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Abstract
We present a novel approach for score-based structure learning of Bayesian network, which
couples an existing ordering-based algorithm for structure optimization with a novel op-
erator for exploring the neighborhood of a given order in the space of the orderings. Our
approach achieves state-of-the-art performances in data sets containing thousands of vari-
ables.
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1. Introduction

We consider the problem of learning the structure of a Bayesian network. We focus on
score-based learning, namely finding the structure which maximizes a score that depends
on the data; this task is NP-hard (Chickering et al., 2003).

Usually structural learning is accomplished in two steps: parent set identification and
structure optimization. Parent set identification produces a list of suitable candidate parent
sets for each variable. Structure optimization assigns a parent set to each node, maximizing
the score of the resulting structure without introducing cycles.

Regarding the latter step, several exact algorithms have been developed based on dy-
namic programming (Koivisto and Sood, 2004; Silander and Myllymaki, 2006), branch and
bound (de Campos et al., 2009; van Beek and Hoffmann, 2015), linear and integer program-
ming (Cussens, 2011; Jaakkola et al., 2010), shortest-path heuristic (Yuan and Malone,
2012, 2013). These methods achieve good performance on smaller instances, but fail to
scale to more than 100 variables unless the maximum in-degree (number of parents per
node) is severely limited, greatly diminishing the expressiveness of the final network.

The need for a hard constraint on the maximum in-degree has been overcome by approx-
imated techniques for exploring the parent sets (Scanagatta et al., 2015), which compute the
score only of the most promising parent set for each node, without limits on the in-degree.
By coupling approximated exploration of the parent sets and ordering-based structural
learning, it has recently become possible to learn Bayesian networks even from thousands
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‡. Università della Svizzera italiana (USI)

45



Scanagatta, Corani and Zaffalon

of variables (Scanagatta et al., 2015; Lee and van Beek, 2017). The common idea of such
approaches is to sample an order, identify the highest-scoring network given the order and
eventually explore local changes to the order in order to further improve the score.

We consider different operators (Teyssier and Koller, 2005; Alonso-Barba et al., 2011) for
improving the score of the structure by applying local changes to its underlying ordering. We
then proposed the window operator for local search, already known as block insertion (Ben-
Daya and Al-Fawzan, 1998) in the literature of local search. We couple the window operator
with the ASOBS algorithm (Scanagatta et al., 2015), which learns a network structure
given an ordering. The resulting algorithm consistently yields higher-scoring networks than
ASOBS coupled with other operators, and the algorithms proposed by Lee and van Beek
(2017).

All the software and data sets used in the experiments are available at http://blip.

idsia.ch.

2. Structure Learning of Bayesian Networks

We consider the problem of learning the structure of a Bayesian Network from a complete
data set of N instances D = {D1, ..., DN}. The set of n categorical random variables is
X = {X1, ..., Xn}. The structure of the network is defined by a DAG G = (V, E), where
V is the collection of nodes and E is the collection of arcs. E can be defined as the set of
parents Π1, ...,Πn of each variable.

The goal of structure learning is to find a directed acyclic graph (DAG) G that maximizes
a given score function, that is, we look for G∗ = argmaxG∈G s(G, D), where G is the set of
all possible DAGs and s denotes the score function.

In this paper we adopt the BIC as a score function; asymptotically it is proportional to
the posterior probability of the DAG. The BIC score is decomposable, namely it is consti-
tuted by the sum of the scores of the individual variables:

BIC(G) =

=
∑n

i=1
BIC(Xi,Πi) =

∑n

i=1

∑
π∈|Πi|

∑
x∈|Xi|

(
Nx,π log θ̂x|π

)
− logN

2
(|Xi| − 1)(|Πi|) ,

where θ̂x|π is the maximum likelihood estimate of the conditional probability P (Xi = x|Πi =
π), and Nx,π represents the number of times (X = x∧Πi = π) appears in the data set, and
| · | indicates the size of the Cartesian product space of the variables given as arguments
(instead of the number of variables) such that |Xi| is the number of states of Xi and |∅| = 1.

Note however that the approach presented in this paper works for every decomposable
scoring function, not only for the BIC.

Exploiting decomposability, it is possible to first identify independently for each variable
Xi a list of candidate parent sets, denoted by Ci. We refer to this list as the cache of parent
sets for Xi. The computation of the caches can be sped up by adopting exact pruning
approaches (de Campos and Ji, 2011) and coupling them with approximated techniques for
the exploration of the space of the parent sets (Scanagatta et al., 2015).

A variable Xj is a potential parent for Xi if it appears at least in one of the parent sets
in Ci. We additionally compute for each variable Xi the set of its potential parents and we
denote it by Pi.

