
Proceedings of Machine Learning Research vol 73:153-164, 2017 AMBN 2017

On the Sizes of Decision Diagrams Representing the Set of
All Parse Trees of a Context-free Grammar

Kei Amii k.amii@iip.ist.i.kyoto-u.ac.jp
Kyoto University
Kyoto (Japan)

Masaaki Nishino nishino.masaaki@lab.ntt.co.jp
NTT Communication Science Laboratories
Kyoto (Japan)

Akihiro Yamamoto akihiro@iip.ist.i.kyoto-u.ac.jp

Kyoto University

Kyoto (Japan)

Abstract

In this paper, we analyze the size of decision diagrams (DD) representing the set of all
parse trees of a context-free grammar (CFG). CFG is widely used in the field of natural
language processing and bioinformatics to estimate the hidden structures of sequence data.
A decision diagram is a data structure that represents a Boolean function in a concise form.
By using DDs to represent the set of all parse trees, we can efficiently perform many useful
operations over the parse trees, such as finding trees that satisfy additional constraints and
finding the best parse tree. Since the time complexity of these operations depends on DD
size, selecting an appropriate DD variant is important. Experiments on a simple CFG show
that the Zero-suppressed Sentential Decision Diagram (ZSDD) is better than other DDs;
we also give theoretical upper bounds on ZSDD size.

Keywords: context-free grammar, decision diagram, ZSDD

1. Introduction

A context-free grammar (CFG) is a model often used to estimate the hidden structure of
sequence data. It is widely used for syntax analysis in natural language processing [Manning
and Schütze (1999)], RNA secondary structure analysis in bioinformatics [Durbin et al.
(1998)], and so on. The CYK (Cocke-Younger-Kasami) algorithm is a well-known technique
for determining how a given sequence data is generated from a given CFG, that is, to obtain
parse trees. If N is sequence data length and |P | is the size of a CFG grammar, the set of all
parse trees can be obtained in O(|P |N3) time by using the CYK algorithm. Unfortunately,
the CYK algorithm cannot be used to find the set of all parse trees that satisfy some
additional constraints, e.g., a restriction on the number of times a rule can be used or
prohibition of the use of a particular pair of rules at the same time. By using additional
constraints, we can analyze structures with the utilization of background knowledge. For
example, in natural language processing, we can restrict the number of times a specific
part of speech can appear or make a particular pair of words take a common part of speech.

153

AMII, NISHINO, and YAMAMOTO.

Similarly, in bioinformatics, constraints are derived from knowledge of bond distance. In this
paper, we introduce a method based on decision diagrams (DDs) to handle such constraints.

Decision Diagrams (DDs) are data structures that represent Boolean functions as di-
rected acyclic graphs. A DD can support various operations on a Boolean function in time
polynomial with DD size. By representing the set of all possible parse trees as a Boolean
function, we can perform various operations efficiently, such as finding trees that satisfy
additional constraints and finding the best parse tree.

Since the efficiency of performing DD operations strongly depends on DD size, it is
important to select a succinct DD representation. There are several variants of decision
diagram, such as Binary Decision Diagram (BDD) [Bryant (1986)], Zero-suppressed Binary
Decision Diagram (ZDD) [Minato (1993)], Sentential Decision Diagram (SDD) [Darwiche
(2011)], and Zero-suppressed Sentential Decision Diagram (ZSDD) [Nishino et al. (2016)].
Which DD variant is the smallest depends on targeted Boolean functions. Moreover, each
DD has configurable parameters, namely variable ordering and vtrees, which influence DD
size. Thus, in order to treat a set of parse trees efficiently, we need (1) to choose the most
appropriate DD, and (2) to optimize DD parameters.

This paper compares DD size of the above 4 kinds of DDs given some orders of variables
and some vtrees. The result show that ZSDD has smaller size than the others. Moreover,
we give the theoretical upper bound of ZSDD and a vtree which makes the size smallest in
our experiment.

