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Abstract

Alternative acyclic directed mixed graphs (ADMGs) are graphs that may allow causal
effect identification in scenarios where Pearl’s original ADMGs may not, and vice versa.
Therefore, they complement each other. In this paper, we introduce a sound algorithm for
identifying arbitrary causal effects from alternative ADMGs. Moreover, we show that the
algorithm is complete for identifying the causal effect of a single random variable on the
rest. We also show that the algorithm follows from a calculus similar to Pearl’s do-calculus.
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1. Introduction

Undirected graphs (UGs), bidirected graphs (BGs), and directed and acyclic graphs (DAGs)
have extensively been studied as representations of independence models. DAGs have also
been studied as representation of causal models, because they can model asymmetric rela-
tionships between random variables. DAGs and UGs (respectively BGs) have been extended
into chain graphs (CGs), which are graphs with directed and undirected (respectively bidi-
rected) edges but without semidirected cycles. Therefore, CGs can model both symmetric
and asymmetric relationships between random variables. CGs with directed and undirected
edges may represent a different independence model depending on whether the Lauritzen-
Wermuth-Frydenberg (LWF) or the Andersson-Madigan-Perlman (AMP) interpretation is
considered (Lauritzen, 1996; Andersson et al., 2001). CGs with directed and bidirected
edges have a unique interpretation, the so-called multivariate regression (MVR) interpreta-
tion (Cox and Wermuth, 1996). MVR CGs have been extended by (i) relaxing the semidi-
rected acyclity constraint so that only directed cycles are forbidden, and (ii) allowing up
to two edges between any pair of nodes. The resulting models are called acyclic directed
mixed graphs (ADMGs) (Richardson, 2003). AMP CGs have also been extended similarly
(Peña, 2016). The resulting models are called alternative acyclic directed mixed graphs
(aADMGs). It is worth mentioning that neither the original ADMGs nor any other family
of mixed graphical models that we know of (e.g. summary graphs (Cox and Wermuth,
1996), ancestral graphs (Richardson and Spirtes, 2002), MC graphs (Koster, 2002) or loop-
less mixed graphs (Sadeghi and Lauritzen, 2014)) subsume AMP CGs and hence aADMGs.
To see it, we refer the reader to the works by Richardson and Spirtes (2002, p. 1025) and
Sadeghi and Lauritzen (2014, Section 4.1).

In addition to represent independence models, some of the graphical models mentioned
above have been used for causal effect identification, i.e. to determine if the causal effect of
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Figure 1: Example where f(v2|v̂1) is identifiable from the aADMG but not from the ADMG.

an intervention is identifiable from observational quantities. For instance, Pearl’s approach
to causal effect identification makes use of ADMGs to represent causal models over the
observed variables (Pearl, 2009). The directed edges represent causal relationships, whereas
the bidirected edges represent confounding, i.e. a latent common cause. A key feature of
Pearl’s approach is that no assumption is made about the functional form of the causal
relationships. That is, each variable A is an unconstrained function of its observed causes
Pa(A) and its unobserved causes UA, i.e. A = g(Pa(A), UA). Without loss of generality,
we can consider UA as being unidimensional (Mooij et al., 2016, Proposition 4). We do
so. This UA is sometimes called noise or error. In this paper, we study causal effect
identification under the assumption that A = g(Pa(A)) + UA, also called additive noise
model. This is a rather common assumption in causal discovery (Bühlmann et al., 2014;
Mooij et al., 2016; Peters et al., 2014). Note also that linear structural equation models,
which have extensively been studied for causal effect identification (Pearl, 2009, Chapter 5),
are additive noise models. As argued by Peña (2016), aADMGs are suitable for representing
causal models with additive noise. The main difference between ADMGs and aADMGs is
that an edge A − B in an aADMG represents dependence between UA and UB given the
unobserved causes of the rest of the observed nodes, as opposed to a bidirected edge in an
ADMG which represents marginal dependence due to confounding. The reason for studying
aADMGs for causal effect identification is that they may allow identifying causal effects that
ADMGs may not. We illustrate this with the example in Figure 1, which is borrowed from
Peña (2016). Peña and Bendtsen (2017) assign fictitious meanings to the variables in the
example and provide additional examples. The ADMG and aADMG represent the causal
model over the observed variables represented by the DAG. The ADMG is derived from the
DAG by keeping the directed edges between observed variables, and adding a bidirected
edge between two observed variables if and only if they have a confounder (Tian and Pearl,
2002b, Section 5). The aADMG is derived from the DAG by keeping the directed edges
between observed variables, and adding an undirected edge between two observed variables
if and only if their unobserved causes are not separated in the DAG given the unobserved
causes of the rest of the observed variables. Clearly, the causal effect on V2 of intervening
on V1, denoted as the density function f(v2|v̂1), is not identifiable from the ADMG (Tian
and Pearl, 2002a, Theorem 4). However, f(v2|v̂1) is identifiable from the aADMG and is
given by