46



Improved Local Search in Bayesian Networks Structure Learning

2.1 Ordering-Based Search (OBS)

Ordering-based search (OBS) has been proposed in (Teyssier and Koller, 2005). Given an
ordering over the variables, the optimal network with respect to that ordering can be found

in time O(Ck), where C =
n∑
i=1
|Ci| and k denotes the maximum in-degree.

For a given ordering ≺ the optimal parent set for the node Xi is:

Pa≺(Xi) = arg max
U∈Ui,

score(Xi,U), (1)

where Ui, is the set of all the feasible parent sets, which contains only variables that precede
Xi in the ordering ≺. We call consistency rule this constraint.

Once an ordering has been sampled, the highest-scoring structure given the order is
quickly obtained following Eqn (1).

2.2 Acylic Selection OBS (ASOBS)

Acylic Selection OBS (ASOBS) has been proposed in (Scanagatta et al., 2015). It relaxes
the consistency rule by allowing the introduction of back-arcs with respect to the original
ordering, as long as they do not introduce a cycle. In particular, for each Xi it chooses the
best parent set Πi that does not create cycles with the already chosen parent sets Πj for
every Xj ≺ Xi .

Since ASOBS generalizes OBS, for any given ordering ≺ it obtains a higher-scoring
(equally-scoring in the worst case) network than OBS. In (Scanagatta et al., 2015), ASOBS
is implemented without any operator for local search in the space of the orderings. This is
instead the focus of this paper.

3. Operators for Local Search in the Space of the Orderings

Once we have found the highest-scoring network given an initial ordering (using either OBS
or ASOBS), we look for local changes in the order that allow to further increase the score
of the network. More precisely, we perform a local greedy hill-climbing search on the space
of the orderings O. In particular, an operator receives an ordering and returns a set of
successor orderings. We discuss different operators in the following.

The swap operator is defined as:

Swap(i) : (X≺1 , ..., X
≺
i , X

≺
i+1, ..., X

≺
n ) 7→ (X≺1 , ..., X

≺
i+1, X

≺
i , ..., X

≺
n ) (2)

An example of swap is shown in Figure 1.

A B C D E F G H I A B C D F E G H I

Figure 1: Example of operator Swap(5): the variables F and E are swapped in the ordering.

In order to compute the score of the highest-scoring network given the new order we
need to be recompute (Teyssier and Koller, 2005) only the parent sets for X≺i and X≺i+1

and X≺i+1. Further computation can be saved by noting that:
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1. the parent set of X≺i+1 needs to be recomputed only if it contains X≺i ;

2. the parent set of X≺i needs to be recomputed only if X≺i+1 is a potential parent for it:
∃ C∗ ∈ CX≺

i
such that X≺i+1 ∈ C∗.

Using the swap operator, each ordering has n−1 candidate successors; thus one evaluates
all such successors and eventually selects the one yielding the highest-scoring network.

A limit of the swap operator is its restricted neighborhood space, which limits its ability
to escape local maxima. A more powerful operator, called insertion, was proposed in
(Alonso-Barba et al., 2011). Given two indexes i and j, the variable at position i in the
initial ordering is inserted at position j in the successor ordering, shifting the variables in
the middle:

insertion(i, j) : (X≺1 , ..., X
≺
j , ..., X

≺
i , ..., X

≺
n ) 7→ (X≺1 , ..., X

≺
i , X

≺
j , ..., X

≺
n ) (3)

Note that j can be lower or higher than i. An example of insertion is shown in Figure 2.

A B C D E F G H I A B F C D E G H I

Figure 2: Example of insertion(6, 3): the variable F is inserted in the position occupied by
variable C in the initial ordering.

The swap operator is thus a particular case of the insertion operator, in which it is
applied to two adjacent nodes. Namely, swap(i)=insertion(j+1,j).

Suppose we have three variables, {A,B,C}. The caches of parent sets for each variable
are as follows:

A B C

{C}: -8 {A,C}: -7 {B}: -12
{}: -13 {A}: -9 {}: -16

Suppose we start from the ordering {A,B,C}, with optimal score −34. The successor
orderings yielded by swap are {B,A,C} (with optimal score −36) and {A,C,B} (with
optimal score −36). Instead, insertion yields also the order {C,A,B}, with optimal score
−31 (this is the result of insertion(3, 1)). Thus, given the same initial ordering, insertion
explores a wider neighborhood than swap and for this reason it ends up with a higher-
scoring solution. The drawback is a higher computational time spent given the same initial
ordering, which allows insertion to explore less initial orderings than swap. We will show
in Section 5 that the trade-off is however in favor of insertion, which generally yields a
higher-scoring network than swap when both operators are provided with the same amount
of computational time.

