9). In general,
the QMAP-C estimation can be summarized as follows:

Algorithm 1 QMAP-C Estimation

Input:
Data D;
Network structure G;
Parameter constraints Ω;
Equivalent sample size A = {1, ..., 20};

Output:
Estimated parameters θ;

1: for i = 1 to n do
2: Sample αi = {αijk} from constraints;

3: Determine Â via cross-validation;
4: for j = 1 to qi do
5: for k = 1 to ri do
6: Compute the parameter θ

′
ijk;

7: θ̂ijk =
Nij ·θ

′
ijk+Â·αijk

Nij+Â
;

8: end for
9: end for

10: end for

Algorithm 2 Determining Â via cross-validation method

Input:
Node i;
Data D;
Network structure G;
Sampled parameters αi = {αijk};
Equivalent sample size A = {1, ..., 20};

Output:
Optimal equivalent sample size Â;

1: Partition D into {D1, D2, ..., D10};
2: for w = 1 to 20 do
3: for m = 1 to 10 do
4: Dtesting = Dm;
5: Dtraining = {D/Dm};
6: for j = 1 to qi do

7: for k = 1 to ri do
8: Dtesting: N

′
ij = {N ′

ijk};
9: Dtraining: Nij = {Nijk};

10: θijk =
Nijk+Aw·αijk

Nij+Aw
;

11: end for
12: end for

13: Lm(G,D,αi, Aw) =
qi∑
j=1

ri∑
k=1

N
′
ijklogθijk;

14: end for

15: L(G,D,αi, Aw) =
10∑

m=1
Lm(G,D,αi, Aw);

16: end for
17: Â = argmax

Aw

L(G,D,αi, Aw);
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5 Experiments
We carried out experiments on four benchmark BNs, Asia, Alarm, Win95pts, Andes, to
compare the performance of different algorithms, which are evaluated by KL divergence
(Kullback and Leibler, 1951) and running time, respectively. In the experiments, we con-
sidered eight algorithms: ML, ME, MAP, CO, CML, CME, QMAP, and QMAP-C.

5.1 Parameter Learning with Different Sample Sizes

Experiment settings: (1) The sample sizes considered were 50, 100, 150, and 200. (2)
The parameter constraints were generated from true parameters of the networks, and the
maximum number of constraints for each node was 30. The average KL divergence and
running time for different networks are summarized in Tables 2 and 3, where the best
results are highlighted in bold.

