Proceedings of Machine Learning Research vol 73:117-128, 2017

AMBN 2017

Fast Message Passing Algorithm Using ZDD-Based Local Structure
Compilation

Shan Gao

Gradate School of Information Science and Technology
Hokkaido University
Sapporo (Japan)

Masakazu Ishihata

Gradate School of Information Science and Technology
Hokkaido University

Sapporo (Japan)

Shin-ichi Minato
Gradate School of Information Science and Technology

Hokkaido University
Sapporo (Japan)

GAOSHAN @IST.HOKUDAI.AC.JP

ISHIHATA.MASAKAZU @IST.HOKUDAI.AC.JP

MINATO @IST.HOKUDAI.AC.JP

Abstract

Compiling Bayesian Networks (BNs) into secondary structures to implement efficient exact in-
ference is a hot topic in probabilistic modeling. One class of algorithms to compile BNs is to
transform the BNs into junction tree structures utilizing the conditional dependency in the network.
Performing message passing on the junction tree structure, we can calculate marginal probabil-
ities for any variables in the network efficiently. However, the message passing algorithm does
not consider the local structure in the network. Since the ability to exploit local structure to avoid
redundant calculations has a significant impact on exact inference, in this article, we propose a
fast message passing algorithm by exploiting local structure using Zero-suppressed Binary Deci-
sion Diagrams (ZDDs). We convert all the components used in message passing algorithm into
Multi-linear Functions (MLFs), and then compile them into compact representation using ZDDs.
We show that message passing on ZDDs can work more efficient than the conventional message
passing algorithm on junction tree structures on some benchmark networks although it may be too
memory consuming for some larger instances.

Keywords: Bayesian Network, local structure, ZDDs, message passing, exact inference.

1. Introduction

Developing efficient algorithms for inference in Bayesian Networks (BNs) has attracted much at-
tention. Suppose all variables in a BN have domains over binary values. Compiling a BN into a
secondary structure (Huang and Darwiche, 1996) then performing inference on the resulting struc-
ture (which is not necessarily exponential in the number of variables in the BN) has been proved
as an efficient method in exact inference. One class of secondary structures is junction tree (Lau-
ritzen and Spiegelhalter, 1988), also known as jointree, one of the most essential tree structure in
exact inference of BNs, whose nodes and edges are labeled with subsets of variables in a BN. By
utilizing the conditional dependencies in a BN and performing message passing algorithm (Nuel,

117

SHAN GAO, MASAKAZU ISHIHATA, SHIN-ICHI MINATO

2012) on junction tree structures, the computation complexity of inference is bound to treewidth,
the maximum size of a node in a junction tree.

Research in Chavira and Darwiche (2005) has shown that the ability of exploiting local structure,
such as probability variables in the BN sharing same value, has a significant effect on the exact
inference of Bayesian networks. Transforming the probability distributions in a BN into Multi-linear
Functions (MLFs) and then compiling them using arithmetic circuits is a key idea for exploiting
local structures. In this article, we consider to accelerate the essential inference algorithm, message
passing algorithm by exploiting local structure with ZDDs (Minato, 1993). We transform message
variables into MLFs to generate ZDDs. Then we show that using these MLFs, we can compute the
same components in the message passing algorithm by dynamically changing values in message
variables in MLFs.

We will show that through the compilation, we can calculate marginal probabilities for any given
variable in a BN much more efficiency than the conventional message passing algorithm. Also,
since our method depends on the size of separators in a junction tree, this suggests that, instead of
directly using a junction tree to generate ZDDs, we can find good separators to decompose a BN
into several subgraphs which form a tree and have the same properties as junction trees.