f(v2|v̂1) =

∫
f(v2|v1, v3)f(v3) dv3. (1)
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To see it, recall that we assumed that V3 determines U3, which blocks the path V1 ← U1 →
U3 → U2 → V2 in the DAG. This can also be seen directly in the aADMG, as V3 blocks the
path V1− V3− V2. Therefore, we can identify the desired causal effect by just adjusting for
V3, since V3 blocks all non-causal paths from V1 to V2.

1 It is worth mentioning that Peña
(2016) also provides an example where the ADMG allows for causal effect identification
whereas the aADMG does not: Simply reverse the edge U3 → U2 in Figure 1. Therefore,
ADMGs and aADMGs are more complementary than competing causal models.

As mentioned, aADGMs were proposed by Peña (2016), who mainly studied them as
representation of statistical independence models. In particular, their global, local and
pairwise Markov properties were studied. Later, Peña and Bendtsen (2017) considered
aADGMs for causal effect identification. Specifically, they presented a calculus similar to
Pearl’s do-calculus (Pearl, 2009; Shpitser and Pearl, 2006), and a decomposition of the
density function represented by an aADMG that is similar to the Q-decomposition by Tian
and Pearl (2002a,b). In this paper, we extend the decomposition to identify further causal
effects. The result is a sound algorithm for causal effect identification in aADMGs. Although
the algorithm is not complete for arbitrary causal effects, we show that it is complete for the
identification of the causal effect of a single variable on the rest of the variables. We also show
that the algorithm follows from the calculus of interventions in Peña and Bendtsen (2017).
The rest of the paper is organized as follows. Section 2 introduces some preliminaries,
including a detailed account of aADMGs for causal modeling. Section 3 presents our novel
algorithm for causal effect identification, and proves its soundness for arbitrary causal effects
and completeness for restricted causal effects. It also proves that the algorithm follows from
a calculus of interventions. Section 4 closes the paper with some lines of future research.

2. Preliminaries

Unless otherwise stated, all the graphs and density functions in this paper are defined over
a finite set of continuous random variables V . The elements of V are not distinguished from
singletons. An aADMG G is a simple graph with possibly directed and undirected edges
but without directed cycles. There may be up to two edges between any pair of nodes,
but in that case the edges must be different and one of them must be undirected to avoid
directed cycles. Edges between a node and itself are not allowed.

Given an aADMG G, the parents of a set X ⊆ V in G are PaG(X) = {A|A→ B is in G
with B ∈ X}. The children of X in G are ChG(X) = {A|A← B is in G with B ∈ X}. The
neighbours of X in G are NeG(X) = {A|A−B is in G with B ∈ X}. The ancestors of X in
G are AnG(X) = {A|A→ . . .→ B is in G with B ∈ X or A ∈ X}. Moreover, X is called an
ancestral set if X = AnG(X). The descendants of X in G are DeG(X) = {A|A← . . .← B
is in G with B ∈ X or A ∈ X}. A route between a node V1 and a node Vn on G is a
sequence of (not necessarily distinct) nodes V1, . . . , Vn such that Vi and Vi+1 are adjacent in
G for all 1 ≤ i < n. We do not distinguish between the sequences V1, . . . , Vn and Vn, . . . , V1,