We define the context-free grammar and CYK algorithm as technical preliminaries in
Section 2. Next, Section 3 introduces our method to convert the set of all parse trees
of a context-free grammar into a Boolean function. We illustrate DDs in Section 4, and
we describe our experiment on 4 DDs, and show that ZSDD has the smallest size when
representing the set of all parse trees of a simple context-free grammar in Section 5. ZSDD
size is theoretically analyzed in Section 6, and we provide a summary and future work in
Section 7.

2. Technical Preliminaries

2.1 Context-Free Grammar

Definition 1 A context-free grammar (CFG) G is the 4-tuple (V,Σ, P, S), where V is a
finite set of non-terminal characters, Σ is a finite set of terminal characters, P is a finite
set of production rules in the form A → α (A ∈ V, α ∈ (Σ ∪ V)∗), and S is a start symbol
in V .

In this paper, we treat only context-free grammars that are Chomsky normal form. A
context-free grammar, G, is a Chomsky normal form (CNF) if all of its production rules
take the following forms.

• A → BC (A,B,C ∈ V) • A → α (α ∈ Σ) • S → ϵ

An arbitrary context-free grammar can be converted into Chomsky normal form, and
the CYK (Cocke-Younger-Kasami) algorithm yields the set of all parse trees of the Chomsky
normal form.

154

Decision diagrams representing the set of parse trees of a context-free grammar.

2.2 CYK Algorithm

The CYK algorithm can determine whether given sequence data α1α2 . . . αN is generated
from CFG G. If the data is generated, it also finds which production rules generated the
sequence data. We use αij to represent subsequence αi . . . αN (i ≤ j), and qk to represent
the k-th production rule (qk ∈ P).

Let S
(X)
ij be the set of indices used to generate αij , where the start symbol is X. It

follows that S
(X)
ii is defined as S

(X)
ii = {k|qk = (X → α), α = αi}. S

(X)
ij can be found

recursively as S
(X)
ij =

∪j−1
m=i{k|qk = (X → Y Z), S

(Y)
im ̸= ∅, S(Z)

m+1,j ̸= ∅}, where i < j. If

S
(S)
1N ̸= ∅, the given sequence data can be generated and parse trees can be obtained by

tracing indices in S
(X)
ij . It is known that calculating all S

(X)
ij takes O(|P |N3) time. If all

S
(X)
ij are obtained by dynamic programming, we can use them to enumerate all possible

parse trees.

3. Transforming a parse tree set into a Boolean function

In order to define a Boolean function that represents the set of all parse trees, we use Boolean
variable bi,j,k to represent the appearance of production rules in a parse tree. bi,j,k = 1 when
αij is generated from the k-th production rule qk, where αij is subsequence αi . . . αj .

We define a Boolean function that returns true when given a set of rules that corresponds
to a valid parse tree by imposing constraints as follows. Each subsequence, αij , is generated
from at most one production rule. Therefore, we need a constraint that makes multiple
variables among bij∗ not true. This is written as

Hij =
∧

bijk,bijl:k ̸=l

¬bijk ∨ ¬bijl. (1)

Next, we define the following constraint to make ensure one of the rules in S
(X)
ij is used.

F
(X)
ij =

∨
k∈S(X)

ij

bijk. (2)

If qk = (X → Y Z) is used, the rules that correspond to Y and Z must be used.

Dijk = ¬bijk ∨

(
j−1∨
m=i

F
(Y)
i,m ∧ F

(Z)
m+1,j

)
(3)

Finally, a constraint on arbitrary pairs bijk, bmnl such that i < m ≤ j < n is defined as

C =
∧

bijk,bmnl:i<m≤j<n

¬bijk ∨ ¬bmnl. (4)

By using these constraints, we can represent a Boolean function that returns true when
given a set of rules that corresponds to correct generation as ∧

i,j:1≤i<j≤N

Hij

 ∧

∧
bijk

Dijk

 ∧ C. (5)

155

AMII, NISHINO, and YAMAMOTO.