2. Preliminaries

2.1 Bayesian Networks

A Bayesian Network (BN)(Pearl, 2014) is a directed acyclic graph which defines a joint distribution
over a set of random variables. A BN is defined as B = (G, ©), where G = (V, E) is a DAG
that represents the dependencies of the variables and © = {0; ;.1 }ijk is a set of parameters that
defines conditional distributions. V' = {X7,..., X,,} is a set of random variables and £ C V x V
is a set of directed edges that represents dependency between variables. We use z; x to denote the
k-th value of X;. II; £ {X! € V | (X!, X;) € E} denotes the parents of X; and ; ; denotes the
Jj-th instantiation of II;. We use 0; ; ;. to denote the probability that X; = x;; given 1I; = m; ;:
0; ik = P(X; =z | II; = m; ;). Given B, a joint distribution over V is factorized as follows:

p(V) =[] P(x:|1m). (1)
X, eV

The marginal probability distribution P(X;) can be computed by marginalizing the other variables
from the above joint distribution P(V"). We use the following expression to represent marginaliza-
tion:

P(X;) = Z P(V). 2)
VA{X;}
Fig. 1 shows a simple example of a BN over variables { X, X2, X3, X4} with domains {11, z1 2},
{221,222}, {31,232}, and {x4 1, x42}, respectively. The joint probability of this BN is:
P(X1, X, X3, X4) = P(X1) P(X | X1) P(X5 | X1) P(X4 | X2, X3). 3)

Obviously, computing a marginal P(X;) using Eq. (2) requires exponential time in the number
of variables n. Thus an efficient algorithm for inference in BNs to convert the original BN into a
junction tree structure and then calculate probabilities on the resulting junction tree is known as an
essential approach.

118

FAST MESSAGE PASSING ALGORITHM USING ZDD-BASED LOCAL STRUCTURE COMPILATION

1| P(Xy) {Xs,lrxs,z}

X4 X5, X X,, X
% | 6, -04 a1 X2 X5 | P(XalX2X3)
X2 | 6,,=06 X411 X1, %a1 6,1,=0.0

X1 | X221 X31 0412,=0.3
Xal Xy | P(X21X4) Xal X1 | P(Xs]%y) X411 %210 %32 0415=05
Xo1|%1af 651, =08 Xa1| %[631,=05 X411 %52, %32 6314=0.2
Xo1|%15| 021, =02 X311 X,2| G512 =05 Xa2 || o1 %1 094'2'1 = g:

X421 X221 %31 4,22 = V-
Xoo | X1| Grp1=1 Xgo | X1| G5,,=05 | |7, .| 7

221 %] G21 321 X1 | Os2n Xaz | X010 0422=02

X2 | X2| 222=0 Xg2 | X12| 6322, =05 Xa2 | X220 Xa 0,,,=00

Figure 1: An example of BN.

2.2 Junction tree and Message Passing

A junction tree T = (N, A) for BN B is a tree structure, where N = {1,2,...,m} is a set of nodes
and A C N x N is a set of undirected arcs ! (a,b) where a,b € N, a # b. Each node and each
arc is labeled by a subset of variables V: C, C V denotes the label of node a € N that is called a
cluster, and Sy, £ C, N Cy, denotes the label of arc (a,b) € A that is called a separator. We use
Ca,m to denote the m-th instantiation of C, and s, ¢ to denote the /-th instantiation of S,;. We here
define a family F, = {X; € V | X; UIL; C C,}. Then, if T is a junction tree, clusters in 7" satisfies
the following properties:

e Running intersection: Ya,b € N, Vc € N on the unique path between a and b, C, N Cy, C C..
o Family preserving: VX; € V,da € N, X; € F,.

In general, X; can belong to multiple families. For each X;, here we choose one family F,
s.t. X; € F, in arbitrary manner and say that X; is assigned to C,. We use SN(C,) to denote
the set of all variables that are assigned to C,. In this paper, without loss of generality, we assume
that 7" is rooted and use r to denote the root node of 7. We use d(a) to denote the depth of a that
is the distance from r, and use Ny = {a € N | d(a) = d} and d(T) £ max,cy d(a). We use
par(a) € N and child(a) C N to denote the parent and the set of children of a in 7', respectively.

Message passing is an algorithm that computes all marginal probabilities P(X;) (X; € V)ona
BN B using junction tree T (Lauritzen and Spiegelhalter, 1988). In message passing, a potential,
which is a function over a set of variables, is recursively updated by messages that are computed
from the other potentials. We define the potential over C, and Sy as ¢, (C,) and Pg,, (Sap),
respectively. We use @c,,, = ®c,(Cam) and ¢, , = Ps,, ,(Save), respectively. We use P to
denote the set of all potentials ®¢, (C,) and ®g,, (S,p). For the sake of simplicity, we omit the
arguments of potentials afterward. The message passing is summed up in Algorithm 1.

