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Linköping (Sweden)

Abstract

Andersson-Madigan-Perlman chain graphs were originally introduced to represent indepen-
dence models. They have recently been shown to be suitable for representing causal models
with additive noise. In this paper, we present an algorithm for learning causal chain graphs.
The algorithm builds on the ideas by Hoyer et al. (2009), i.e. it exploits the nonlinearities in
the data to identify the direction of the causal relationships. We also report experimental
results on real-world data.
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1. Introduction

This paper deals with causal discovery under the assumption that the noise is additive,
i.e. each observed random variable Y is of the form Y = g(Pa(Y )) + UY , where Pa(Y )
denotes its observed causes (also called parents) and UY represents its unobserved causes
(also called noise or error or residual).1 Additive noise is a rather common assumption in
causal discovery (Hoyer et al., 2009; Mooij et al., 2016; Peters et al., 2014), mainly because it
produces tractable models which are useful for gaining insight into the system under study.
Note also that linear structural equation models, which have extensively been studied for
causal effect identification (Pearl, 2009, Chapter 5), are additive noise models.

Consider two random variables X and Y that are causally related as Y = g(X) + UY .
Assume that there is no confounding, selection bias or feedback loop, which implies that X
and UY are independent. Hoyer et al. (2009) prove that if the function g is nonlinear, then
the correct direction of the causal relationship between X and Y is generally identifiable:
X and UY are independent for the correct direction, whereas Y and UX are dependent for
the incorrect direction. This leads to the following causal discovery algorithm: If X and
Y are independent then they are not causally related because we assumed no confounding,
selection bias or feedback loop. If they are dependent then first construct a nonlinear
regression of Y on X to get an estimate ĝ of g, then compute the error ûY = y − ĝ(x),
and finally test whether X and ÛY are independent. If they are so then accept the model
X → Y , otherwise repeat the procedure for the model Y → X. When no model is accepted,
it may be indicative that the assumptions do not hold. Hoyer et al. (2009) also propose a
generalization to more than two variables: Given a directed and acyclic graph (DAG) over
the observed random variables, first construct a nonlinear regression of each node on its
parents, then compute each node’s error, and finally test whether these errors are mutually

1. Without loss of generality, the unobserved causes can be summarized by a unidimensional random
variable (Mooij et al., 2016, Proposition 4).
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Input: A CG G.
Output: The magnified CG G′.

1 Set G′ = G
2 For each node X in G
3 Add the node UX and the edge UX → X to G′

4 For each edge X − Y in G
5 Replace X − Y with the edge UX − UY in G′

6 Return G′

Table 1: Algorithm for magnifying a CG.
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Figure 1: Example of the magnification of a CG.

independent. If they are so then accept the DAG, otherwise reject it. The algorithm
performs well in practice (Peters et al., 2014). In this paper, we further generalize this idea
by dropping the assumption that the errors are independent. Specifically, we use Andersson-
Madigan-Perlman chain graphs (CGs) instead of DAGs to represent causal models. These
CGs were originally introduced to represent independence models (Andersson et al., 2001).
They have recently been shown to be suitable for representing causal models with additive
noise (Peña, 2016). Specifically, we can interpret the parents of each node in a CG as its
observed causes. Its unobserved causes are summarized by an error node that is represented
implicitly in the CG. We can interpret the undirected edges in the CG as the correlation
relationships between the different error nodes. The causal structure is constrained to be a
DAG, whereas the correlation structure can be any undirected graph as long as it does not
create semidirected cycles. This may be best understood by making the error nodes explicit
by magnifying the CG as shown in Table 1. The magnification basically consists in adding
the error nodes to the CG and connect them appropriately. Figure 1 shows an example.

The rest of this paper presents a novel learning algorithm for CGs that builds on the
ideas by Hoyer et al. (2009). The paper also includes experimental results on real-world
data. The paper ends with a discussion on follow-up questions worth investigating.
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Input: A dataset D over V with M instances, and an integer L.
Output: A CG over V .