S(b131)

B(b233)

B(b227) C(b338)A(b115)

a b c

Figure 1: A correct parse tree. The variables in parentheses denote Boolean variables cor-
responding to each production rule.

As an example, we define a Boolean function representing the set of all parse trees of the
following CFG G = (V,Σ, P, S). Let V = {A,B,C}, Σ = {a, b, c}, and P be the following.

• 1. S → A B

• 2. A → A A

• 3. B → B C

• 4. B → A C

• 5. A → a

• 6. A → b

• 7. B → b

• 8. C → c

We consider the set of parse trees for sequence data abc. Using the CYK algorithm, we

can find S
(X)
ij as follows (other than empty set).

• S
(A)
11 = {5}

• S
(A)
22 = {6}

• S
(B)
22 = {7}

• S
(C)
33 = {8}

• S
(A)
12 = {2}

• S
(B)
23 = {3, 4}

• S
(S)
13 = {1}

We use Boolean variables b115, b226, b227, b338, b122, b233, b234, b131 and impose constraints.
From (1), H22 = ¬b226 ∨ ¬b227, H23 = ¬b233 ∨ ¬b234.

From (2), F
(B)
23 = b233 ∨ b234. With regard to the other variables, F

(A)
11 = b115, F

(A)
22 =

b226,

From (3),

• D122 = ¬b122 ∨ (F
(A)
11 ∧ F

(A)
22)

• D233 = ¬b233 ∨ (F
(B)
22 ∧ F

(C)
33)

• D234 = ¬b234 ∨ (F
(A)
22 ∧ F

(C)
33)

• D131 = ¬b131 ∨ (F
(A)
11 ∧ F

(B)
23) ∨ (F

(A)
12 ∧ F

(B)
33).

From (4), C = (¬b122 ∨ ¬b233) ∧ (¬b122 ∨ ¬b234).
We can represent the set of all parse trees as (5) by using Hij , Dijk, C. This Boolean

function returns 1 only when b115 = 1, b226 = 0, b227 = 1, b338 = 1, b122 = 0, b233 = 1, b234 =
0, b131 = 1, which corresponds to a correct parse tree as indicated in Fig. 1.

4. Decision Diagram

Due to space limits, we focus on ZSDD. Although ZSDD was invented to represent families
of sets, ZSDD can be also used to represent a Boolean function because a family of sets is
equivalent to a Boolean function.

4.1 (X,Y)-decomposition

(X,Y)-decomposition is a method that divides a given family of sets into smaller subsets,
a significant step in composing DDs. Let f be a family of sets, and X, Y be groups of
variables that compose a partition of the variables of f . It follows that the function can be

156

Decision diagrams representing the set of parse trees of a context-free grammar.

3

1 5

B
0

A
2

D
4

C
6

(a) A vtree

1

B A

3

 ε B ±C ε

5

D C

(b) A ZSDD

Figure 2: (a) An example of a vtree, (b) ZSDD representing the family of sets
{{A,B}, {B}, {B,C}, {C,D}} given the vtree in (a).

decomposed as

f = [p1(X) ⊔ s1(Y)] ∪ · · · ∪ [pn(X) ⊔ sn(Y)] , (6)

where pi(X), si(Y) are subfunctions whose variables are X and Y, respectively. Operations
∪ and ⊔ are union and join, respectively. They are defined as f ∪ g = {a | a ∈ f and a ∈ g}
and f ⊔ g = {a ∪ b | a ∈ f and b ∈ g}. We call p1, . . . , pn primes and s1, . . . , sn subs. If
pi ∩ pj = ∅ for all i ̸= j,

