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Proof of Lemma 1 To prove the first statement, note that
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where the second equality follows from Equation 6.

We prove the second statement by induction over the number of variables in V. Clearly,
the result holds when V contains a single variable. Assume as induction hypothesis that
the result holds for up to n variables. When there are n + 1 variables, these can be divided
into components Sy, ..., Sk, S" with factors q(s1),...,q(sk),q(s’) such that V,,11 € S". As

shown above,
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which implies that
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Note that f ( ) factorizes according to GV and S; is a component of av®™. Therefore,
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by the induction hypothesis and the fact that V3 < ... <V, is also a topological order of
the nodes in GV". Then, ¢(s’) is also identifiable and is given by
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Proof of Lemma 2
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where the second equality follows from the fact that F is an ancestral set in G and, thus,
no node in E has a parent in C'\ E. The third equality is due to the fact that the integral
over ¢\ e equals 1. This may be easier to appreciate by performing the integral following a
topological order of the nodes in C'\ E with respect to G. |

Proof of Lemma 3 As mentioned above, ¢(c) factorizes according to G¢. Therefore, the
first statement can be proven in much the same way as the first statement in Lemma 1.
The third statement follows from Lemma 2 since C¥) is an ancestral set in G©.

We prove the second statement by induction over the number of variables in C. Clearly,
the result holds when C contains a single variable. Assume as induction hypothesis that
the result holds for up to n variables. When there are n + 1 variables, these can be divided
into components C1, ..., Ck, C' with factors ¢(c1),...,q(ck),q(c’) such that V41 € C'. As
shown above,

q(c) = q(d) [ [ a(e;)
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which implies that

o) = [ a(e) dvnsr = [ [ ) dvnir) [T atcs)

where the first equality follows from Lemma 2 because C(™ is an ancestral set in G¢. Note
that q(c(”)) factorizes according to GC™ and Cj is a component of Go". Therefore,
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by the induction hypothesis and the fact that Vi < ... <V, is also a topological order of
the nodes in GE™. Then, q(c) is given by
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Proof of Lemma 4 It suffices to note that
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Moreover, if A is an ancestral set in GAYC| then [ ¢(a,c)dc = q(a) by Lemma 2. |

Proof of Theorem 9 For the algorithm to fail, some component C} cannot be ancestral
in line 8. Then, one of the following two cases must occur. Case 1: Assume that Cj is not
ancestral in line 8 because it contains a child Y,, of X. Clearly, X is not in C}; by lines 4-5.
However, both X and Y,, must be in the component S; in line 8 for the algorithm to fail,
which implies that there is an undirected path between X and Y,,. Case 2: Assume that C}
is not ancestral in line 8 because it contains a child Y} of ¥; and Y; is not in C;. However,
both Y; and Y; must be in the component S; in line 8 for the algorithm to fail, then both
must be in C; by lines 4-5. This is a contradiction. Therefore, only the first case can occur,
which implies that the algorithm fails only if G has a subgraph of the form
Yi— o — Y

X/ \Yn

Such a subgraph implies that f(v \ z|Z) is not identifiable from G (Pefia and Bendtsen,
2017, Theorem 12). [ |

Proof of Lemma 10 Removing edges from an aADMG can only increase the separations
represented by the aADMG. Then, if the antecedent of rule 1 is satisfied, so are the an-
tecedents of rules 2 and 3. Then, we can replace the application of rule 1 with the application
of rule 2 followed by the application of rule 3, i.e.

Proof of Lemma 11 We prove the result for Lemma 2. The proof for Lemma 6 is similar.
First, note that

/ g@)d(c\ e) = / f(eloNeydic\ ) = flelo ).

Moreover, - -
q(e) = flelv\e) = flelv\ ¢)
where the second equality follows from rule 3 since E L ¢ ,___C\ E|(. To see that this
V\CC\E

separation holds, assume that there is a route p in G‘/_\é% between a node in F and a

—
node in C'\ E. Note that p cannot only contain nodes in C, because the nodes in C'\ F only
have outgoing directed edges in GXTC)C\:E’ which implies that E is not ancestral set in G,
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which contradicts the assumptions in Lemma 2. So, p must contain some node in V' \ C.

Note however that some node in V' \ C' must be a collider in p because, in G\/—\(Eﬁ’ the

—
nodes in V' \ C only have undirected edges whereas the nodes in C'\ E only have outgoing
directed edges. Therefore, p is not connecting given (). |

Proof of Lemma 12 We prove the result for Lemma 1. The proofs for Lemmas 3, 5
and 7 are similar. Moreover, we only prove the first statement in Lemma 1, because the
proof of the second statement provided in Lemma 1 only involves standard probability
manipulations. Likewise, we do not need to prove the third statement of Lemmas 3 and 7
because, as shown in the proof of those lemmas, it follows from Lemma 2, which follows
from rule 3 as shown in Lemma 11.

Let V be partitioned into components Si,...,S; for the aADMG G. Moreover, assume
without loss of generality that if the edge A — B is in G, then A € S; and B € S; with
i <j. Let Scj = U;; Si and S<;j = {J;<; Si- Note that

f(v) = Hf(3j|5<j)-

Moreover,
—_—
f(sjls<j) = f(sjlv\ s<j,5<5)

by rule 3 since S; L g V' \ S<;|S<;. To see that this separation holds, assume that there
VAS<; h

is a route p in Gﬁ between a node in S; and a node in V' \ S<;. Note that the nodes
<i
in V'\ S<; only have outgoing directed edges in GW' Therefore, p implies that some
<i

node in V'\ S<; is an ancestor in G of some node in S<;, which contradicts our assumption
above.
Finally, note that
Fsjlv\s<js<j) = f(sjlv\ s5) = q(s;)
where the first equality follows from rule 2 because S; L G S<jl0. To see that this
<jS<i

separation holds, assume that there is a route p in G between a node in S; and a

node in S.;j. Then, there exist two nodes A € S; and B € S.; that are adjacent in p or
there exist two nodes A" € S; and B’ € V'\ S<; that are adjacent in p. However, either case
implies a contradiction:

e A — B contradicts that S; is a component.
e A — B contradicts our assumption above.

e A <+ B contradicts that B has no outgoing directed edge in GW g .
=9°<g

e A’ — B’ contradicts that S; is a component

e A" — B’ and A’ + B’ contradict that B’ only has undirected edges in G

—_— .
VAS<; S«
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