ML ME MAP CO CML CME QMAP QMAP-C

(a) Asia network
50 0.559±0.391 0.165±0.025 0.125±0.043 0.096±0.054 0.048±0.019 0.025±0.009 0.009±0.002 0.006±0.001
100 0.386±0.246 0.132±0.017 0.093±0.026 0.089±0.037 0.049±0.015 0.021±0.008 0.008±0.002 0.006±0.001
150 0.325±0.237 0.114±0.018 0.078±0.025 0.089±0.039 0.047±0.013 0.019±0.007 0.007±0.002 0.006±0.001
200 0.264±0.212 0.101±0.018 0.067±0.022 0.085±0.040 0.044±0.012 0.018±0.008 0.007±0.002 0.005±0.001
(b) Alarm network
50 0.541±0.074 0.236±0.007 0.220±0.014 0.323±0.032 0.211±0.031 0.130±0.005 0.125±0.002 0.124±0.002
100 0.494±0.063 0.202±0.009 0.187±0.015 0.218±0.029 0.194±0.029 0.125±0.005 0.117±0.002 0.116±0.002
150 0.459±0.075 0.180±0.007 0.166±0.013 0.198±0.031 0.176±0.028 0.115±0.004 0.111±0.002 0.109±0.002
200 0.434±0.068 0.166±0.007 0.152±0.012 0.186±0.028 0.165±0.025 0.108±0.005 0.106±0.002 0.105±0.002
(c) Win95pts network
50 0.655±0.096 0.244±0.003 0.228±0.011 0.210±0.031 0.210±0.041 0.142±0.001 0.131±0.001 0.130±0.001
100 0.611±0.078 0.224±0.003 0.218±0.011 0.205±0.029 0.206±0.040 0.138±0.001 0.128±0.001 0.127±0.001
150 0.568±0.074 0.210±0.002 0.213±0.011 0.198±0.019 0.190±0.031 0.135±0.001 0.125±0.001 0.125±0.001*
200 0.511±0.059 0.201±0.002 0.211±0.012 0.182±0.026 0.172±0.027 0.132±0.001 0.123±0.001 0.123±0.001*
(d) Andes network
50 1.021±0.064 0.179±0.002 0.188±0.010 0.361±0.027 0.202±0.022 0.079±0.001 0.050±0.001 0.047±0.001
100 0.827±0.067 0.134±0.002 0.147±0.009 0.326±0.024 0.193±0.017 0.064±0.002 0.045±0.001 0.042±0.001
150 0.744±0.065 0.111±0.001 0.129±0.010 0.314±0.024 0.179±0.021 0.056±0.002 0.042±0.001 0.038±0.001
200 0.671±0.059 0.096±0.002 0.117±0.009 0.294±0.027 0.168±0.021 0.049±0.002 0.039±0.001 0.036±0.001
* The QMAP-C estimation is slightly better than the QMAP estimation. And the detailed KL divergence are: QMAP (0.1252±0.0005,
0.1232±0.0005), QMAP-C (0.1246±0.0005, 0.1226±0.0005).

Table 2: KL divergence of different algorithms under different sample sizes.

ML ME MAP CO CML CME QMAP QMAP-C

(a) Asia network
50 0.000±0.000 0.151±0.006 0.000±0.000 0.330±0.015 0.166±0.003 0.151±0.002 0.063±0.001 0.227±0.003
100 0.001±0.000 0.150±0.004 0.001±0.000 0.328±0.012 0.168±0.004 0.152±0.003 0.112±0.001 0.277±0.004
150 0.001±0.000 0.149±0.004 0.001±0.000 0.317±0.004 0.167±0.003 0.152±0.003 0.161±0.001 0.325±0.003
200 0.001±0.000 0.148±0.004 0.001±0.000 0.316±0.004 0.168±0.003 0.152±0.003 0.210±0.001 0.375±0.003
(b) Alarm network
50 0.000±0.000 0.028±0.001 0.000±0.000 0.088±0.001 0.034±0.001 0.031±0.000 0.044±0.000 0.077±0.001
100 0.001±0.000 0.028±0.000 0.001±0.000 0.088±0.001 0.034±0.001 0.031±0.000 0.083±0.000 0.116±0.001
150 0.001±0.000 0.028±0.001 0.001±0.000 0.088±0.001 0.033±0.000 0.031±0.000 0.122±0.001 0.154±0.001
200 0.001±0.000 0.029±0.000 0.001±0.000 0.088±0.000 0.033±0.000 0.032±0.000 0.161±0.001 0.193±0.001
(c) Win95pts network
50 0.000±0.000 0.049±0.001 0.000±0.000 0.123±0.002 0.052±0.001 0.050±0.000 0.059±0.000 0.112±0.001
100 0.001±0.000 0.049±0.001 0.001±0.000 0.127±0.002 0.054±0.001 0.050±0.000 0.113±0.000 0.166±0.001
150 0.001±0.000 0.049±0.001 0.001±0.000 0.126±0.002 0.054±0.001 0.051±0.000 0.165±0.001 0.219±0.001
200 0.001±0.000 0.049±0.001 0.001±0.000 0.125±0.001 0.054±0.001 0.051±0.000 0.219±0.001 0.271±0.001
(d) Andes network
50 0.000±0.000 0.066±0.003 0.000±0.000 0.189±0.007 0.077±0.002 0.071±0.002 0.061±0.002 0.138±0.004
100 0.001±0.000 0.067±0.003 0.001±0.000 0.188±0.009 0.078±0.003 0.072±0.003 0.115±0.006 0.193±0.009
150 0.001±0.000 0.067±0.003 0.001±0.000 0.187±0.009 0.078±0.003 0.073±0.003 0.168±0.008 0.246±0.012
200 0.001±0.000 0.067±0.002 0.001±0.000 0.185±0.006 0.078±0.002 0.073±0.002 0.219±0.006 0.296±0.008