∪n
i=1 pi is equal to the power set of the universal set. If pi ̸= ∅ for

all i, we say the decomposition is an (X,Y)-partition, and denote it as (p1, s1), . . . , (pn, sn).
Moreover, if si ̸= sj for all i ̸= j is satisfied, we say the (X,Y)-partition is compressed.
For example, given f = {{A,B}, {B}, {B,C}, {C,D}}, X = {A,B}, and Y = {C,D}, the
(X,Y)-partition is

[{{A,B}} ⊔ {∅}] ∪ [{{B}} ⊔ {∅, {C}}] ∪ [{∅} ⊔ {{C,D}}], (7)

where {{A,B}}, {{B}}, {∅} are primes and {∅}, {∅, {C}}, {{C,D}} are subs.

4.2 vtree

We introduce vtree, another significant concept in composing ZSDDs. A ZSDD represents a
family of sets as a directed acyclic graph by applying (X,Y)-partition recursively. That is,
ZSDD divides a given family of sets into p1, . . . , pn and s1, . . . , sn by applying the (X,Y)-
partition. A ZSDD represents a family of sets by recursively applying (X,Y)-partitions,
where partition order is determined by the vtree. We can make a unique ZSDD given a
family of sets and a vtree. A vtree is a binary tree whose leafs correspond to variables. We
show a vtree example in Fig. 2(a).

The vtree root represents the partition of variables into two groups: variables that
appear in the left subtree and those that appear in the right subtree. In this figure, root
node v = 3 represents (X,Y)-partition where X = {A,B} and Y = {C,D}. Similarly,
node v = 1 represents a partition where X = {B} and Y = {A}. In this way, every non-leaf
vtree node represents a partitioning. We use vl, vr to represent the left and the right child
vtree nodes of v, respectively. We say a vtree is right-linear if each left-child of an internal
node is a leaf. To avoid confusion, we use the term vnode to refer to nodes in the vtree and
denote them as v, vl, vr, v1, v2,

157

AMII, NISHINO, and YAMAMOTO.

4.3 Zero-suppressed Sentential Decision Diagram (ZSDD)

We recursively define the Zero-suppressed Sentential Decision Diagram (ZSDD) as follows.
Let α be a ZSDD and ⟨α⟩ be the set that α represents.

Definition 2 α is a ZSDD that respects vtree v iff:

• α = ϵ or α = ⊥.
Semantics: ⟨ϵ⟩ = {∅} and ⟨⊥⟩ = ∅

• α = Xor α = ±X and v is a leaf with variable X.
Semantics: ⟨X⟩ = {{X}} and ⟨±X⟩ = {{X}, ∅}

• α = {(p1, s1), . . . , (pn, sn)}, v is internal, (p1, . . . pn) are ZSDDs that respect subtrees
of vl, s1, . . . sn are ZSDDs that respect subtrees of vr, and ⟨p1⟩, . . . ⟨pn⟩ is a partition.
Semantics: ⟨α⟩ =

∪n
i=1⟨pi⟩ ⊔ ⟨si⟩

ϵ,⊥, X,±Z are called terminal ZSDDs. Other ZSDDs represent (X,Y)-partition {(p1, s1),
. . . ,(pn, sn)} corresponding to vnode v.

Fig. 2(b) is an example of a ZSDD that represents the family of sets {{A,B},{B},{B,C},
{C,D}} given the vtree in Fig. 2(a). We represent (X,Y)-partition as a circle node, and
call it a decision node. A decision node has child nodes, and each child node is represented
as a pair of boxes. The left box of a child node corresponds to prime p, while the right box
corresponds to sub s. We call the ZSDD generated by (X,Y)-partition a subfunction on
X. We define the size of a decision node as the number of pairs of primes and subs covered
by the node, and the size of ZSDD as the sum of the sizes of all decision nodes.

We show the how DDs can be used to efficiently perform probabilistic context free
grammar (PCFG) inferences, including the computation of the probability of a sequence
data and the problem of finding the most likely parse tree. The computation of probability
data can be formulated as the weighted model counting (WMC) problem, whose solution
time is known to be linear with DD size [Chavira and Darwiche (2008)]. The problem of
finding the most likely parse tree can be solved by an algorithm that is similar to the WMC
algorithm for DDs.