The insertion operator can be regarded as the result of multiple swaps applied to adjacent
nodes (Figure 3). Each application of the swap operator requires computing the parent set
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for up to two variables. This results in the need to recompute only a limited number of
parent sets also for insertion.

(1) A B C D E F G H I (2) A B C D F E G H I

(3) A B C F D E G H I (4) A B F C D E G H I

Figure 3: Insertion operator performed as a series of swap operation.

The insertion yields, given an ordering, n ·(n−1) candidate successor orderings. In (Lee
and van Beek, 2017; Alonso-Barba et al., 2011) the authors note that a complete assessment
of the successors is cumbersome. They propose a new selection approach, named hybrid :
a randomly chosen variable is used as a fixed index, and a complete exploration on the
second index is then performed. This is executed by a series of single swap operation. The
successor ordering with the highest score is then chosen. The search stops when no further
improvement is found considering all the variables.

We now propose our operator, defined as window(i, j, w), which generalizes the insertion
operator. As already pointed out, this operator is known in the area of local search under
the name of block insertion Ben-Daya and Al-Fawzan (1998). It works as follows. It selects
the variables at position i in the original ordering and the w − 1 following variables. Such
variables are inserted at position j in the new order; see the example in Figure 4.

window(i, j, w) :

(X≺1 , ..., X
≺
j , ..., X

≺
i , ..., X

≺
i+w, ..., X

≺
n ) 7→ (X≺1 , ..., X

≺
i , ..., X

≺
i+w, X

≺
j , ..., X

≺
n )

A B C D E F G H I A B F G H C D E I

Figure 4: Example of window(6, 3, 3): the variable F,G,H are inserted in the position pre-
viously occupied by C,D,E.

The insertion operator is thus a particular case of the window operator, characterized
by w = 1. The window operator yields (n − (w − 1)) · (n − w) candidate successors for a
given ordering.

The window operator can be equivalently regarded as a series of “window swap” oper-
ation, where each window swap requires recomputing the best parent set compatible with
the ordering only for up to w+ 1 variables. In particular we need to recompute the optimal
parent set consistent with the ordering:

• For each of the w variables in the window {X≺i , ..., X
≺
i+w}, only if their current assigned

parent set contains X≺i−1;

• For X≺i−1, only if any of the w variables in the window is a potential parent for it.
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(1) A B C D E F G H I (2) A B C D F G H E I

(3) A B C F G H D E I (4) A B F G H C D E I

Figure 5: The window is equivalent to a series of window swaps.

The window operator can be applied to an ordering with the following schema, starting
from w = 1.

• As the hybrid selection approach, a random variable is chosen as a fixed index. Con-
sider all the successor states with window size w.

• If a successor state with improving score has been found, move to that state and set
w = 1.

• If all the variables have been chosen and no successor state with improving score has
been found, increase w by one. If it exceeds the maximum window size, return the
current solution.

The window size w affects both the ability of the operator in escaping local maxima
but also the required time for the computation, given a starting order. We experimentally
found that the value w=5 is a good default choice.

4. Exploration meta-heuristic

Lee and van Beek (2017) suggest to enhance the performance of the greedy local search by
applying a meta-heuristic. They proposed two approaches:

• IINOBS, based on iterated local search. It adopts the insertion operator coupled with
a perturbation factor. The current local maxima is perturbed with random swaps until
a specified termination condition is met.

• MINOBS, based on genetic algorithms. Individuals are generated with the insertion
operator, and are later subject of a series of crossover and mutation stages.

We expand the idea of the iterated local search, adapting it in a way that it employs the
window insertion operator with increasing window size. We call WINASOBS the resulting
approach.

The algorithm starts with maximum window size w = 1. The parameters are listed in
Table 1. At each iteration the following steps are executed:

1. A new ordering is sampled, and the starting solution is found through ASOBS.

2. Since ASOBS allows for back-arcs, the learned network can be incoherent with the
given ordering. We thus extract a topological ordering consistent with the network
learned by ASOBS; this is referred to as the initial ordering.
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Parameter name Description Default value

pa number of swaps in the perturbation operator 3
pb max number of non-improving perturbations 10
pc number of iterations between maximum window size increase 5

Table 1: Parameters of WINASOBS

3. The initial ordering is improved using the window insertion operator and the hybrid
selection, using the maximum window size w.

4. A perturbation factor based on a fixed number ( pa100 · n) of random swaps is applied
to the ordering, and the window insertion operator is again applied.