1 Let G be a random sample of L CGs over V
2 For each G in G
3 For each X ∈ V
4 ĝ(x|paG(X)) = GP (X,PaG(X), D)
5 For m = 1, . . . ,M
6 ûmX = xm − ĝ(xm|pamG (X))
7 Let DU denote the dataset over U created in the previous line
8 For each X ∈ V
9 ĥ(ûX |ûNeG(X)) = GP (ûX , ûNeG(X), DU )

10 For m = 1, . . . ,M

11 r̂mX = ûmX − ĥ(ûmX |ûmNeG(X))

12 Let DR denote the dataset over R created in the previous line
13 pvalue(G) = HSIC(DR)
14 Return the simplest CG in the set argmaxG∈G pvalue(G)

Table 2: Algorithm for learning CGs.

2. Learning Algorithm

The learning algorithm can be seen in Table 2. It receives as input a dataset D with M
instances over the observed random variables V , and an integer L. The algorithm consists
in sampling L random CGs over V (line 1), scoring each of them with respect to D (lines
2-13), and returning the best one (line 14). Scoring a CG G starts in lines 3-4 pretty much
like the algorithm by Hoyer et al. (2009), i.e. obtaining an estimate ĝ of g by constructing a
nonlinear regression of each nodeX on PaG(X) using Gaussian processes (GPs) (Rasmussen
and Williams, 2005). This estimate is used in lines 5-6 to compute the errors. We use a
superscript to indicate the value of a set of variables in a particular instance of D, e.g. xm

and pamG (X) represent the value of X and its parents in the m-th instance of D. To test
that the errors U have the correlation structure dictated by the CG, we have to test that
each error UX is independent of the rest of the errors given its neighboring errors UNeG(X).
This is what lines 8-11 intend to do. Specifically, they construct a nonlinear regression of
each error UX on UNeG(X) in order to compute the residuals of the errors. Finally, line 13
scores the whole model by testing the independence of these residuals. The null hypothesis
is joint independence. Specifically, the function HSIC returns the p-value of the Hilbert
Schmidt independence criterion, which is a kernel statistical test of independence (Gretton
et al., 2008). Strictly speaking, lines 8-11 do not test that UX is independent of the rest of
the errors given UNeG(X). These lines test that the expectation of UX is independent of the
rest of the errors given UNeG(X). As we will see later, this solution works well in practice.
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Note that several CGs may score the highest p-value, e.g. every supergraph of a CG
with the highest p-value may also receive the highest p-value. Therefore, line 14 applies the
Occam’s Razor principle and returns the simplest best CG.

Using GPs and the HSIC test in lines 4, 9 and 13 are choices shared with Hoyer et al.
(2009). Other choices are also possible.

3. Experiments

In this section, we run the learning algorithm introduced above on the DWD dataset,
which contains climate data from the Deutscher Wetterdienst (www.dwd.de/EN) and has
been used before for benchmarking causal discovery algorithms (Mooij et al., 2016). We
use the data provided by this last reference.2 The data consists of 349 instances, each
corresponding to a weather station in Germany. Each instance consists of measurements
for six random variables. We use only four of them since the number of CGs over four nodes
is manageable and, thus, our learning algorithm has a chance to test most if not all of them.
Specifically, there are 1688 CGs over four nodes (Steinsky, 2003), and we let our algorithm
sample 10000 CGs in line 1. The four random variables that we consider are altitude (A),
temperature (T ), precipitation (P ), and sunshine duration (S). The last three variables
represent annual mean values over the years 1961-1990. Mooij et al. (2016, Appendix D.1)
argue that the causal relationships A → T , A → P and A → S are true. Their arguments
are meteorological, i.e. not based on the data. We confirmed that these decisions make
sense according to Wikipedia (entries for the terms ”rain” and ”precipitation”).

The learning algorithm is implemented in R.3 We use the packages kernlab and dHSIC

for the GPs and the HSIC test. Unless otherwise stated, we use the packages’ default
parameters. This means that we use the default Gaussian kernel for the GPs. However, we
do not use the default automatic method for estimating the kernel width. Instead, we take
a sort of Bayesian approach to set its value. Specifically, we use the three ground truth
relationships A → T , A → P and A → S as prior knowledge and choose a kernel width
that detects the correct direction of these relationships. The default automatic estimation
method misses one. So does setting the width to 1. Setting it to 0.5 misses none. So, we
choose this value. Of course, more elaborated procedures may be devised, e.g. based on
cross-validation or on a full Bayesian approach.