We obtain the most likely parse tree that satisfies constraints with the following steps.

1. Construct a DD that represents the set of all valid parse trees.

2. Perform binary operation to obtain the DD that represents the set of parse trees that
satisfy the constraints.

3. Perform WMC with the obtained DDs by dynamic programming.

5. Experiment

We use BDD, SDD, ZDD, and ZSDD to represent the set of all parse trees of the context-
free grammars described below and compare them in terms of size. The experiment uses
context-free grammars G1 and G2 because they are simple and typical.

G1 : A → AA , A → a

G2 : A → AA , A → AB, B → BA, A → a, B → b

158

Decision diagrams representing the set of parse trees of a context-free grammar.

A

A A

A A A

a a a

b13

b12 b23

b11 b22 b33

()

() ()

() () ()

Figure 3: The correspondence of production rules of G1 to Boolean variables

b13

b12

b23

b11

b22 b33

2

3

4

5

1

(a) vtree1

b13

b12 b23

b22 b33

b11

1

2

3 4

5

(b) vtree2

b11 b21

b22 b31 b32b33

1

2 4

3 5

(c) vtree3

b33

b22 b23
b12 b13

b11

1

2 4

3 5

(d) vtree4

Figure 4: vtrees for grammar G1: sequence length is 3

Let A,B be a non-terminal symbol, and a, b be a terminal symbol. We show the DD
size versus the length of sequence data n. In grammar G1, the number of terminal and
non-terminal symbols is only one, so we use bi,j instead of bi,j,l. We parse sequence like
aaaa. In grammar G2, the sequence is composed of a repetition of ab as in ababab. The
correspondence of production rules to Boolean variables is shown in Fig. 3.

The problem of finding optimal variable ordering for a BDD is NP-complete [Tani et al.
(1996)]. However, it is known BDDs tend to be small if the variable order places related
variables close [Fujita et al. (1988)]. Thus, we examine the following 4 typical vtrees that
place related variables close. We show examples of each in Fig. 4; sequence length is 3.
BDD and ZDD are limited to decomposition by a single variable, and are equivalent to SDD
and ZSDD given right-linear vtrees.

vtree1 A right-linear vtree decomposing in descending order of the value j − i. If the
values are equal, it does in descending order of value i. This corresponds to the
seriate variables from root to leaves in Fig. 4(a).

vtree2 A vtree combining right-linear vtrees composed of variables whose values, j− i, are
equal. This decomposes variables that have the same height, Fig. 4(b), at once.

vtree3 A vtree combining two right-linear vtrees. One corresponds to terminal symbols,
and the other corresponds to non-terminal symbols. At root vnode v, vl corresponds
to terminal symbols and vr corresponds to non-terminal symbols, see Fig. 4(c).

vtree4 A vtree combining right-linear vtrees composed of the variables that have equal
value, i. This corresponds to making the right-linear vtree from left in Fig. 4(d).

159

AMII, NISHINO, and YAMAMOTO.

G1 G2

n 3 4 5 6 7 8 9 10 2 4 6 8 10

BDD vtree1 14 47 92 223 416 901 1164 2087 4 52 304 955 2637
ZDD vtree1 6 15 34 78 177 395 874 1914 2 13 68 330 1519
SDD vtree2 12 44 106 202 419 803 1346 2558 4 56 284 886 2281

vtree3 10 40 112 227 458 929 2086 2174 6 59 376 1252 3448
vtree4 12 42 96 218 425 723 1443 2735 4 58 302 1027 2989

ZSDD vtree2 6 15 34 78 173 381 825 1772 2 13 64 303 1398
vtree3 6 14 32 75 173 390 868 1907 2 11 60 297 1390
vtree4 8 22 53 120 263 566 1205 2548 2 21 113 511 2171

Table 1: DD size versus sequence length.