5. The execution ends after a fixed number (pb) of non-improving perturbations.

In addition, after a fixed number of iterations (pc) the maximum window size w is
increased, thus providing a deepening factor.

Algorithm 1 WINASOBS*()

1: w = 1
2: while dotime()
3: for i← 1, ..., pc do
4: order ← sampleNewOrder()
5: asobs(order)
6: localSearch(order, w)
7: for i← 1, ..., pb do
8: perturb(order, pa)
9: localSearch(order, w)

10: end for
11: end for
12: w = w + 1
13: end while

IINOBS is based on the insertion operator coupled with a perturbation factor, and
can thus be viewed as WINOBS without our novel window insertion operator and the
intensification scheme.

5. Experiments

We consider 18 data sets with 64 to 1556 binary-valued variables, commonly used in the
literature of structure learning, firstly introduced in (Lowd and Davis, 2010) and (Haaren
and Davis, 2012). Originally each data set has been split into three subsets of instances.
This yields 54 data sets, . The number of variables in each data set is reported in Table 5.

Additionally we create data sets with very large numbers of variables by generating 15
synthetic networks: five networks of size 2000, five networks of size 4000, five networks of
size 10000 (Table 5). We used to this end the software BNgenerator.1 Each variable has

1. http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/
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a number of states randomly drawn from 2 to 4 and a number of parents randomly drawn
from 0 to 6. From each network we sample a data set of 5000 instances.

For all the data sets, the cache of parent sets was pre-computed using the approximated
exploration of parent set proposed in (Scanagatta et al., 2015). We then measure the BIC
score of the best Bayesian networks found by each approach. Let us denote by ∆BIC1,2 =
∆BIC1−∆BIC2 the difference between the BIC score of network 1 and network 2. Positive
values of ∆BIC1,2 imply evidence in favor of network 1. The difference in BIC score can
be mapped on the Bayes factor (Raftery, 1995, Tab. 6) and interpreted accordingly. For
instance the evidence in favor of network 1 is respectively weak, positive, strong, very strong
if ∆BIC1,2 is between 0 and 2; 2 and 6; 6 and 10 ; beyond 10.

n n n

Kdd 64 Retail 135 EachMovie 500
Plants 69 Pumsb-star 163 WebKB 839
Audio 100 DNA 180 Reuters-52 889
Jester 100 Kosarek 190 C20NG 910
Netflix 100 MSWeb 294 BBC 1058

Accidents 111 Book 500 Ad 1556

Table 2: Real data sets used in the experimental validation.

n n n

R2-0 2000 R4-0 4000 R10-0 10000
R2-1 2000 R4-1 4000 R10-1 10000
R2-2 2000 R4-2 4000 R10-2 10000
R2-3 2000 R4-3 4000 R10-3 10000
R2-4 2000 R4-4 4000 R10-4 10000

Table 3: Syntethic data sets used in the experimental validation

5.1 Improving ASOBS with the operators

We first assess the application of three operators as a post-processing step to the solutions
proposed to ASOBS. We thus compare swap, insertion and window (with maximum window
size of 5). We allow one hour of computation to each approach. We record the scores of all
the networks generated by the algorithm during its various iterations. We report in Table 4
the summary regarding the best and the mean scores of the solutions found, and in Figure
6 the summary regarding the number of solutions S proposed.

The window operator clearly improves over the plain ASOBS. It consistently yields a
higher BIC score both for the mean and the maximum; moreover, in all the data sets, the
score of one random ordering improved by the window insertion was higher than all the
orderings sampled by ASOBS in one hour.
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The window insertion yields also mean score and best score consistently higher than the
swap operator; the ∆BIC is higher than 100 in all the 54 data sets. The number of total
iterations on the other hand is significantly lower, showing the trade-off between quality of
the scores and required time for the exploration.

Also the comparison between the window insertion operator and the insertion operator
is consistently in favor of window insertion, both as for the best and the mean score.

Table 4: Comparison between ASOBS with window and ASOBS with other operators: plain
(no operator), swap, insertion.

∆BIC
wind. vs plain wind. vs swap wind. vs ins
Best Mean Best Mean Best Mean

Very positive (K >10) 54 54 54 54 45 51
Strongly positive (6<K<10) 0 0 0 0 0 0
Positive (2<K<6) 0 0 0 0 0 0
Neutral (-2<K<2) 0 0 0 0 9 3
Negative (-6<K<-2) 0 0 0 0 0 0
Strongly negative (-10<K<-6) 0 0 0 0 0 0
Very negative (K<-10) 0 0 0 0 0 0

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

SW
SS

SW
SI

Figure 6: Ratio between the number of iterations (i.e., structures found) of ASOBS coupled
with window and with insertion; with window and insertion.