Table 3: Running time (seconds) of different algorithms under different sample sizes.
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Experiment analysis: (1) In nearly all cases, QMAP-C performed better on learning
accuracy than the other learning algorithms. In addition, with increasing data size, the
QMAP estimation gradually approached the QMAP-C estimation, because as the amount
of data increases, the purely data-driven estimation

Nijk

Nij
becomes less likely to violate the

constraints. (2) The QMAP-C method is more time-consuming than the QMAP method.
The explanation is that it takes more computation complexity to optimize the equivalent
sample size and regulate the data-driven estimation

Nijk

Nij
.

5.2 Parameter Learning with Different Constraint Sizes
Experiment settings: (1) The sample sizes for all the networks were set to 50. (2) For
each node, at most, 30 parameter constraints were generated and an increasing number of
constraints varying from 25% to 100% were used for parameter learning. The average KL
divergence and running time for different networks are summarized in Tables 4 and 5.

ML ME MAP CO CML CME QMAP QMAP-C

(a) Asia network
25% 0.603±0.342 0.168±0.027 0.130±0.034 0.256±0.204 0.224±0.208 0.101±0.033 0.099±0.028 0.097±0.028
50% 0.603±0.342 0.168±0.027 0.130±0.034 0.161±0.146 0.133±0.146 0.052±0.029 0.039±0.019 0.035±0.019
75% 0.603±0.342 0.168±0.027 0.130±0.034 0.084±0.079 0.042±0.068 0.033±0.021 0.014±0.009 0.009±0.008
100% 0.603±0.342 0.168±0.027 0.130±0.034 0.056±0.038 0.018±0.006 0.024±0.012 0.006±0.003 0.002±0.002
(b) Alarm network
25% 0.529±0.071 0.318±0.007 0.219±0.014 0.372±0.045 0.359±0.046 0.271±0.008 0.260±0.008 0.259±0.008
50% 0.529±0.071 0.318±0.007 0.219±0.014 0.305±0.034 0.279±0.036 0.215±0.006 0.203±0.007 0.202±0.007
75% 0.529±0.071 0.318±0.007 0.219±0.014 0.261±0.041 0.224±0.039 0.173±0.005 0.165±0.005 0.163±0.005
100% 0.529±0.071 0.318±0.007 0.219±0.014 0.228±0.033 0.181±0.028 0.157±0.004 0.138±0.002 0.136±0.002
(c) Win95pts network
25% 0.541±0.084 0.243±0.004 0.231±0.008 0.339±0.050 0.339±0.051 0.201±0.004 0.204±0.004 0.203±0.004
50% 0.541±0.084 0.243±0.004 0.231±0.008 0.261±0.035 0.257±0.032 0.171±0.004 0.164±0.003 0.164±0.003*
75% 0.541±0.084 0.243±0.004 0.231±0.008 0.211±0.024 0.215±0.026 0.152±0.003 0.142±0.002 0.141±0.002
100% 0.541±0.084 0.243±0.004 0.231±0.008 0.181±0.017 0.187±0.021 0.144±0.002 0.132±0.001 0.131±0.001
(d) Andes network
25% 1.041±0.091 0.179±0.003 0.189±0.012 0.619±0.047 0.573±0.053 0.141±0.003 0.146±0.002 0.147±0.002
50% 1.041±0.091 0.179±0.003 0.189±0.012 0.462±0.039 0.400±0.041 0.115±0.004 0.096±0.002 0.093±0.002
75% 1.041±0.091 0.179±0.003 0.189±0.012 0.352±0.029 0.285±0.029 0.095±0.004 0.065±0.002 0.061±0.002
100% 1.041±0.091 0.179±0.003 0.189±0.012 0.255±0.022 0.209±0.022 0.082±0.003 0.047±0.001 0.042±0.001
* The QMAP-C estimation is slightly better than the QMAP estimation. And the detailed KL divergence are: QMAP (0.1642±0.0029),
QMAP-C (0.1637±0.0029).