We gave vtree1 to BDD and ZDD, and vtrees 2,3,4 to SDD and ZSDD. For grammar
G2, we gave right-linear vtree composed of bij∗ instead of bij .

Tab. 1 shows the results. We can find that the combination of ZSDD and vtree2 yields
the smallest size when n is large in G1. In G2, the combination of ZSDD and vtree3 does,
but there is virtually no difference compared to vtree2. ZSDD is known to be smaller than
SDD when the model is small [Nishino et al. (2016)], which might be why ZSDD is smaller
than SDD in our experiment.

6. ZSDD Size

Given the above result, we discuss here the upper bound of ZSDD size respecting vtree2
given n on G1. Before analyzing the size, we define the underlying concepts. bi,j is a Boolean
variable corresponding to the initial rule used to generate j − i + 1 symbols αi . . . αj . Let
j − i+ 1 be the height of bi,j , and Br be the set of variables whose height is r. In general,
|Br| = n−r+1. For the first n−1 vnodes that are reachable by tracing only right edges from
the root, the set of variables appearing in their left children equals Br. For example, the
left child of root vnode is Bn = b1,n, the left child of its right child is Bn−1 = b1,n−1, b2,n. In
this way, vtree2 decomposes the variables by height. In the following, we investigate ZSDD
size by finding the upper bound of (1) decision nodes and (2) child nodes of each decision
node.

Each decision node in ZSDD represents a subfunction. It is known that no two decision
nodes that correspond to equivalent subfunctions can coexist in a ZSDD. Therefore, we
identify the upper bound of the size of decision nodes by discussing the number of different
subfunctions that can appear in a ZSDD. If vnode v’s left child corresponds to Br, we call
v a height-decompose vnode. We use a different analysis approach depending on whether
the vnode that the decision node respects is a height-decompose vnode or not. In Fig. 4(b),
vnode1,2 are height-decompose vnodes. Similarly, we find the upper bound of child nodes
using different methods according to vnode kinds.

6.1 Decision nodes corresponding to height-decompose vnode

The decision nodes associated with height-decompose vnodes denote subfunctions repre-
senting the set of partial parse trees whose height is smaller than r, where every partial

160

Decision diagrams representing the set of parse trees of a context-free grammar.

a a a a a a a a a a a a a a a a

b38

b18

b36

b18

b16

b36
r=3

Figure 5: Example of subfunctions whose heights are smaller than r that are equivalent on
two assignments(n = 8). Left figure denotes {b18, b16, b36}, right figure denotes
{b18, b38, b36} when r = 3. The assignments are different if we consider heights
larger than r + 1, but at heights of smaller than r we consider assignment only
in the shaded triangles so the subfunctions are equivalent.

parse forms a valid parse tree in combination with some partial tree whose height is larger
than r + 1. A subfunction represents a set of Boolean variables whose height is smaller
than r, and the set forms a parse tree in combination with variables whose height is larger
than r + 1. Before finding the upper bound of the number of subfunctions, we define the
grouping of symbols in a sequence as follows. Given a set of variables whose height is larger
than r + 1, we assign label bjk to each terminal symbol αi, when j ≤ i ≤ k and the height
of bjk is the smallest. If the set is valid, namely it can compose valid parse trees with
variables whose height is r or less, each terminal symbol always has a label. For a grouping
of terminal symbols based on the label, the following theorem holds.

Theorem 3 If two valid assignments I1, I2 to Boolean variables whose height is larger than
r + 1 give equivalent groupings on the sequence data, two subfunctions f, g over variables
whose height is lower than r that give valid parse trees when combined with each assignment
I1, I2 are equivalent.

