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Abstract
Bayesian networks are a widely used graphical model with diverse applications in knowledge dis-
covery, classification, and decision making. Learning a Bayesian network from discrete data can be
cast as a combinatorial optimization problem and thus solved using optimization techniques—the
well-known score-and-search approach. An important consideration when applying a score-and-
search method for Bayesian network structure learning (BNSL) is its anytime behavior; i.e., how
does the quality of the solution found improve as a function of the amount of time given to the
algorithm. Previous studies of the anytime behavior of methods for BNSL are limited by the scale
of the instances used in the evaluation and evaluate only algorithms that do not scale to larger in-
stances. In this paper, we perform an extensive evaluation of the anytime behavior of the current
state-of-the-art algorithms for BNSL. Our benchmark instances range from small (instances with
fewer than 20 random variables) to massive (instances with more than 1,500 random variables).
We find that a local search algorithm based on memetic search dominates the performance of other
state-of-the-art algorithms when considering anytime behavior.
Keywords: Structure learning; score-and-search; anytime algorithms; memetic search.

1. Introduction

Bayesian networks are a popular probabilistic graphical model with diverse applications including
knowledge discovery, prediction, and control. The structure of a Bayesian network (BN) can either
be determined by a human domain expert or machine learned from discrete data. Bayesian network
structure learning (BNSL) from discrete data is NP-hard in general to solve optimally but also NP-
hard to solve approximately to within a reasonable factor (Chickering et al., 2003). Thus advanced
search techniques are needed and the best methods for BNSL use a score-and-search approach
where a scoring function is used to evaluate the quality of a proposed BN and the space of feasible
solutions is systematically searched for a best-scoring BN.

Both global (exact) and local (approximate) search algorithms for BNSL have been studied
extensively over the past two decades. Global search algorithms for BNSL include proposals
based on dynamic programming (Koivisto and Sood, 2004; Silander and Myllymäki, 2006; Mal-
one et al., 2011), integer linear programming (Jaakkola et al., 2010; Bartlett and Cussens, 2013),
constraint programming (van Beek and Hoffmann, 2015), A* search (Yuan and Malone, 2013;
Fan et al., 2014a; Fan and Yuan, 2015), depth-first branch-and-bound search (Tian, 2000; Mal-
one and Yuan, 2014), and breadth-first branch-and-bound search (de Campos and Ji, 2011; Fan
et al., 2014a,b; Fan and Yuan, 2015). Local search algorithms for BNSL include proposals based
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on greedy search (Chickering et al., 1997), tabu search (Teyssier and Koller, 2005), ant colony op-
timization (De Campos et al., 2002), and memetic search (Lee and van Beek, 2017), over search
spaces such as the space of network structures (Chickering et al., 1997), the space of equivalent net-
work structures (Chickering, 2002), and the space of variable orderings (Teyssier and Koller, 2005;
Scanagatta et al., 2015).

Our interest here is in anytime algorithms—algorithms where the quality of the solution im-
proves over time. We perform an extensive evaluation of the behavior of the current state-of-the-art
anytime algorithms for BNSL, and determine whether high quality solutions can be obtained at
reasonable time cutoffs in the search. Our benchmark instances range from small (instances with
fewer than 20 random variables) to massive (instances with more than 1,500 random variables). Our
experimental study extends a recent study of anytime algorithms for BNSL by Malone and Yuan
(2013) to include: (i) more varied and realistic benchmark instances, as their study was restricted
to only synthetic benchmarks with 29 to 35 random variables using the BIC/MDL scoring function;
(ii) a comparison to more current state-of-the-art global search algorithms; and (iii) a comparison to
state-of-the-art local search algorithms, as their study omitted local search algorithms. We find that a
local search algorithm based on memetic search dominates the performance of other state-of-the-art
algorithms for BNSL when considering anytime behavior.

2. Background

In this section, we briefly review the necessary background in Bayesian networks before defining
the Bayesian network structure learning problem (for more background on these topics see, for
example, (Darwiche, 2009; Koller and Friedman, 2009)).

