

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs - Supplementary Material

Jose M. Peña

JOSE.M.PENA@LIU.SE

*Linköping University
Linköping (Sweden)*

Proof of Lemma 1 To prove the first statement, note that

$$\begin{aligned} f(v) &= \int \left[\prod_i f(v_i | pa_G(V_i), u_i) \right] f(u) du = \int \left[\prod_i f(v_i | pa_G(V_i), u_i) \right] \prod_j f(u_{S_j}) du \\ &= \prod_j \int \prod_{V_i \in S_j} f(v_i | pa_G(V_i), u_i) f(u_{S_j}) du_{S_j} = \prod_j q(s_j) \end{aligned}$$

where the second equality follows from Equation 6.

We prove the second statement by induction over the number of variables in V . Clearly, the result holds when V contains a single variable. Assume as induction hypothesis that the result holds for up to n variables. When there are $n+1$ variables, these can be divided into components S_1, \dots, S_k, S' with factors $q(s_1), \dots, q(s_k), q(s')$ such that $V_{n+1} \in S'$. As shown above,

$$f(v) = q(s') \prod_j q(s_j)$$

which implies that

$$f(v^{(n)}) = \int f(v) dv_{n+1} = \left[\int q(s') dv_{n+1} \right] \prod_j q(s_j).$$

Note that $f(v^{(n)})$ factorizes according to $G^{V^{(n)}}$ and S_j is a component of $G^{V^{(n)}}$. Therefore,

$$q(s_j) = \prod_{V_i \in S_j} f(v_i | v^{(i-1)})$$

by the induction hypothesis and the fact that $V_1 < \dots < V_n$ is also a topological order of the nodes in $G^{V^{(n)}}$. Then, $q(s')$ is also identifiable and is given by

$$q(s') = \frac{f(v)}{\prod_j q(s_j)} = \frac{\prod_i f(v_i | v^{(i-1)})}{\prod_j q(s_j)} = \prod_{V_i \in S'} f(v_i | v^{(i-1)}).$$

■

Proof of Lemma 2

$$\begin{aligned}
\int q(c) d(c \setminus e) &= \int \int \left[\prod_{V_i \in E} f(v_i | pa_G(V_i), u_i) \prod_{V_i \in C \setminus E} f(v_i | pa_G(V_i), u_i) \right] f(u) du d(c \setminus e) \\
&= \int \left[\prod_{V_i \in E} f(v_i | pa_G(V_i), u_i) \right] \int \prod_{V_i \in C \setminus E} f(v_i | pa_G(V_i), u_i) d(c \setminus e) f(u) du \\
&= \int \left[\prod_{V_i \in E} f(v_i | pa_G(V_i), u_i) \right] f(u) du = q(e)
\end{aligned}$$

where the second equality follows from the fact that E is an ancestral set in G^C and, thus, no node in E has a parent in $C \setminus E$. The third equality is due to the fact that the integral over $c \setminus e$ equals 1. This may be easier to appreciate by performing the integral following a topological order of the nodes in $C \setminus E$ with respect to G . \blacksquare

Proof of Lemma 3 As mentioned above, $q(c)$ factorizes according to G^C . Therefore, the first statement can be proven in much the same way as the first statement in Lemma 1. The third statement follows from Lemma 2 since $C^{(i)}$ is an ancestral set in G^C .

We prove the second statement by induction over the number of variables in C . Clearly, the result holds when C contains a single variable. Assume as induction hypothesis that the result holds for up to n variables. When there are $n+1$ variables, these can be divided into components C_1, \dots, C_k, C' with factors $q(c_1), \dots, q(c_k), q(c')$ such that $V_{n+1} \in C'$. As shown above,

$$q(c) = q(c') \prod_j q(c_j)$$

which implies that

$$q(c^{(n)}) = \int q(c) dv_{n+1} = \left[\int q(c') dv_{n+1} \right] \prod_j q(c_j)$$