1. True that there are ADMGs that represent the correct independence model over the observed variables
and allow for identification via Equation 1, specifically the ADMGs G1 = {V1 → V2, V1 ← V3, V3 → V2},
G2 = {V1 → V2, V1 ↔ V3, V3 → V2} and G3 = {V1 → V2, V1 ← V3, V3 ↔ V2}. However, these ADMGs
do not represent the correct causal model, i.e. they contain false causal relationships such as V1 ← V3

or V3 → V2. This leads to wrong expressions for other causal effects such as f(v1|v̂3) = f(v1|v3) in G1

and G3, and f(v2|v̂3, v1) = f(v2|v3, v1) in G2.
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Input: An aADMG G.
Output: The magnified aADMG G′.

1 Set G′ = G
2 For each node A in G
3 Add the node UA and the edge UA → A to G′

4 For each edge A−B in G
5 Replace A−B with the edge UA − UB in G′

6 Return G′

Table 1: Algorithm for magnifying an aADMG.
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Figure 2: Example of the magnification of an aADMG.

i.e. they represent the same route. A node C on a route in G is said to be a collider on the
route if A→ C ← B or A→ C −B is a subroute. Note that maybe A = B. Moreover, the
route is said to be connecting given Z ⊆ V when every collider on the route is in Z, and
every non-collider on the route is outside Z. Let X, Y and Z denote three disjoint subsets
of V . When there is no route in G connecting a node in X and a node in Y given Z, we say
that X is separated from Y given Z in G and denote it as X⊥GY |Z. We say that a density
function f(v) satisfies the global Markov property with respect to G if every separation in
G implies an independence in f(v).

Given an aADMG G and a set W ⊆ V , let GW denote the subgraph of G induced by
W . Similarly, let GW denote the aADMG over W constructed as follows: A→ B is in GW

if and only if A → B is in G, whereas A − B is in GW if and only if A − B is in G or
A− V1 − . . .− Vn −B is in G with V1, . . . , Vn /∈W .

2.1 Causal Interpretation

Let us assume that V is normally distributed. In this section, we show that an aADMG G
can be interpreted as a system of structural equations with correlated errors. Specifically,
the system includes an equation for each A ∈ V , which is of the form

A = βAPaG(A) + UA (2)

where UA denotes the noise or error term. The error terms are represented implicitly in G.
They can be represented explicitly by magnifying G into the aADMG G′ as shown in Table
1. The magnification basically consists in adding the error nodes UA to G and connect
them appropriately. Figure 2 shows an example. Note that Equation 2 implies that A is
determined by PaG(A) ∪ UA and UA is determined by A ∪ PaG(A). Let U denote all the
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Input: An aADMG G and a set X ⊆ V .
Output: aADMG after intervening on X in G.

1 Delete from G all the edges A→ B with B ∈ X
2 For each path A− V1 − . . .− Vn −B in G with A,B /∈ X and V1, . . . , Vn ∈ X
3 Add the edge A−B to G
4 Delete from G all the edges A−B with B ∈ X
5 Return G

Table 2: Algorithm for intervening on an aADMG.

error nodes in G′. Formally, we say that A ∈ V ∪ U is determined by Z ⊆ V ∪ U when
A ∈ Z or A is a function of Z. We use Dt(Z) to denote all the nodes that are determined
by Z. From the point of view of the separations, that a node outside the conditioning set of
a separation is determined by the conditioning set has the same effect as if the node were
actually in the conditioning set. Bearing this in mind, it can be proven that, as desired, G
and G′ represent the same separations over V (Peña, 2016, Theorem 9).

Finally, let U ∼ N (0,Λ) such that (Λ−1)UA,UB
= 0 if UA − UB is not in G′. Then, G

can be interpreted as a system of structural equations with correlated errors as follows. For
any A ∈ V

A =
∑

B∈PaG(A)

βABB + UA (3)

and for any other B ∈ V
covariance(UA, UB) = ΛUA,UB

. (4)

It can be proven that this causal interpretation of aADMGs works as intended: Every
density function f(v) specified by Equations 3 and 4 is Gaussian, and it satisfies the global
Markov property with respect to G (Peña, 2016, Theorems 10 and 11).