A Bayesian network (BN) is a probabilistic graphical model that consists of a labeled directed
acyclic graph (DAG) in which the vertices V = {v1, . . . , vn} correspond to random variables, the
edges represent direct influence of one random variable on another, and each vertex vi is labeled
with a conditional probability distribution P (vi | parents(vi)) that specifies the dependence of the
variable vi on its set of parents parents(vi) in the DAG. A BN can alternatively be viewed as a
factorized representation of the joint probability distribution over the random variables and as an
encoding of conditional independence assumptions.

The predominant method for BN structure learning from data is the score-and-search method.
Let G be a DAG over random variables V , and let I = {I1, . . . , IN} be a set of multivariate discrete
data, where each instance Ii is an n-tuple that is a complete instantiation of the variables in V . A
scoring function σ(G | I) assigns a real value measuring the quality of G given the data I . Without
loss of generality, we assume that a lower score represents a better quality network structure.

Definition 1 Given a discrete data set I = {I1, . . . , IN} over random variables V and a scoring
function σ, the Bayesian network structure learning problem is to find a directed acyclic graph G
over V that minimizes the score σ(G | I).

Scoring functions balance goodness of fit to the data with a penalty term for model complexity to
avoid overfitting. Common scoring functions include BIC/MDL (Schwarz, 1978; Lam and Bacchus,
1994) and BDeu (Buntine, 1991; Heckerman et al., 1995). An important property of these (and
most) scoring functions is decomposability, where the score of the entire network σ(G | I) can be
rewritten as the sum of local scores

∑n
i=1 σ(vi, parents(vi) | I) that only depend on vi and the

parent set of vi in G . A common assumption is that the local score σ(vi, p | I) for each possible
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A : {D}, 9.6 {C}, 9.9 {E}, 10.0 {}, 15.4
B : {C,D}, 12.1 {C}, 12.2 {E}, 12.3 {}, 14.1
C : {E}, 3.6 {D}, 5.2 {A,B}, 10.9 {A}, 11.4 {}, 17.0
D : {E}, 3.6 {C}, 5.2 {A,B}, 10.9 {A}, 11.4 {}, 17.0
E : {D}, 3.7 {A}, 4.2 {A,B}, 11.2 {C}, 11.6 {}, 17.0

A

E

C D

B
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Figure 1: (a) Random variables and possible parent sets for Example 1; (b) minimum cost DAG
structure with cost 38.9.

parent set p ⊆ 2V−{vi} and each random variable vi has been computed in a preprocessing step prior
to the search for the best network structure. Pruning techniques can be used to reduce the number of
possible parent sets that need to be considered, but in the worst-case the number of possible parent
sets for each variable vi is exponential in n, where n is the number of vertices in the DAG.

Example 1 Let A, B, C, D, and E be random variables with the possible parent sets and asso-
ciated scores shown in Figure 1(a). For example, if the parent set {C,D} for random variable B
is chosen there would be a directed edge from C to B and a directed edge from D to B and those
would be the only incoming edges toB. The local score for this parent set is 12.1. If the parent set {}
for random variable A is chosen, there would be no incoming edges to A; i.e., A would be a source
vertex. Figure 1(b) shows the minimum cost DAG with cost 15.4 + 4.2 + 3.6 + 3.6 + 12.1 = 38.9.

Note that, although the Bayesian network structure learning problem is NP-hard, once the best
network structure or DAG has been chosen, it is an easy next step to estimate from complete data
the conditional probability distributions that label each vertex.

3. Anytime Search Algorithms for BNSL

In this section, we briefly review the state-of-the-art for anytime search algorithms for BNSL.
Many of the current state-of-the-art global and local search algorithms for BNSL are based on

the search space of all permutations first proposed by Larrañaga et al. (1996). The search space con-
sists of all possible permutations of the random variables and relies on the fact that for a fixed per-
mutation of the random variables, finding the minimal cost network for that permutation is straight-
forward. The algorithms of course differ in how they traverse the space of all permutations and
whether they guarantee exact solutions (global search algorithms) or only approximate solutions
(local search algorithms).