where the first equality follows from Lemma 2 because $C^{(n)}$ is an ancestral set in G^C . Note that $q(c^{(n)})$ factorizes according to $G^{C^{(n)}}$ and C_j is a component of $G^{C^{(n)}}$. Therefore,

$$q(c_j) = \prod_{V_i \in C_j} \frac{q(c^{(i)})}{q(c^{(i-1)})}$$

by the induction hypothesis and the fact that $V_1 < \dots < V_n$ is also a topological order of the nodes in $G^{C^{(n)}}$. Then, $q(c')$ is given by

$$q(c') = \frac{q(c)}{\prod_j q(c_j)} = \frac{q(c^{(n+1)})}{\prod_j q(c_j)} = \frac{\prod_{i=1}^{n+1} \frac{q(c^{(i)})}{q(c^{(i-1)})}}{\prod_j q(c_j)} = \prod_{V_i \in C'} \frac{q(c^{(i)})}{q(c^{(i-1)})}.$$

\blacksquare

Proof of Lemma 4 It suffices to note that

$$q(c|a) = f(c|v \setminus \widehat{\{a, c\}}, a) = \frac{f(a, c|v \setminus \widehat{\{a, c\}})}{f(a|v \setminus \widehat{\{a, c\}})} = \frac{q(a, c)}{\int q(a, c) dc}.$$

Moreover, if A is an ancestral set in $G^{A \cup C}$, then $\int q(a, c) dc = q(a)$ by Lemma 2. \blacksquare

Proof of Theorem 9 For the algorithm to fail, some component C_j cannot be ancestral in line 8. Then, one of the following two cases must occur. Case 1: Assume that C_j is not ancestral in line 8 because it contains a child Y_n of X . Clearly, X is not in C_j by lines 4-5. However, both X and Y_n must be in the component S_i in line 8 for the algorithm to fail, which implies that there is an undirected path between X and Y_n . Case 2: Assume that C_j is not ancestral in line 8 because it contains a child Y_j of Y_i and Y_i is not in C_j . However, both Y_i and Y_j must be in the component S_i in line 8 for the algorithm to fail, then both must be in C_j by lines 4-5. This is a contradiction. Therefore, only the first case can occur, which implies that the algorithm fails only if G has a subgraph of the form

$$\begin{array}{ccccc} & & Y_1 & - \cdots - & Y_{n-1} \\ & \swarrow & & & \searrow \\ X & \xrightarrow{\hspace{2cm}} & & & Y_n \end{array}$$

Such a subgraph implies that $f(v \setminus x|\widehat{x})$ is not identifiable from G (Peña and Bendtsen, 2017, Theorem 12). \blacksquare

Proof of Lemma 10 Removing edges from an aADMG can only increase the separations represented by the aADMG. Then, if the antecedent of rule 1 is satisfied, so are the antecedents of rules 2 and 3. Then, we can replace the application of rule 1 with the application of rule 2 followed by the application of rule 3, i.e.

$$f(y|\widehat{x}, z, w) = f(y|\widehat{x}, \widehat{z}, w) = f(y|\widehat{x}, w).$$

\blacksquare

Proof of Lemma 11 We prove the result for Lemma 2. The proof for Lemma 6 is similar. First, note that

$$\int q(c) d(c \setminus e) = \int f(c|v \setminus \widehat{c}) d(c \setminus e) = f(e|v \setminus \widehat{c}).$$