A less formal but more intuitive interpretation of aADMGs is as follows. We can inter-
pret the parents of each node in an aADMG as its observed causes. Its unobserved causes
are summarized by an error node that is represented implicitly in the aADMG. We can
interpret the undirected edges in the aADMG as the correlation relationships between the
different error nodes. The causal structure is constrained to be a DAG, but the correlation
structure can be any UG. This causal interpretation of aADMGs parallels that of the orig-
inal ADMGs. There are however two main differences. First, the noise in the ADMGs is
not necessarily additive normal. Second, the correlation structure of the error nodes in the
ADMGs is represented by a covariance or bidirected graph. Therefore, whereas a missing
edge between two error nodes in ADMGs represents marginal independence, in aADMGs
it represents conditional independence given the rest of the error nodes. This means that
ADMGs and aADMGs represent complementary causal models. Consequently, there may
be causal effects that can be identified with one but not with the other. An example was
provided in Section 1.

Given the above causal interpretation of an aADMG G, intervening on a set X ⊆ V so as
to change the natural causal mechanism of X amounts to modifying the right-hand side of
the equations for the random variables in X. For simplicity, we only consider interventions
that set variables to fixed values. Graphically, an intervention amounts to modifying G as
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shown in Table 2. Line 1 is shared with an intervention on an original ADMG. Lines 2-4 are
best understood in terms of the magnified aADMG G′: They correspond to marginalizing
the error nodes associated with the nodes in X out of G′U , the UG that represents the cor-
relation structure of the error nodes. In other words, lines 2-4 replace G′U with (G′U )U\UX ,
the marginal graph of G′U over U \ UX . This makes sense since UX is no longer associated
with X due to the intervention and, thus, we may want to marginalize it out because it is
unobserved. This is exactly what lines 2-4 imply. Note that the aADMG after the inter-
vention and the magnified aADMG after the intervention represent the same separations
over V (Peña, 2016, Theorem 9). It can be proven that this definition of intervention works
as intended: If f(v) is specified by Equations 3 and 4, then f(v \ x|x̂) satisfies the global
Markov property with respect to the aADMG resulting from intervening on X in G (Peña
and Bendtsen, 2017, Corollary 5).

It is worth mentioning that Equations 3 and 4 specify each node as a linear function
of its parents with additive normal noise. The equations can be generalized to nonlinear
or nonparametric functions as long as the noise remains additive normal. That is, A =
g(PaG(A)) + UA for all A ∈ V , with U ∼ N (0,Λ) such that (Λ−1)UA,UB

= 0 if UA − UB is
not in G′. That the noise is additive normal ensures that UA is determined by A∪PaG(A),
which is needed for Theorems 9 and 11 by Peña (2016) and Corollary 5 by Peña and
Bendtsen (2017) to remain valid.

Finally, an assumption-free exact algorithm for learning aADMGs from observations
and interventions via answer set programming exists (Peña, 2016).

3. Causal Effect Identification

In this section, we present a novel sound algorithm for identifying arbitrary causal effects
from aADMGs. We show that the algorithm is also complete for the identification of
the causal effect of a single variable on the rest of the variables. The algorithm is based
on a decomposition of f(v). We also show that the algorithm follows from a calculus of
interventions.

3.1 Identification by Decomposition

Note that the system of structural equations corresponding to the causal model represented
by an aADMG G induces a density function over V = {V1, . . . , Vn}, namely

f(v) =

∫
[
∏
i

f(vi|paG(Vi), ui)]f(u) du. (5)

Moreover, we say that two nodes belong to the same component if and only if they are
connected by an undirected path in G. Assume that V is partitioned into components
S1, . . . , Sk. Then, f(u) factorizes as

f(u) =
∏
j

f(uSj ) (6)

because, as mentioned above, f(u) satisfies the global Markov property with respect to G′U .
When a density function can be written as in Equations 5 and 6, we say that it factorizes
according to G.
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The density function induced by the post-interventional system of structural equations
can be obtained from Equation 5 by simply removing the terms for the variables intervened
upon, that is

f(v \ x|x̂) =

∫
[

∏
Vi∈V \X

f(vi|paG(Vi), ui)]f(u) du

=

∫
[

∏
Vi∈V \X

f(vi|paG(Vi), ui)]f(uV \X) duV \X . (7)

Moreover, we define the factor q(c) with C ⊆ V as follows:

q(c) =

∫
[
∏
Vi∈C

f(vi|paG(Vi), ui)]f(u) du =

∫
[
∏
Vi∈C

f(vi|paG(Vi), ui)]f(uC) duC .