For global search algorithms, the experimental evaluation in van Beek and Hoffmann (2015),
shows that methods based on integer linear programming (Bartlett and Cussens, 2013), constraint
programming (van Beek and Hoffmann, 2015), and A* search (Yuan and Malone, 2013; Fan et al.,
2014a; Fan and Yuan, 2015) are in contention for the state-of-the-art. The latter two methods search
the space of all permutations. Of these three methods, only A* is not an anytime algorithm as no
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solution is reported until the algorithm terminates. Although, as shown by Malone and Yuan (2013),
adaptations can add anytime behavior to A*, we do not pursue the A* approach further in our eval-
uation of anytime algorithms as experiments show that the A* method does not scale quite as well
as the competing approaches, as it runs out of memory sooner on larger instances (in fairness, the
scalability of the A* approach on a very large memory machine is still somewhat of an open ques-
tion). Thus, for global search algorithms, in our experiments we evaluate GOBNILP, Bartlett and
Cussens’s implementation of their integer linear programming approach, and CPBayes, van Beek
and Hoffmann’s implementation of their constraint programming approach. The implementation of
CPBayes was modified to use the improved upper bound provided by the local search algorithm
MINOBS (see below).

For local search algorithms, the experimental evaluations in Scanagatta et al. (2015) and Lee and
van Beek (2017), shows that algorithms based on a search space that consists of all permutations are
the state-of-the-art. Teyssier and Koller (2005) apply the permutation space within a local search
algorithm for BNSL and give a tabu search algorithm for BNSL that performs adjacent swaps in the
permutation to define a search neighborhood. Building on the work of Teyssier and Koller (2005),
Scanagatta et al. (2015) show how to significantly improve the search of the local neighborhood and
Lee and van Beek (2017) show how to significantly improve the search by doing insertions rather
than adjacent swaps and using a memetic or population-based approach. Thus, for local search
algorithms, in our experiments we evaluate ASOBS, Scanagatta et al.’s implementation of their
approach, and MINOBS, Lee and van Beek’s implementation of their memetic approach.

4. Experimental Evaluation

In this section, we present our computational study. We begin by presenting the experimental setup,
followed by the experimental results.

4.1 Experimental setup

The sets of benchmark instances used in our study were obtained as follows.

• Instances reported in Tables 2–5: These instances were computed from data sets obtained
from J. Cussens, B. Malone, the UCI Machine Learning Repository1, and data generated from
networks obtained from the Bayesian Network Repository2. The local scores were computed
from the data sets using code provided by B. Malone3. The BIC/MDL (Schwarz, 1978; Lam
and Bacchus, 1994) and BDeu (Buntine, 1991; Heckerman et al., 1995) scoring methods were
used on these data sets. For some of the larger BDeu instances, the maximum indegree of the
parent sets was restricted to be 8, and for the largest BDeu instances, the maximum indegree
was restricted to be 6 in order to complete the computation of the local scores for a data set
within 24 hours of CPU time. For all other instances, the maximum indegree was unrestricted.

• Instances reported in Tables 6–8: These instances, and the accompanying discrete data,
were obtained from the the Bayesian Network Learning and Inference Package (BLIP)4. The

1. http://archive.ics.uci.edu/ml/
2. http://www.bnlearn.com/bnrepository/
3. http://urlearning.org/
4. http://blip.idsia.ch/
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Table 1: Notation used in Tables 2–8.
symbol meaning
n number of random variables in the data set
N number of instances in the data set
d total number of possible parents sets for the random variables
— indicates method did not report any solution within the given time bound
opt indicates method found the known optimal solution within the given time bound

benchmark* indicates optimal value for benchmark is not known; in such cases the percentage
from optimal is calculated using best value found within 24 hours of CPU time

BIC/MDL (Schwarz, 1978; Lam and Bacchus, 1994) scoring method was used and the max-
imum indegree of the parents sets was restricted to be 6.

As in previous work, the local score for each possible parent set for each random variable was
computed in a preprocessing step from discrete data (either by us or by others) prior to the search
for the best network structure and we do not report the preprocessing time. One justification for
computing all of the possible parent sets in a preprocessing step, rather than on an as-needed basis
during the search, is that the computation of the parent sets is embarrassingly parallel and one can
easily take advantage of additional resources to speed the computation.

The anytime algorithms for BNSL evaluated in our study were the following:

• GOBNILP5, version 1.6.2 (Bartlett and Cussens, 2013, 2017);

• CPBayes6, version 1.2 (van Beek and Hoffmann, 2015);

• ASOBS7, version of December 2016 (Scanagatta et al., 2015); and

• MINOBS8, version 0.2 (Lee and van Beek, 2017).