Moreover,

$$q(e) = f(e|v \setminus \widehat{e}) = f(e|v \setminus \widehat{c})$$

where the second equality follows from rule 3 since $E \perp G \xrightarrow[V \setminus C \setminus E]{\widehat{\quad}} C \setminus E | \emptyset$. To see that this separation holds, assume that there is a route ρ in $G \xrightarrow[V \setminus C \setminus E]{\widehat{\quad}} C \setminus E$ between a node in E and a node in $C \setminus E$. Note that ρ cannot only contain nodes in $C \setminus E$, because the nodes in $C \setminus E$ only have outgoing directed edges in $G \xrightarrow[V \setminus C \setminus E]{\widehat{\quad}}$, which implies that E is not ancestral set in G^C ,

which contradicts the assumptions in Lemma 2. So, ρ must contain some node in $V \setminus C$. Note however that some node in $V \setminus C$ must be a collider in ρ because, in $G_{\overrightarrow{V \setminus C} \overrightarrow{C \setminus E}}$, the nodes in $V \setminus C$ only have undirected edges whereas the nodes in $C \setminus E$ only have outgoing directed edges. Therefore, ρ is not connecting given \emptyset . \blacksquare

Proof of Lemma 12 We prove the result for Lemma 1. The proofs for Lemmas 3, 5 and 7 are similar. Moreover, we only prove the first statement in Lemma 1, because the proof of the second statement provided in Lemma 1 only involves standard probability manipulations. Likewise, we do not need to prove the third statement of Lemmas 3 and 7 because, as shown in the proof of those lemmas, it follows from Lemma 2, which follows from rule 3 as shown in Lemma 11.

Let V be partitioned into components S_1, \dots, S_k for the aADMG G . Moreover, assume without loss of generality that if the edge $A \rightarrow B$ is in G , then $A \in S_i$ and $B \in S_j$ with $i \leq j$. Let $S_{<j} = \bigcup_{i < j} S_i$ and $S_{\leq j} = \bigcup_{i \leq j} S_i$. Note that

$$f(v) = \prod_j f(s_j | s_{<j}).$$

Moreover,

$$f(s_j | s_{<j}) = f(s_j | \widehat{v \setminus s_{\leq j}}, s_{<j})$$

by rule 3 since $S_j \perp_{G_{\overrightarrow{V \setminus S_{\leq j}}} \overrightarrow{V \setminus S_{\leq j}}} V \setminus S_{\leq j} | S_{<j}$. To see that this separation holds, assume that there is a route ρ in $G_{\overrightarrow{V \setminus S_{\leq j}}}$ between a node in S_j and a node in $V \setminus S_{\leq j}$. Note that the nodes in $V \setminus S_{\leq j}$ only have outgoing directed edges in $G_{\overrightarrow{V \setminus S_{\leq j}}}$. Therefore, ρ implies that some node in $V \setminus S_{\leq j}$ is an ancestor in G of some node in $S_{\leq j}$, which contradicts our assumption above.

Finally, note that

$$f(s_j | \widehat{v \setminus s_{\leq j}}, s_{<j}) = f(s_j | \widehat{v \setminus s_j}) = q(s_j)$$

where the first equality follows from rule 2 because $S_j \perp_{G_{\overrightarrow{V \setminus S_{\leq j}} \overrightarrow{S_{<j}}} \overrightarrow{S_{<j}}} \emptyset$. To see that this separation holds, assume that there is a route ρ in $G_{\overrightarrow{V \setminus S_{\leq j}} \overrightarrow{S_{<j}}}$ between a node in S_j and a node in $S_{<j}$. Then, there exist two nodes $A \in S_j$ and $B \in S_{<j}$ that are adjacent in ρ or there exist two nodes $A' \in S_j$ and $B' \in V \setminus S_{\leq j}$ that are adjacent in ρ . However, either case implies a contradiction:

- $A - B$ contradicts that S_j is a component.
- $A \rightarrow B$ contradicts our assumption above.
- $A \leftarrow B$ contradicts that B has no outgoing directed edge in $G_{\overrightarrow{V \setminus S_{\leq j}} \overrightarrow{S_{<j}}}$.
- $A' - B'$ contradicts that S_j is a component
- $A' \rightarrow B'$ and $A' \leftarrow B'$ contradict that B' only has undirected edges in $G_{\overrightarrow{V \setminus S_{\leq j}} \overrightarrow{S_{<j}}}$.

■