Note from the two previous equations that q(c) = f(c|v̂ \ c). Note also that q(c) factorizes
according to GC . The next lemma shows that q(c) is identifiable if C is a component in G.2

Lemma 1 Given an aADMG G, assume that V is partitioned into components S1, . . . , Sk.
Then,

f(v) =
∏
j

q(sj)

and
q(sj) =

∏
Vi∈Sj

f(vi|v(i−1))

where V1 < . . . < Vn is a topological order of V with respect to G, and V (i) = {V1, . . . , Vi}.

The following two lemmas show how certain factors are related. They will be instru-
mental later.

Lemma 2 Given an aADMG G and two sets E ⊆ C ⊆ V such that E is an ancestral set
in GC , then

q(e) =

∫
q(c) d(c \ e).

Lemma 3 Given an aADMG G, assume that a set C ⊆ V is partitioned into components
C1, . . . , Ck in GC . Then,

q(c) =
∏
j

q(cj)

and

q(cj) =
∏

Vi∈Cj

q(c(i))

q(c(i−1))

where V1 < . . . < Vn is a topological order of C with respect to GC , and C(i) = {V1, . . . , Vi}.
Moreover,

q(c(i)) =

∫
q(c) d(c \ c(i)).

2. The proofs of the lemmas and theorems in the paper can be found in the supplementary material. Some
proofs are adaptations of those by Tian and Pearl (2002a,b). We provide them for completeness.
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The previous lemmas can be generalized as follows. Let A ⊆ V be an ancestral set in
G, and let B = V \A. Given C ⊆ B, we define the factor q(c|a) as follows:

q(c|a) =

∫
[
∏
Vi∈C

f(vi|paG(Vi), ui)]f(uB|uA) duB =

∫
[
∏
Vi∈C

f(vi|paG(Vi), ui)]f(uC |uA) duC .

Note that that A is an ancestral set in G implies that it determines UA in the expression

above. We show now that q(c|a) = f(c|b̂ \ c, a). Note that Equation 7 implies that

f(a, c| ̂v \ {a, c}) = [

∫
[
∏
Vi∈C

f(vi|paG(Vi), ui)]f(uC |uA) duC ]
∏
Vi∈A

f(vi|paG(Vi), ui)f(uA)

and thus
f(a| ̂v \ {a, c}) =

∏
Vi∈A

f(vi|paG(Vi), ui)f(uA)

by marginalization in the previous equation and recalling that A is an ancestral set in G
which implies that no node in A has a parent in C. Then, combining the two previous
equations implies that

f(c| ̂v \ {a, c}, a) =
f(a, c| ̂v \ {a, c})
f(a| ̂v \ {a, c})

=

∫
[
∏
Vi∈C

f(vi|paG(Vi), ui)]f(uC |uA) duC = q(c|a).

Note that f(uB|uA) factorizes according to G′UB
and, thus, q(b|a) factorizes according to

H = GB. To see it, set C = B in the previous equation. Then, q(c|a) factorizes according
to HC .

Lemma 4 Given an aADMG G and two disjoint sets A,C ⊆ V , then

q(c|a) =
q(a, c)∫
q(a, c) dc

.

Moreover, if A is an ancestral set in GA∪C , then

q(c|a) =
q(a, c)

q(a)
.

The following three lemmas can be proven in much the same way as Lemmas 1-3.