Table 4: KL divergence of different algorithms under different constraint sizes.

ML ME MAP CO CML CME QMAP QMAP-C

(a) Asia network
25% 0.000±0.000 0.196±0.014 0.000±0.000 0.257±0.018 0.205±0.009 0.195±0.008 0.094±0.008 0.297±0.012
50% 0.001±0.000 0.197±0.008 0.001±0.000 0.365±0.019 0.218±0.010 0.193±0.008 0.094±0.007 0.308±0.015
75% 0.001±0.000 0.193±0.008 0.001±0.000 0.515±0.026 0.223±0.009 0.199±0.008 0.093±0.006 0.318±0.013
100% 0.001±0.000 0.195±0.008 0.001±0.000 0.724±0.033 0.242±0.011 0.209±0.006 0.093±0.005 0.332±0.013
(b) Alarm network
25% 0.000±0.000 0.034±0.002 0.000±0.000 0.053±0.003 0.035±0.002 0.035±0.002 0.054±0.003 0.088±0.004
50% 0.001±0.000 0.034±0.002 0.001±0.000 0.088±0.005 0.039±0.002 0.037±0.002 0.054±0.004 0.092±0.006
75% 0.001±0.000 0.034±0.002 0.000±0.000 0.139±0.008 0.043±0.003 0.039±0.002 0.054±0.004 0.097±0.005
100% 0.001±0.000 0.034±0.002 0.000±0.000 0.202±0.011 0.049±0.003 0.043±0.002 0.054±0.003 0.101±0.005
(c) Win95pts network
25% 0.000±0.000 0.059±0.002 0.000±0.000 0.079±0.005 0.059±0.003 0.059±0.003 0.078±0.005 0.136±0.008
50% 0.001±0.000 0.059±0.003 0.001±0.000 0.125±0.007 0.062±0.003 0.060±0.003 0.078±0.005 0.140±0.007
75% 0.001±0.000 0.059±0.002 0.001±0.000 0.193±0.009 0.069±0.004 0.064±0.003 0.080±0.004 0.149±0.009
100% 0.001±0.000 0.059±0.002 0.001±0.000 0.281±0.011 0.075±0.003 0.068±0.002 0.079±0.004 0.153±0.007
(d) Andes network
25% 0.001±0.000 0.072±0.006 0.001±0.000 0.112±0.010 0.077±0.007 0.074±0.006 0.068±0.005 0.145±0.012
50% 0.001±0.000 0.072±0.006 0.001±0.000 0.172±0.017 0.081±0.007 0.076±0.006 0.068±0.006 0.149±0.013
75% 0.001±0.000 0.073±0.007 0.001±0.000 0.257±0.028 0.088±0.008 0.081±0.007 0.069±0.007 0.156±0.007
100% 0.001±0.000 0.072±0.006 0.001±0.000 0.358±0.035 0.095±0.008 0.086±0.007 0.068±0.006 0.162±0.014

Table 5: Running time (seconds) of different algorithms under different constraint sizes.
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Experiment analysis: (1) In most cases, QMAP-C performed better on learning
accuracy than the other parameter learning algorithms, except for CME on the Andes
and Win95pts networks when very limited constraints were available. Compared with the
QMAP method, the QMAP-C method performed better on learning accuracy, especially
when more constraints were available. The explanation is that, with increasing constraints,
the purely data-driven estimation

Nijk

Nij
in the QMAP estimation is more likely to violate

the parameter constraints and that makes the overall QMAP estimation inaccurate. (2)
The QMAP-C was less efficient than the QMAP method, especially when the number of
constraints increased.