GOBNILP, CPBayes, and MINOBS are all implemented in C/C++. ASOBS is written in
Java and therefore runs more slowly compared to these other methods. However, the largest time
bounds in the experiments involving ASOBS are long enough that the method appears to stagnate—
improving solutions stop being found at approximately the half way point of the time bound. There-
fore, it appears unlikely that these results would change in a significant way if the method were to
be made faster. The experiments for all methods other than ASOBS were run on a single core of
an AMD Opteron 275 @ 2.2 GHz. Each run was allotted a maximum 30 GB of memory. Due to
software limited availability, tests for ASOBS were run on a restricted set of instances courtesy of
M. Scanagatta with the same memory limits and on a single core of an AMD Opteron 2350 @ 2.0
GHz. These two processors have similar single core performance. The methods were run with their
default values. For MINOBS, ten tests with different random seeds were tested for each instance
and the median is reported. GOBNILP, CPBayes, and ASOBS were only run once due to time
constraints.

5. https://www.cs.york.ac.uk/aig/sw/gobnilp/
6. https://cs.uwaterloo.ca/˜vanbeek/Research
7. http://blip.idsia.ch/
8. https://github.com/kkourin/mobs/releases/tag/0.2
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Table 2: BIC scoring function, small networks (n ≤ 20 random variables). Percentage from opti-
mal on each benchmark, for various time bounds and solution methods: GOBNILP v1.6.2
(Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015), and MI-
NOBS v0.2 (Lee and van Beek, 2017).

1 minute 5 minutes 10 minutes
benchmark n N d GO CP MI GO CP MI GO CP MI
nltcs 16 3,236 7,933 0.2% opt opt opt opt opt opt opt opt
msnbc 17 58,265 47,229 — opt opt 0.4% opt opt 0.0% opt opt
letter 17 20,000 4,443 opt opt opt opt opt opt opt opt opt
voting 17 435 1,848 opt opt opt opt opt opt opt opt opt
zoo 17 101 554 opt opt opt opt opt opt opt opt opt
tumour 18 339 219 opt opt opt opt opt opt opt opt opt
lympho 19 148 143 opt opt opt opt opt opt opt opt opt
vehicle 19 846 763 opt opt opt opt opt opt opt opt opt
hepatitis 20 155 266 opt opt opt opt opt opt opt opt opt
segment 20 2,310 1,053 opt opt opt opt opt opt opt opt opt

Table 3: BDeu scoring function, small networks (n ≤ 20 random variables). Percentage from
optimal on each benchmark, for various time bounds and solution methods: GOBNILP
v1.6.2 (Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015), and
MINOBS v0.2 (Lee and van Beek, 2017).

1 minute 5 minutes 10 minutes
benchmark n N d GO CP MI GO CP MI GO CP MI
nltcs 16 3,236 8,091 0.0% opt opt 0.0% opt opt opt opt opt
msnbc 17 58,265 50,921 — opt opt 0.2% opt opt 0.1% opt opt
letter 17 20,000 18,841 1.3% opt opt 0.1% opt opt 0.0% opt opt
voting 17 435 1,940 opt opt opt opt opt opt opt opt opt
zoo 17 101 2,855 1.7% opt opt opt opt opt opt opt opt
tumour 18 339 274 opt opt opt opt opt opt opt opt opt
lympho 19 148 345 opt opt opt opt opt opt opt opt opt
vehicle 19 846 3,121 opt opt opt opt opt opt opt opt opt
hepatitis 20 155 501 opt opt opt opt opt opt opt opt opt
segment 20 2,310 6,491 0.3% opt opt 0.3% opt opt 0.0% opt opt

4.2 Experimental results

The algorithms are compared on the quality of the solution reported at various time bounds. The
quality of the solution was measured by either the percentage from optimal, if known, and otherwise
the percentage from the best solution found within 24 hours of CPU time by any method. The
Bayesian Network Repository classifies networks as small (n ≤ 20 variables), medium (20 < n ≤
60 variables), large (60 < n ≤ 100 variables), very large (100 < n ≤ 1000 variables), and massive
(n > 1000 variables). We categorize our experimental results by the size of the networks and by
the scoring function. Table 1 shows the notation used in reporting our results.
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Table 4: BIC scoring function, medium networks (20 < n ≤ 60 random variables). Percentage
from optimal on each benchmark, for various time bounds and solution methods: GOB-
NILP v1.6.2 (Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015),
and MINOBS v0.2 (Lee and van Beek, 2017).