3.1 Results

Figure 2 shows the CG learned. This CG is clearly preferred (p-value = 8.246e-8) over
a CG with only the three ground truth relationships (p-value = 1.733e-46). The p-values
should be interpreted with caution. Their relative values are informative. However, their
absolute values may not for the simple reason that they can be made arbitrarily close to 1
by overfitting the GP corresponding to each variable (since this would drag the residuals
towards 0). Therefore, p-values may be used to compare models but not to reject models.

Note that there are many other CGs that represent the same independence model as the
CG learned, i.e. they are Markov equivalent. However, they all represent different causal

2. The data is also available at https://www.dropbox.com/s/rs4q8oeutgqfcdn/D1.csv?dl=0.
3. The code is available at https://www.dropbox.com/s/vxir1997w5hiiz6/AN.R?dl=0.
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Figure 2: CG learned from the DWD dataset.

models and, thus, they may receive different p-values. For instance, the best and second
best CGs found by our algorithm are Markov equivalent but they receive p-values 8.246e-8
and 3.431e-8, respectively.

In the rest of this section, we argue that the CG learned is plausible. The relationship
A → T is confirmed by both Mooij et al. (2016) and Wikipedia. We can also think of an
intervention where a thermometer is taken to higher and higher places. We expect that the
higher the colder.

The relationships A → P and A → T → P are confirmed by Wikipedia. Rain is
produced by the condensation of atmospheric water vapor. Therefore, increasing water
vapor in the air and/or decreasing the temperature are the main causes of precipitation.
One way water vapor gets added to the air is due to lifting air over mountains. Mooij et al.
(2016) also confirm A→ P due to the mediator T .

The relationship S → T seems natural. We can also think of an intervention where we
install new suns. We expect that the more suns the warmer.

The relationship A−S is confirmed by Mooij et al. (2016), because all the mountains in
Germany are in the south and the south is typically sunnier. The authors actually say that
latitude is a confounder of A and S. However, we can think of an intervention where a piece
of land is moved to the south. We do not expect the land to become more mountainous.
So, we prefer to say that the unobserved causes of A and S are just correlated. This is what
the CG learned actually represents.

Finally, the relationship S → P is unconfirmed.

Mooij et al. (2016) also confirm the relationships A → S due to clearer skies at higher
altitudes, and A − T again due to latitude. These relationships are not included in the
CG learned, because a CG cannot contain a subgraph A → S − A or A → T − A due to
the semidirected acyclity constraint. Our learning algorithm decided to include A− S and
A→ T and not the others, because they may be more beneficial for the model as a whole.
Further evidence on this behavior can be obtained by studying the relationships T → P and
S → P , which are included in the CG learned. If we just provide our learning algorithm
with the data over T and P , then it prefers P → T (p-value = 0.007) over T → P (p-value
= 7.748e-11). Likewise, if we just provide our learning algorithm with the data over S
and P , then it prefers P → S (p-value = 0.021) over S → P (p-value = 0.011). So, our
algorithm manages to get the apparently correct directions T → P and S → P just because
it evaluates a whole model and not just individual relationships. In other words, by scoring
a whole mode, relationships may introduce beneficial constraints (e.g. to avoid semidirected
cycles) on the direction of other relationships. Note however that scoring a whole model can
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also impose harmful constraints. For instance, as discussed above, our algorithm is forced
to decide between A→ S and A− S because both cannot be represented in a CG. Hence,
the need to extend our learning algorithm to more general causal models, e.g. alternative
acyclic directed mixed graphs which relax the semidirected acyclity constraint of CGs so as
to forbid only directed cycles (Peña, 2016).

4. Discussion

We have proposed an algorithm for learning causal CGs. The algorithm exploits the nonlin-
earities in the data to identify the direction of the causal relationships. The algorithm uses a
brute-force approach, i.e. it simply samples some CGs and returns the one with the highest
score. The score is computed by (i) regressing each variable on its parents, (ii) computing
the residual, (iii) regressing each residual on the neighboring residuals, (iv) computing the
residual of the residual, and (v) computing the p-value of a test of independence of the
latter residuals. Our experiments on real-world data have shown that this score is able to
identify a plausible CG.