Proof The above definition of grouping makes terminal symbols belonging to the same
group always appear as a substring. If terminal symbols αi, αi+1 are in different groups, we
cannot use bjk (j ≤ i < k) whose height is r or less to obtain valid parse trees. Therefore, a
subfunction whose height is r or less is defined as a set of partial parse trees on successive
terminal symbols in each group. Partial parse trees on a group whose height is r or less are
consistent regardless of how the group is made. From the above, if groupings are equivalent,
their subfunctions are also equivalent.

Fig. 5 shows an example of equivalent subfunctions. The parse trees and assignments are

different if we consider heights larger than r+1, but the subfunctions are equivalent. From
Theorem 3, we find the number of subfunctions can be bounded by using the number of
groupings. Let maximum grouping number be the maximum group size of groupings. The
following lemma shows that possible maximum grouping size number is bounded.

Lemma 4 Maximum grouping number l satisfies r + 1 ≤ l ≤ 2r.

161

AMII, NISHINO, and YAMAMOTO.

l terminal symbols

height l

height r

(a) l < r + 1

height l(>2r)

height r

 r+1 or more

 terminal symbols

(b) 2r < l

Figure 6: An example of a grouping that does not satisfy Lemma 4.

Proof When the maximum grouping number is l, the largest height among label bjk of
each terminal symbol αi is l. Since we consider assignment with height r + 1 or more,
r + 1 ≤ l must be satisfied.

On the other hand, we will show the above is invalid when 2r < l. We assume assignment
I that satisfies 2r < l and whose height is r+1 or more. If we divide the largest group into
two, the length of one side is r + 1 or more. Since the length of the group is equal to the
height of the label, the height of the label bjk of terminal symbols in this group is r + 1 or
more. That is, the maximum grouping number of I is less than r + 1, which is invalid.

Lemma 5 Let al,n be the number of groupings whose maximum grouping number is l or
less on n symbols, then

al,n =

{
2n−1 (n ≤ l)∑n−1

i=n−l ak,i (n > l).
(8)

Proof In the case that n ≤ l, an arbitrary grouping satisfies the condition, so al,n = 2n−1.
Otherwise, the length of head group is 1, . . . , l. We consider the remaining groupings; their
lengths are n− 1, . . . , n− l. Therefore,

∑n−1
i=n−l ak,i groupings exist in total.

Theorem 6 The upper bound of the number of subfunctions on Br is taken to be a2r,n −
ar,n = O(2n).

Proof The number of subfunctions onBr is equal to the number of groupings of assignments
whose height is r+1 or more, and the maximum grouping number l satisfies r+1 ≤ l ≤ 2r
from Lemma 4. Since ar,n is the number of groupings whose maximum number is r or less
from Lemma 5, the upper bound is given by a2r,n − ar,n.

6.2 Child nodes corresponding to height-decompose vnode

In the following, we give the upper bound of child nodes that a decision node of Br may
have. The number of child nodes is equal to the number of elements of (X,Y)-partition on
a subfunction. Since the number of elements of (X,Y)-partition is bounded by the number
of possible assignments that can form a valid parse tree, it corresponds to the number of
possible assignments over Br for a decision node that respects a height-decompose vnode.

162

Decision diagrams representing the set of parse trees of a context-free grammar.

Theorem 7 Let f(g) be the number of assignments over Br in a group whose length is g.
Then, f(g) = 1 when g < r+1, f(g) = 3 when g = r+1, and f(g) ≤ 3 when r+1 < g ≤ 2r.

Proof When g < r + 1, all variables in Br take 0, so f(g) = 1.

When g = r + 1, the number of variables in Br is 2. Both variables cannot take 1 at
the same time. If r ≥ 3, only variables whose heights are smaller than r can make a valid
parse tree, so both variables can take 0 at the same time (Impossible if r = 2). Since there
are three kinds of sets of used variables, namely one variable or none, f(g) = 3. (f(g) = 2
if r = 2)

When r + 1 < g ≤ 2r, b1,r, . . . , bg−r+1,g are the variables in Br. If bi,i+r = 1 (1 <
i < g − r + 1), a variable whose height is larger than r + 1 must take 1. This, however,
contradicts the grouping, so only b1,r or bg−r+1,g can take 1. (1)If r + 1 < g < 2r, neither
variable can take 1 because Eq. (4). Therefore, f(g) ≤ 3. (2)If g = 2r, both variables must
take 1. Therefore, f(g) = 1 ≤ 3.