We report in Fig.6 the distribution across data sets of SWSS and SW
SI , where SW, SS

and SI are the number of solution generated respectively by ASOBS with window, swap
and insertion operators. The window insertion is a more demanding operator than its
predecessors and as such it performs on average only 30% of the iterations done by insertions
and only about 3% of the iterations done by the swap operator (Fig. 6).

We call WINASOBS the package resulting by coupling ASOBS with the window oper-
ator.

5.2 Exploration meta-heuristic

We compare WINASOBS against two recently proposed algorithms for Bayesian network
structure learning: MINOBS and IINOBS (Lee and van Beek, 2017). They have been shown
(Lee and van Beek, 2017) to outperform many other greedy hill-climbing local search over
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orderings, and also Gobnilp (Cussens, 2011), the state-of-the-art exact solver. We used the
configuration of parameters suggested by the authors and their implementation, available
online.2

Each method was executed three times, and we report the mean of the best solutions
found in each execution. In Table 5 we summarize the results obtained on the real data
sets (whose number of variable varies between 64 and 1556), and in Table 5 we summarize
the results obtained on the syntethic data sets (whose number of variables ranges between
2000 and 10000). We denote by ∆BICW,I the difference in BIC score between the network
found by WINASOBS and IINOBS; we denote by ∆BICW,M the difference in BIC score
between the network found by WINASOBS and MINOBS.

In (Lee and van Beek, 2017), the authors indicate that IINOBS is the better alternative
when time is limited, and thus is the competitor for short execution times. They further
state that MINOBS has a slower improvement curve, but eventually outperforms IINOBS,
thus is the competitor for long execution times. To verify the sensitivity of the results on
the allowed time limit, we report the ∆BIC of the best solution found after 1 hour, 6 hours
and 12 hours.

Table 5: Comparison between WINASOBS , IINOBS and MINOBS and on the real data
sets.

∆BICW,I ∆BICW,M

1 hour 6 hours 12 hours 1 hour 6 hours 12 hours

Very positive (K >10) 27 20 21 33 16 15
Strongly positive (6<K<10) 4 7 0 2 0 0
Positive (2<K<6) 8 6 8 7 2 5
Neutral (-2<K<2) 9 11 16 6 18 16
Negative (-6<K<-2) 3 7 4 4 3 4
Strongly negative (-10<K<-6) 0 0 0 0 0 2
Very negative (K<-10) 3 3 5 2 15 12

Let us start from the real data sets, whose number of variables ranges up to 1556.
WINASOBS outperforms IINASOBS in all the time limits. It should be noted that the
difference between them is a) the adoption of ASOBS instead of OBS; b) the application
of the window operator instead of the insertion operator. The comparison with MINOBS
shows that if the computational time is limited to 1 hour, WINASOBS performs better
than MINOBS; as the computational time increases to 6 and 12 hours, there is no clear
winner between the two methods.

The comparison on the synthetic data sets (whose number of variables ranges between
2000 and 10000) shows WINASOBS as the consistent winner compared to both INOBS and
MINOBS, for all the considered time limits. With the largest number of variables, MINOBS
often failed to deliver even one starting solution when the time limit was less than 6 hours.
This confirms the observation made in (Lee and van Beek, 2017) that MINOBS struggles
with the largest dataset.

2. https://cs.uwaterloo.ca/~vanbeek/Research/research_ml.html
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Table 6: Comparison between WINASOBS , IINOBS and MINOBS and on the synthetically
generated data sets.

∆BICW,I ∆BICW,M

1 hour 6 hours 12 hours 1 hour 6 hours 12 hours

Very positive (K >10) 15 15 14 15 14 13
Strongly positive (6<K<10) 0 0 0 0 0 0
Positive (2<K<6) 0 0 0 0 0 0
Neutral (-2<K<2) 0 0 1 0 1 1
Negative (-6<K<-2) 0 0 0 0 0 1
Strongly negative (-10<K<-6) 0 0 0 0 0 0
Very negative (K<-10) 0 0 0 0 0 0

6. Conclusions

We presented an operator for greedy hill-climbing in the space of the orderings. We couple it
with an ordering-based algorithm (ASOBS) for structural learning of Bayesian networks. We
call WINASOBS the resulting approach. We compare it to the state-of-the-art approaches
on a wide range of problems; experimentally it outperforms the competitors when the
allowed execution times is limited to up to 6 hours, or when the number of variables is
greater than one thousand.
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