Our experiments have also helped us to identify some questions worth investigating
further. For instance, it may be interesting to consider learning causal models that are
more general than CGs, e.g. alternative acyclic directed mixed graphs (aADMGs) (Peña,
2016). These are graphs with directed and undirected edges, up to two different edges
between any pair of nodes, and no directed cycle. Note that the algorithm in Table 2
is readily applicable to learn aADMGs: Just sample aADMGs instead of CGs in line 1.
While aADMGs allow for a richer family of causal models to be represented, they also
imply a larger search space, e.g. whereas there are 1688 CGs over four nodes, there are
34752 aADMGs (543 DAGs times 64 undirected graphs). This is a major problem for our
brute-force learning algorithm. A solution is to develop a greedy hill-climbing version of
the algorithm that evaluates all the models that differ from the current one by one edge
and then moves to the best of them. Note that we do not have to compute the score from
scratch for each candidate model to evaluate, as steps (i)-(iv) are the same for most nodes
in the current and candidate models. This approach performed well for learning causal
DAGs (Peters et al., 2014). It should be noted that the authors added an ad-hoc penalty
for complexity to the score in order to return a minimal DAG, i.e. to avoid its supergraphs.
This addition is also worth investigating, as larger search spaces usually imply larger risk
of overfitting. Recently, Nowzohour and Bühlmann (2016) have proposed a more principled
score, namely a penalized maximum likelihood score, as part of a new algorithm for learning
causal DAGs. We end this section presenting an algorithm for learning causal CGs that is
inspired by the score of Nowzohour and Bühlmann (2016).

The learning algorithm in Table 2 makes use of independence tests to assess if the
independence model over the error terms induced by the CG being evaluated fits the learning
data. Table 3 presents an alternative that makes use of a penalized maximum likelihood
score to assess the fit. This learning algorithm assumes that the error terms follow a joint
Gaussian distribution. This a relatively common assumption in causal discovery (Bühlmann
et al., 2014; Imoto et al., 2002; Peters and Bühlmann, 2014) for mainly two reasons. First,
if the noise is actually the summation of the noise due to different independent sources,
then the noise approximately follows a Gaussian distribution by the central limit theorem

38



Learning Causal AMP CGs

Input: A dataset D over V with M instances, and an integer L.
Output: A CG over V .

1 Let G be a random sample of L CGs over V
2 For each G in G
3 For each X ∈ V
4 ĝ(x|paG(X)) = GP (X,PaG(X), D)
5 For m = 1, . . . ,M
6 ûmX = xm − ĝ(xm|pamG (X))
7 Let DU denote the dataset over U created in the previous line
8 µ̂ = mean(DU )

9 Σ̂ = IPF ((G′)U , DU )

10 score(G) = log p(DU |µ̂, Σ̂)− log(M)
2 |E(G)|

11 Return argmaxG∈G score(G)

Table 3: Algorithm for learning CGs under the assumption of Gaussian noise.

of probability theory. Second, additive Gaussian noise produces tractable models which are
useful for gaining insight into the system under study. In our case, for instance, we can first
compute the error terms in line 7 and then obtain the maximum likelihood estimate of the
covariance matrix over the error terms in line 9 via the iterative proportional fitting (IPF)
procedure (Wainwright and Jordan, 2008). In line 9, (G′)U denotes the subgraph of the
magnified CG G induced by the error nodes (recall Section 1). This enables us to devise a
BIC-inspired score in line 10, where the penalty for model complexity is simply the number
of edges in the CG G, i.e. |E(G)|. Of course, other penalties are also possible. In line 10,
note that p(D|µ̂, Σ̂) = p(DU |µ̂, Σ̂) because V is determined by U .

As mentioned, our algorithm in Table 3 is inspired by the work of Nowzohour and
Bühlmann (2016). However, there are two main differences. Unlike them, we do not assume
that the individual error terms are jointly independent. Like us, they consider additive
noise but, unlike us, they do not assume that it is Gaussian. This may actually be a strong
assumption in some domains. For the DWD dataset in Section 3, for instance, we did
not find any value for the kernel width that gave higher scores to the correct directions
of the three ground truth relationships than to the wrong directions. We interpret this as
an indication that the Gaussian noise assumption is not reasonable. Therefore, we plan to
generalize the algorithm in Table 3 by dropping the Gaussian noise assumption.
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