1 minute 5 minutes 10 minutes
benchmark n N d GO CP MI GO CP MI GO CP MI
mushroom 23 8,124 13,025 1.1% opt opt 0.6% opt opt 0.6% opt opt
autos 26 159 2,391 1.5% opt opt opt opt opt opt opt opt
insurance 27 1,000 506 opt opt opt opt opt opt opt opt opt
horse colic 28 300 490 opt opt opt opt opt opt opt opt opt
steel 28 1,941 93,026 — 0.0% 0.0% 0.9% opt opt 0.7% opt opt
flag 29 194 741 opt opt opt opt opt opt opt opt opt
wdbc 31 569 14,613 0.7% opt opt 0.2% opt opt 0.2% opt opt
water 32 1,000 159 opt opt opt opt opt opt opt opt opt
mildew 35 1,000 126 opt opt opt opt opt opt opt opt opt
soybean 36 266 5,926 1.6% opt opt 1.6% opt opt opt opt opt
alarm 37 1,000 1,002 opt opt opt opt opt opt opt opt opt
bands 39 277 892 opt opt opt opt opt opt opt opt opt
spectf 45 267 610 opt opt opt opt opt opt opt opt opt
sponge 45 76 618 opt opt opt opt opt opt opt opt opt
barley 48 1,000 244 opt opt opt opt opt opt opt opt opt
hailfinder 56 100 50 opt opt opt opt opt opt opt opt opt
hailfinder 56 500 43 opt opt opt opt opt opt opt opt opt
lung cancer 57 32 292 opt opt opt opt opt opt opt opt opt
carpo 60 100 423 opt opt opt opt opt opt opt opt opt
carpo 60 500 847 opt opt opt opt opt opt opt opt opt

Tables 2 & 3 show the results for small networks (n ≤ 20 random variables) for the BIC
and BDeu scoring functions, respectively, and the GOBNILP, CPBayes, and MINOBS methods.
CPBayes and MINOBS are able to consistently find optimal solutions within a 1 minute time bound,
whereas GOBNILP sometimes is unable to find its first solution within 1 minute and sometimes
has not yet found the optimal solution with a 10 minute time bound. Of course, GOBNILP and
CPBayes, being global search methods, may terminate earlier than a time limit once a solution has
been proven optimal, whereas ASOBS and MINOBS, being local search methods, terminate only
when a time bound is reached. The parameter d, the total number of possible parents sets across all
the random variables, is a relatively good predictor for the instances that GOBNILP finds difficult
among these small networks as it strongly correlates with the size of the integer programming model.

Tables 4 & 5 show the results for medium networks (20 < n ≤ 60 random variables) for
the BIC and BDeu scoring functions, respectively, and the GOBNILP, CPBayes, and MINOBS
methods. Note the difference in time bounds between instances using BIC scoring and the instances
using BDeu scoring; BDeu scoring leads to instances that are significantly harder to solve. In
fact, for two of the BDeu instances, soybean and lung cancer, neither of the exact methods could
determine the optimal solution. As well, the BDeu instances themselves are hard to compute (i.e.,
the preprocessing step that computes the local score for each possible parent set for each random
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Table 5: BDeu scoring function, medium networks (20 < n ≤ 60 random variables). Percentage
from optimal on each benchmark, for various time bounds and solution methods: GOB-
NILP v1.6.2 (Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015),
and MINOBS v0.2 (Lee and van Beek, 2017).