Lemma 5 Given an aADMG G and an ancestral set A in G, assume that B = V \ A is
partitioned into components S1, . . . , Sk in H = GB. Then,

f(b|a) =
∏
j

q(sj |a)

and
q(sj |a) =

∏
Vi∈Sj

f(vi|v(i−1), a)

where V1 < . . . < Vn is a topological order of B with respect to H, and V (i) = {V1, . . . , Vi}.
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Lemma 6 Given an aADMG G, an ancestral set A in G, and two sets E ⊆ C ⊆ V \ A
such that E is an ancestral set in (GV \A)C , then

q(e|a) =

∫
q(c|a) d(c \ e).

Lemma 7 Given an aADMG G and an ancestral set A in G, let B = V \A, H = GB and
assume that a set C ⊆ B is partitioned into components C1, . . . , Ck in HC . Then,

q(c|a) =
∏
j

q(cj |a)

and

q(cj |a) =
∏

Vi∈Cj

q(c(i)|a)

q(c(i−1)|a)

where V1 < . . . < Vn is a topological order of C with respect to HC , and C(i) = {V1, . . . , Vi}.
Moreover,

q(c(i)|a) =

∫
q(c|a) d(c \ c(i)).

We are now in the position to introduce our sound algorithm for identifying an arbitrary
causal effect f(y|x̂) from an aADMG G. Let X ′ be a maximal subset of X such that, for
any V1 ∈ X ′, there is a path V1 → . . . → Vn in G such that Vn ∈ Y and V2, . . . , Vn /∈ X ′.
Note that f(y|x̂) = f(y|x̂′). Hereinafter, we assume without loss of generality that X ′ = X.
Let B = DeG(X) and A = V \ B. Note that A is an ancestral set in G. Let Y1 = Y ∩ A
and Y2 = Y ∩B. Then,

f(y|x̂) =

∫
f(y2, a|x̂) d(a \ y1) =

∫
f(y2|x̂, a)f(a|x̂) d(a \ y1)

=

∫
f(y2|x̂, a)f(a) d(a \ y1) (8)

where the third equality follows from the fact that A ∩DeG(X) = ∅. Moreover,

f(y2|x̂, a) =

∫
f(b \ x|x̂, a) d(b \ {x, y2}) =

∫
q(b \ x|a) d(b \ {x, y2}).

Let C = An(GB)B\X (Y2). Then by Lemma 6,

f(y2|x̂, a) =

∫ ∫
q(b \ x|a) d(b \ {x, c}) d(c \ y2) =

∫
q(c|a) d(c \ y2).

Assume that C is partitioned into components C1, . . . , Cl in (GB)C . Then by Lemma 7,

f(y2|x̂, a) =

∫ ∏
j

q(cj |a) d(c \ y2). (9)

Consequently, Equations 8 and 9 imply that f(y|x̂) is identifiable if q(cj |a) is identifiable for
all j. Assume that B is partitioned into components S1, . . . , Sk in GB. Note that Cj ⊆ Si
for some i, and recall that q(si|a) is identifiable by Lemma 5, which implies that q(cj |a) is
identifiable by Lemma 6 if Cj is an ancestral set in (GB)Si . Table 3 summarizes the just
described steps and the following theorem summarizes their correctness.

29



Peña

Input: An aADMG G and two disjoint sets X,Y ⊆ V .
Output: An expression to compute f(y|x̂) from f(v) or FAIL.

1 Let B = DeG(X) and A = V \B
2 Let Y1 = Y ∩A and Y2 = Y ∩B
3 Assume that B is partitioned into components S1, . . . , Sk in GB

4 Let C = An(GB)B\X (Y2)

5 Assume that C is partitioned into components C1, . . . , Cl in (GB)C

6 For each Cj such that Cj ⊆ Si do
7 Compute q(si|a) by Lemma 5
8 If Cj is an ancestral set in (GB)Si then
9 Compute q(cj |a) from q(si|a) by Lemma 6

10 Else return FAIL
11 Return

∫
[
∫ ∏

j q(cj |a) d(c \ y2)]f(a) d(a \ y1) by Lemma 7

Table 3: Algorithm for causal effect identification from aADMGs.

Theorem 8 Given an aADMG G and two disjoint sets X,Y ⊆ V , if the algorithm in Table
3 returns an expression for f(y|x̂), then it is correct.