Theorem 8 The number of assignments over Br is 3n/(r+1) when r ≥ 3, and 2n/(r+1) when
r = 2.

Proof If gi is the length of a group, the number of assignments over Br is
∏

i f(gi). When
r ≥ 3, it is the solution of the following optimization problem.

max
∏
i

f(gi) subject to
∑
i

gi = n, r + 1 ≤ max
i

gi ≤ 2r (9)

When gi = n/(r+1),
∏

i f(gi) takes its maximum value, which is 3n/(r+1). Similarly, when
r = 2 we can obtain the maximum value, 2n/(r+1).

Theorem 9 The size of ZSDD when height-decompose vnode is O(n2n3n/4).

Proof The number of child nodes isO(2n)(1+(2n/(r+1))|r=2+
∑n

r=3 3
n/(r+1)) = O(n2n3n/4).

6.3 Other vnodes

We consider vnodes in partial vtrees that are right-linear vtrees. In right-linear vtrees, each
decision node corresponds to the case that one variable is used. Therefore, the size is given
by the upper bound of assignments of variables and the number of variables.

Theorem 10 The number of decision nodes on Br is less than O(n2n).

Proof Since |Br| = n−r+1, the number of assignments is less than 2n−r+1 and 2n−r+1 < 2n.
Br has n or fewer variables; one variable corresponds to one decision node. Thus, the number
of decision nodes is less than O(n2n).

Decision nodes of right-linear vtrees have two child nodes, so the size in Br is less than
O(n2n). Since the size of height-decompose vnodes is O(2n3n/4), it does not influence the
order. Thus, the size of a ZSDD representing a set of parse trees on n symbols is O(n2n3n/4).

163

AMII, NISHINO, and YAMAMOTO.

7. Conclusion

We compared the size of decision diagrams representing a set of parse trees of simple CFG,
and gave the upper bound of ZSDD size, which was found to be the smallest in our exper-
iment. This paper showed the upper bound of just one vtree, and it is not guaranteed to
have the minimum size. Thus, future work is to consider other vtrees. Additionally, we
should consider general grammars because we considered only a simple CFG consisting of
only one terminal symbol and only one non-terminal symbol.

References

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. Computers,
IEEE Transactions, 100.8:677–691, 1986.

M. Chavira and A. Darwiche. On Probabilistic Inference by Weighted Model Counting.
Artificial Intelligence, 172(6-7):772–799, 2008.

A. Darwiche. SDD: A new canonical representation of propositional knowledge bases. Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 819–
826, 2011.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: proba-
bilistic models of proteins and nucleic acids. 1998.

M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvement of Boolean comparison
method based on binary decision diagrams. Proceedings of ACM/IEEE International
Conf. on Computer-Aided Design (ICCAD), pages 2–5, 1988.

C. D. Manning and H. Schütze. Foundations of statistical natural language processing.
Cambridge: MIT press, 1999.

S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. Pro-
ceedings of the 30th international Design Automation Conference (DAC). ACM, pages
272–277, 1993.

M. Nishino, N. Yasuda, S. Minato, and M. Nagata. Zero-Suppressed Sentential Decision
Diagrams. Proceedings of the 30th Conference on Artificial Intelligence (AAAI), pages
1058–1066, 2016.

S. Tani, K. Hamaguchi, and S. Yajima. The complexity of the optimal variable order-
ing problems of a shared binary decision diagram. Proceedings of the 4th International
Symposium on Algorithms and Computation (ISAAC), pages 271–281, 1996.

164