5 minutes 1 hour 12 hours
benchmark n N d GO CP MI GO CP MI GO CP MI
mushroom 23 8,124 438,185 — 0.0% 0.0% 0.5% opt 0.0% 0.1% opt opt
autos 26 159 25,238 4.3% 0.0% 0.0% 1.2% opt 0.0% opt opt opt
insurance 27 1,000 792 opt opt opt opt opt opt opt opt opt
horse colic 28 300 490 opt opt opt opt opt opt opt opt opt
steel 28 1,941 113,118 2.0% 0.0% opt 0.5% opt opt 0.4% opt opt
flag 29 194 1,324 opt opt opt opt opt opt opt opt opt
wdbc 31 569 13,473 0.6% opt opt opt opt opt opt opt opt
water 32 1,000 261 opt opt opt opt opt opt opt opt opt
mildew 35 1,000 166 opt opt opt opt opt opt opt opt opt
soybean* 36 266 212,425 — 0.1% 0.1% 3.1% 0.1% 0.1% 1.8% 0.0% 0.0%
alarm 37 1,000 2,113 opt opt opt opt opt opt opt opt opt
bands 39 277 1,165 opt opt opt opt opt opt opt opt opt
spectf 45 267 316 opt opt opt opt opt opt opt opt opt
sponge 45 76 10,790 0.4% opt opt opt opt opt opt opt opt
barley 48 1,000 364 opt opt opt opt opt opt opt opt opt
hailfinder 56 100 199 opt opt opt opt opt opt opt opt opt
hailfinder 56 500 447 opt opt opt opt opt opt opt opt opt
lung cancer* 57 32 22,338 6.7% 0.3% 0.1% 6.7% 0.0% 0.0% 0.9% 0.0% 0.0%
carpo 60 100 15,408 2.1% opt opt 0.5% opt opt opt opt opt
carpo 60 500 3,324 opt opt opt opt opt opt opt opt opt

variable from discrete data prior to search), where the larger instances required 24 hours of CPU
time to compute the parent sets even under restrictions on the indegree of the parent sets.

CPBayes and MINOBS are able to consistently find optimal or near-optimal solutions within a
1 minute time bound for the BIC instances and a 5 minute time bound for the BDeu instances. After
5 minutes and 1 hour, respectively, the solutions found by these methods are almost all optimal.
By the largest time bound, 10 minutes and 12 hours, respectively, for all of the instances where the
optimal solution was known, CPBayes and MINOBS found the optimal solution, whereas for five of
these instances GOBNILP found high-quality solutions but was unable to find the optimal solution.
Once again, the parameter d is a good predictor for the instances that GOBNILP finds difficult. (It
should be noted, however, that GOBNILP is able to prove the optimality of larger instances than
CPBayes, and thus GOBNILP scales better on the parameter n.) In summary though, all three
methods are competitive on the medium networks (20 < n ≤ 60 random variables) in terms of
anytime behavior. However, as will be seen next, the medium networks are near the limits of exact
solvers such as GOBNILP and CPBayes.

Tables 6, 7 & 8 show the results for large (60 < n ≤ 100 variables), very large (100 < n ≤ 1000
variables), and massive networks (n > 1000 variables), and the GOBNILP, CPBayes, ASOBS, and
MINOBS methods. Results are reported for only the BIC scoring function, as instances for the
BDeu scoring function could not be computed within a 24 hour limit on CPU time.

76



ANYTIME ALGORITHMS FOR BNSL

Table 6: BIC scoring function, large networks (60 < n ≤ 100 random variables). Percentage
from optimal on each benchmark, for various time bounds and solution methods: GOB-
NILP v1.6.2 (Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015),
ASOBS (Scanagatta et al., 2015), and MINOBS v0.2 (Lee and van Beek, 2017).

1 hour 12 hours
benchmark n N d GO CP AS MI GO CP AS MI
kdd 64 34,955 152,873 3.4% opt 0.5% 0.0% 3.3% opt 0.5% opt
plants* 69 3,482 520,148 44.5% 0.1% 17.5% 0.0% 33.0% 0.0% 14.8% 0.0%
bnetflix 100 3,000 1,103,968 — opt 3.7% opt — opt 2.2% opt

Table 7: BIC scoring function, very large networks (100 < n ≤ 1000 variables). Percentage
from optimal on each benchmark, for various time bounds and solution methods: GOB-
NILP v1.6.2 (Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015),
ASOBS (Scanagatta et al., 2015), and MINOBS v0.2 (Lee and van Beek, 2017).