6 Conclusion

The advanced BN parameter learning algorithm, QMAP, fails to satisfy all of the param-
eter constraints, especially when insufficient data is available. In this paper, we present
a modified QMAP algorithm, namely the QMAP-C algorithm. The main improvement
of the proposed algorithm is that the learnt parameters satisfy all the convex parameter
constraints under any cases. Because of that feature:

(1) When the provided parameter constraints are correct, the proposed QMAP-C algo-
rithm outperforms the QMAP algorithm;

(2) When the provided parameter constraints are incorrect, the proposed QMAP-C
algorithm would perform worse than the QMAP algorithm, especially when the number
of incorrect constraints increases. The explanation is that, when the incorrect parame-
ter constraints are incorporated, the regulation in the QMAP-C algorithm would change
the data-driven estimation into a further inaccurate estimation and that would negatively
influence the overall QMAP-C estimation.

Based on the above conclusions, before applying the QMAP-C algorithm to learn BN
parameters, it is recommended to verify the correctness of the parameter constraints or
domain knowledge. Future studies will focus on improving the constraint generality of
the proposed method. Specifically, when non-convex parameter constraints are imposed,
QMAP-C estimation could be further adjusted by methods such as isotonic regression.

Acknowledgments

We would like to sincerely thank the anonymous reviewers for the very helpful comments
that significantly improve the manuscript. Also, we acknowledge the support for this study
from the National Natural Science Foundation of China (61573285).

Appendix

Axiom All the convex parameter constraints for a certain parameter θijk can be finally
transformed into an interval constraint θijk∈ [θLijk, θ

U
ijk].

Theorem 1 The QMAP estimation does not guarantee the satisfaction of all the convex
parameter constraints.
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Proof. For the QMAP estimation (Eq.(6)) to satisfy the known constraint, it is expected
to be

θLijk ≤
Nijk +Mijk

Nij +Mij
≤ θUijk. (12)

Thus, it requires

(θLijkNij + θLijkMij −Mijk) ≤ Nijk ≤ (θUijkNij + θUijkMij −Mijk). (13)

However, for a data set of any size, the number of observations in the data set, Nijk,
could take any value larger or equal to zero, i.e., Nijk ≥ 0. Therefore, when Nijk <
(θLijkNij + θLijkMij − Mijk) or Nijk > (θUijkNij + θUijkMij − Mijk), the QMAP estimation
violates the parameter constraint.
Theorem 2 The QMAP-C estimation guarantees the satisfaction of all the convex param-
eter constraints.
Proof. The estimation θ′ijk derived from the constrained likelihood model (by Eqs.(9-10))
certainly satisfies all convex the parameter constraints. Therefore,

θLijk ≤
N ′

ijk

Nij
=

Nijθ
′
ijk

Nij
≤ θUijk, (14)

which means that θLijkNij ≤ N ′
ijk ≤ θUijkNij . Furthermore, the mean value of the parameters

sampled from the constraints, P (Xi = k,Πi = j|Ω), also satisfies all the convex parameter
constraints. Therefore,

θLijk ≤
Mijk

Mij
=

A · P (Xi = k,Πi = j|Ω)

A
ri∑

k=1

(P (Xi = k,Πi = j|Ω))
≤ θUijk, (15)

which implies that θLijkMij ≤ Mijk ≤ θUijkMij . Finally, we can derive θLijk(Nij + Mij) ≤
(N ′

ijk +Mijk) ≤ θUijk(Nij +Mij), which is equivalent to

θLijk ≤
N ′

ijk +Mijk

Nij +Mij
≤ θUijk. (16)

Hence, the QMAP-C estimation satisfies all the convex parameter constraints.
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