As an example, we run the algorithm in Table 3 to identify f(v2|v̂1) from the aADMG
in Figure 1. Then, X = V1 and Y = V2. Thus, B = {V1, V2} and A = V3 in line 1, and
Y1 = ∅ and Y2 = V2 in line 2. Then, S1 = V1 and S2 = V2 in line 3. Then, C = V2 in line 4
and, thus, C1 = V2 in line 5. Note that C1 ⊆ S2 and, thus, q(v2|v3) = f(v2|v1, v3) by lines
6-9. Therefore, the algorithm returns

∫
f(v2|v1, v3)f(v3) dv3 which is the correct answer.

The algorithm in Table 3 is not only sound but also complete for identifying the causal
effect of a single random variable on the rest, i.e. the algorithm identifies every such causal
effect that can be computed uniquely from f(v). The following theorem proves this result.

Theorem 9 Given an aADMG G and an element X ∈ V , if the algorithm in Table 3 fails
to return an expression for f(v \ x|x̂), then the expression does not exist.

3.2 Identification by Calculus

An alternative to the algorithm in Table 3 consists in repeatedly applying the rules below
which, together with standard probability manipulations, aim to transform the causal effect
of interest into an expression that only involves observational quantities. The rules are
sound (Peña and Bendtsen, 2017, Theorem 7). Given an aADMG G, let X, Y , Z and W
be disjoint subsets of V . The rules are as follows:

• Rule 1 (insertion/deletion of observations):

f(y|x̂, z, w) = f(y|x̂, w) if Y ⊥G−→
X−→
Z|W

where G−→
X−→

denotes the graph obtained from G by deleting all directed edges in and

out of X.

• Rule 2 (intervention/observation exchange):

f(y|x̂, ẑ, w) = f(y|x̂, z, w) if Y ⊥G−→
X−→Z−→

Z|W
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where G−→
X−→Z−→

denotes the graph obtained from G by deleting all directed edges in and

out of X and out of Z.

• Rule 3 (insertion/deletion of interventions):

f(y|x̂, ẑ, w) = f(y|x̂, w) if Y ⊥G−→
X−→
−−−→
Z(W )

Z|W

where Z(W ) denotes the nodes in Z that are not ancestors of W in G−→
X−→

, and G−→
X−→
−−−→
Z(W )

denotes the graph obtained from G by deleting all directed edges in and out of X and
all undirected and directed edges into Z(W ).

We prove below that the algorithm in Table 3 actually follows from rules 1-3 and stan-
dard probability manipulations. To see it, note that all the steps in the algorithm involve
standard probability manipulations except the application of Lemmas 5-7, which involve
interventions. We prove below that these lemmas follow from rules 1-3. First, we prove
that rule 1 is not really needed.

Lemma 10 Rule 1 follows from rules 2 and 3.

Lemma 11 Lemmas 2 and 6 follow from rule 3.

Lemma 12 Lemmas 1, 3, 5 and 7 follow from rules 2 and 3.

The following theorem summarizes the lemmas above.

Theorem 13 Given an aADMG G and two disjoint sets X,Y ⊆ V , if the algorithm in
Table 3 returns an expression for f(y|x̂), then it is correct. Moreover, the expression can
also be obtained by repeated application of rules 2 and 3.

4. Conclusions

Alternative ADMGs are mixed graphs that may allow causal effect identification in scenarios
where Pearl’s original ADMGs may not, and vice versa. Therefore, they complement each
other. In this paper, we have shown that, as for the original ADMGs, it is possible to
develop a sound algorithm for identifying arbitrary causal effects from alternative ADMGs.
We have also shown that the algorithm is complete for identifying the causal effect of a
single random variable on the rest. We have also shown that the algorithm follows from a
calculus similar to Pearl’s do-calculus.

In the future, we would like to extend the algorithm in this paper so that it becomes
complete for identifying arbitrary causal effects. We would also like to evaluate how accurate
the output of our algorithm is when the additive noise assumption does not hold. Finally,
we would like to combine the original and alternative ADMGs into a family of mixed graphs
with three types of edges, and develop a sound and complete algorithm for causal effect
identification from them.
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