1 hour 12 hours
benchmark n N d GO CP AS MI GO CP AS MI
accidents* 111 2,551 1,425,966 — 0.6% 325.6% 0.3% — 0.0% 155.9% 0.0%
pumsb star* 163 2,452 1,034,955 320.7% — 24.0% 0.0% 277.2% — 18.9% 0.0%
dna* 180 1,186 2,019,003 — — 7.3% 0.4% — — 5.8% 0.0%
kosarek* 190 6,675 1,192,386 — — 8.4% 0.1% — — 8.0% 0.0%
msweb* 294 5,000 1,597,487 — — 1.5% 0.0% — — 1.3% 0.0%
diabetes* 413 5,000 754,563 — — 0.8% 0.0% — — 0.7% 0.0%
pigs* 441 5,000 1,984,359 — — 16.8% 1.8% — — 16.8% 0.1%
book* 500 1,739 2,794,588 — — 9.9% 0.8% — — 9.1% 0.1%
tmovie* 500 591 2,778,556 — — 36.1% 5.5% — — 33.4% 0.2%
link* 724 5,000 3,203,086 — — 28.4% 0.2% — — 17.1% 0.1%
cwebkb* 839 838 3,409,747 — — 32.4% 2.3% — — 25.5% 0.2%
cr52* 889 1,540 3,357,042 — — 25.9% 2.2% — — 23.5% 0.1%
c20ng* 910 3,764 3,046,445 — — 16.3% 1.0% — — 14.6% 0.0%

Table 8: BIC scoring function, massive networks (n > 1000 random variables). Percentage from
optimal on each benchmark, for various time bounds and solution methods. GOBNILP
v1.6.2 (Bartlett and Cussens, 2013), CPBayes v1.1 (van Beek and Hoffmann, 2015),
ASOBS (Scanagatta et al., 2015), and MINOBS v0.2 (Lee and van Beek, 2017).

1 hour 12 hours
benchmark n N d GO CP AS MI GO CP AS MI
bbc* 1,058 326 3,915,071 — — 26.0% 4.5% — — 24.4% 0.5%
ad* 1,556 487 6,791,926 — — 15.2% 3.2% — — 15.0% 0.5%

The global search solvers GOBNILP and CPBayes are not competitive one these large to mas-
sive networks. GOBNILP is able to find solutions for only three of the instances, and for the other
instances the memory requirements exceed the limit of 30 GB. CPBayes is able to find solutions
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for only four of the instances and this is only due to the high-quality initial upper bound found by
MINOBS (recall that we modified the implementation of CPBayes to use the improved upper bound
provided by MINOBS, rather than its existing simple hill climbing approach). As well, it should be
noted that CPBayes can only handle instances for n ≤ 128 as this is a fundamental limitation of
how it represents parent sets and how it computes lower bounds.

The local search solvers ASOBS and MINOBS are able to scale to and find solutions for all
of these large to massive instances within reasonable time bounds. The local search algorithm
MINOBS performs exceptionally well, consistently finding high-quality solutions within 1 hour
and very high-quality solutions within 12 hours. (Recall that for MINOBS, ten tests with different
random seeds were tested for each instance. As an example to quantify the consistency of MINOBS,
the standard deviation of each of the results using a 12 hour cutoff is bounded by 0.3.) Unfortunately,
it is unknown whether there is still room for improvement as for only two of these instances is the
optimal solution known. Notably, the local search algorithm ASOBS does not perform as well on
these large instances, often reporting solutions that are quite far from optimal for each of the time
bounds. As reported above, ASOBS appears to stagnate well before the 12 hour time bound and
improving solutions stop being found at approximately the 6 hour time point. This suggests that
longer time bounds would not significantly improve the quality of the solutions found by ASOBS.

5. Conclusion

An important consideration when applying a score-and-search method for Bayesian network struc-
ture learning (BNSL) is its anytime behavior; i.e., how does the quality of the solution found im-
prove as a function of the amount of time given to the algorithm. We performed an extensive eval-
uation of the anytime behavior of the current state-of-the-art algorithms for BNSL. Our benchmark
instances range from small (instances with fewer than 20 random variables) to massive (instances
with more than 1,500 random variables). We find that MINOBS, a local search algorithm based
on memetic search, dominates the performance of other state-of-the-art algorithms when consider-
ing anytime behavior. On small instances MINOBS quickly reports optimal solutions; on medium
instances MINOBS finds optimal or near-optimal solutions; and on large, very large, and massive
instances MINOBS finds solutions that are of significantly higher quality than the competing state-
of-the-art algorithms.
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