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Proof of Lemma 1 To prove the first statement, note that

f(v) =

∫
[
∏
i

f(vi|paG(Vi), ui)]f(u) du =

∫
[
∏
i

f(vi|paG(Vi), ui)]
∏
j

f(uSj ) du

=
∏
j

∫ ∏
Vi∈Sj

f(vi|paG(Vi), ui)f(uSj ) duSj =
∏
j

q(sj)

where the second equality follows from Equation 6.

We prove the second statement by induction over the number of variables in V . Clearly,
the result holds when V contains a single variable. Assume as induction hypothesis that
the result holds for up to n variables. When there are n+ 1 variables, these can be divided
into components S1, . . . , Sk, S

′ with factors q(s1), . . . , q(sk), q(s′) such that Vn+1 ∈ S′. As
shown above,

f(v) = q(s′)
∏
j

q(sj)

which implies that

f(v(n)) =

∫
f(v) dvn+1 = [

∫
q(s′) dvn+1]

∏
j

q(sj).

Note that f(v(n)) factorizes according to GV (n)
and Sj is a component of GV (n)

. Therefore,

q(sj) =
∏

Vi∈Sj

f(vi|v(i−1))

by the induction hypothesis and the fact that V1 < . . . < Vn is also a topological order of
the nodes in GV (n)

. Then, q(s′) is also identifiable and is given by

q(s′) =
f(v)∏
j q(sj)

=

∏
i f(vi|v(i−1))∏

j q(sj)
=

∏
Vi∈S′

f(vi|v(i−1)).
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Proof of Lemma 2∫
q(c) d(c \ e) =

∫ ∫
[
∏
Vi∈E

f(vi|paG(Vi), ui)
∏

Vi∈C\E

f(vi|paG(Vi), ui)]f(u) du d(c \ e)

=

∫
[
∏
Vi∈E

f(vi|paG(Vi), ui)

∫ ∏
Vi∈C\E

f(vi|paG(Vi), ui) d(c \ e)]f(u) du

=

∫
[
∏
Vi∈E

f(vi|paG(Vi), ui)]f(u) du = q(e)

where the second equality follows from the fact that E is an ancestral set in GC and, thus,
no node in E has a parent in C \E. The third equality is due to the fact that the integral
over c \ e equals 1. This may be easier to appreciate by performing the integral following a
topological order of the nodes in C \ E with respect to G.

Proof of Lemma 3 As mentioned above, q(c) factorizes according to GC . Therefore, the
first statement can be proven in much the same way as the first statement in Lemma 1.
The third statement follows from Lemma 2 since C(i) is an ancestral set in GC .

We prove the second statement by induction over the number of variables in C. Clearly,
the result holds when C contains a single variable. Assume as induction hypothesis that
the result holds for up to n variables. When there are n+ 1 variables, these can be divided
into components C1, . . . , Ck, C

′ with factors q(c1), . . . , q(ck), q(c′) such that Vn+1 ∈ C ′. As
shown above,

q(c) = q(c′)
∏
j

q(cj)

which implies that

q(c(n)) =

∫
q(c) dvn+1 = [

∫
q(c′) dvn+1]

∏
j

q(cj)

where the first equality follows from Lemma 2 because C(n) is an ancestral set in GC . Note
that q(c(n)) factorizes according to GC(n)

and Cj is a component of GC(n)
. Therefore,

q(cj) =
∏

Vi∈Cj

q(c(i))

q(c(i−1))

by the induction hypothesis and the fact that V1 < . . . < Vn is also a topological order of
the nodes in GC(n)

. Then, q(c′) is given by

q(c′) =
q(c)∏
j q(cj)

=
q(c(n+1))∏

j q(cj)
=

∏n+1
i=1

q(c(i))

q(c(i−1))∏
j q(cj)

=
∏

Vi∈C′

q(c(i))

q(c(i−1))
.

2



Causal Effect Identification in aADMGs - Supplement

Proof of Lemma 4 It suffices to note that

q(c|a) = f(c| ̂v \ {a, c}, a) =
f(a, c| ̂v \ {a, c})
f(a| ̂v \ {a, c})

=
q(a, c)∫
q(a, c) dc

.

Moreover, if A is an ancestral set in GA∪C , then
∫
q(a, c) dc = q(a) by Lemma 2.

Proof of Theorem 9 For the algorithm to fail, some component Cj cannot be ancestral
in line 8. Then, one of the following two cases must occur. Case 1: Assume that Cj is not
ancestral in line 8 because it contains a child Yn of X. Clearly, X is not in Cj by lines 4-5.
However, both X and Yn must be in the component Si in line 8 for the algorithm to fail,
which implies that there is an undirected path between X and Yn. Case 2: Assume that Cj

is not ancestral in line 8 because it contains a child Yj of Yi and Yi is not in Cj . However,
both Yi and Yj must be in the component Si in line 8 for the algorithm to fail, then both
must be in Cj by lines 4-5. This is a contradiction. Therefore, only the first case can occur,
which implies that the algorithm fails only if G has a subgraph of the form

X Yn

Y1 . . . Yn−1

Such a subgraph implies that f(v \ x|x̂) is not identifiable from G (Peña and Bendtsen,
2017, Theorem 12).

Proof of Lemma 10 Removing edges from an aADMG can only increase the separations
represented by the aADMG. Then, if the antecedent of rule 1 is satisfied, so are the an-
tecedents of rules 2 and 3. Then, we can replace the application of rule 1 with the application
of rule 2 followed by the application of rule 3, i.e.

f(y|x̂, z, w) = f(y|x̂, ẑ, w) = f(y|x̂, w).

Proof of Lemma 11 We prove the result for Lemma 2. The proof for Lemma 6 is similar.
First, note that ∫

q(c) d(c \ e) =

∫
f(c|v̂ \ c) d(c \ e) = f(e|v̂ \ c).

Moreover,

q(e) = f(e|v̂ \ e) = f(e|v̂ \ c)

where the second equality follows from rule 3 since E ⊥G−−−→
V \C
−−−→

−−→
C\E

C \ E|∅. To see that this

separation holds, assume that there is a route ρ in G−−→
V \C
−−→

−−→
C\E

between a node in E and a

node in C \E. Note that ρ cannot only contain nodes in C, because the nodes in C \E only
have outgoing directed edges in G−−→

V \C
−−→

−−→
C\E

, which implies that E is not ancestral set in GC ,
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which contradicts the assumptions in Lemma 2. So, ρ must contain some node in V \ C.
Note however that some node in V \ C must be a collider in ρ because, in G−−→

V \C
−−→

−−→
C\E

, the

nodes in V \ C only have undirected edges whereas the nodes in C \ E only have outgoing
directed edges. Therefore, ρ is not connecting given ∅.

Proof of Lemma 12 We prove the result for Lemma 1. The proofs for Lemmas 3, 5
and 7 are similar. Moreover, we only prove the first statement in Lemma 1, because the
proof of the second statement provided in Lemma 1 only involves standard probability
manipulations. Likewise, we do not need to prove the third statement of Lemmas 3 and 7
because, as shown in the proof of those lemmas, it follows from Lemma 2, which follows
from rule 3 as shown in Lemma 11.

Let V be partitioned into components S1, . . . , Sk for the aADMG G. Moreover, assume
without loss of generality that if the edge A → B is in G, then A ∈ Si and B ∈ Sj with
i ≤ j. Let S<j =

⋃
i<j Si and S≤j =

⋃
i≤j Si. Note that

f(v) =
∏
j

f(sj |s<j).

Moreover,

f(sj |s<j) = f(sj |v̂ \ s≤j , s<j)

by rule 3 since Sj⊥G−−−−−→
V \S≤j

V \S≤j |S<j . To see that this separation holds, assume that there

is a route ρ in G−−−−→
V \S≤j

between a node in Sj and a node in V \ S≤j . Note that the nodes

in V \ S≤j only have outgoing directed edges in G−−−−→
V \S≤j

. Therefore, ρ implies that some

node in V \S≤j is an ancestor in G of some node in S≤j , which contradicts our assumption
above.

Finally, note that

f(sj |v̂ \ s≤j , s<j) = f(sj |v̂ \ sj) = q(sj)

where the first equality follows from rule 2 because Sj ⊥G−−−−−→
V \S≤j
−−−−−→

S<j
−−→

S<j |∅. To see that this

separation holds, assume that there is a route ρ in G−−−−→
V \S≤j
−−−−→

S<j
−−→

between a node in Sj and a

node in S<j . Then, there exist two nodes A ∈ Sj and B ∈ S<j that are adjacent in ρ or
there exist two nodes A′ ∈ Sj and B′ ∈ V \S≤j that are adjacent in ρ. However, either case
implies a contradiction:

• A−B contradicts that Sj is a component.

• A→ B contradicts our assumption above.

• A← B contradicts that B has no outgoing directed edge in G−−−−→
V \S≤j
−−−−→

S<j
−−→

.

• A′ −B′ contradicts that Sj is a component

• A′ → B′ and A′ ← B′ contradict that B′ only has undirected edges in G−−−−→
V \S≤j
−−−−→

S<j
−−→

.

4



Causal Effect Identification in aADMGs - Supplement

5