1. To distinguish with the vertexes and edges in B = (G, ©), we use nodes and arcs in a junction tree.

119

SHAN GAO, MASAKAZU ISHIHATA, SHIN-ICHI MINATO

Algorithm 1 MessagePassing(1")
1: // Initialize

2 e < [lxiesn(c,) P(@ik | mij) foralla € N and m, where 2 U j € Cam
3: ¢s,,, < Lforall (a,b) € Aand ¢
4: // Collect messages : child to parent
5: ford=d(T)—1to0do
6: forallb e N;do
7: for all a € child(b) do
8: Pass(a,b, ®¢c,, ®c,, Ps,,)
9: end for
10: end for
11: end for
12: // Distribute messages : parent to child
13: ford = 1tod(T) do
14: forallb € N;do
15: for all o € par(b) do
16: Pass(a,b, ®¢c,, ®¢,, Ps,,)
17: end for
18: end for
19: end for
20: return ¢

X, X, X, X, X, X, XX,

D¢, =P(X)P(X3 | X)P(X3]X3) D¢, =P(X4X2.X3)

Figure 2: A junction tree for the BN in Fig 1.
When the message passing ends, these potentials satisfy the following equations:

P
P, = P(Ca), (I)Sab = P(Sab), P(V) _ HaEN Coq

— tlaen D0y
H(a,b)GA Qsa,b

Algorithm 2 Pass(a, b, ®¢,, ®¢,, ®s,,)
1 ¢4 ¢y, , forall £

Sab,l
2 gy an,m\sab,l Peq - for all £ and m where 5451 C Cam

Sab,l

¢
3: ¢bem — (Z)Cb,mﬁ

sia— for all £ and m where 54,1 C ¢p
Sab,l

120

FAST MESSAGE PASSING ALGORITHM USING ZDD-BASED LOCAL STRUCTURE COMPILATION

Figure 3: An example of local computation.

Once we compute P(C,) by the message passing, we can easily compute P(X;) (X; € C,) by
marginalizing out all X; € C,\{X;} from P(C,) as follows:

P(X;)= Y P(Cy). (5)

Ca\{Xi}

2.3 Local Structures

Though message passing on junction trees is an efficient method, for each cluster in a junction tree,
we need to prepare a table for the potential whose size is exponential to the size of the cluster.
Operations on these tables incur in considerable costs in message passing. If we can exploit all the
local structures, in the form of equal parameters and local computation, during message passing, the
algorithm can be significantly accelerated.

For the example CPTs in Fig 1, there are 18 parameters in total in the CPTs and yet only 8
of them are distinct. Compact representations for these CPTs are expected. Also while calculat-
ing different probabilities who are sharing the same local computation, for example calculating
P(x12,221,231) = 012102110311 and P(x1,2, 22,1, 232) = 01,2,102,1,103,2,1, multiplication for
01,2,102,1,1 are repetitive. If we can cache local computations in advance, there is no need to calcu-
late it again while evaluating a new query which shares the same local computations with queries
already calculated.

Compiling a Bayesian network with ZDDs has been proposed by Minato et al. (2007). In their
method, they first convert the probability distribution of a BN into MLFs. Then they treat variables
in MLFs as combination itemsets so that they can compile all the MLFs into ZDDs using inter-ZDD
operations. They showed that symbolic probability calculation for inference based on arithmetic
operations can be executed in a time almost linear with the size of ZDDs.

Thus we consider to introduce ZDD techniques into message passing algorithm. Node-sharing
in ZDDs helps in representing CPTs compactly and cache memories in ZDDs help to avoid repetitive
computations of local structures. The example of a ZDD for local structure is shown in Fig 3.

3. Proposed Method

In this section, we introduce our fast message passing algorithm using ZDDs. We first convert all
updates of potentials of naive message passing into MLFs. Then, we compile them into ZDDs in

121

SHAN GAO, MASAKAZU ISHIHATA, SHIN-ICHI MINATO

the same manner as the conventional ZDD-based method (Minato et al., 2007). In Section 3.1, we
define MLFs that we use in our method, then in Section 3.2 we explain how we can simulate the
message passing using those MLFs.

3.1 MLFs for Message Passing

Before generating the ZDD, we need to convert potentials in junction tree into MLFs. While con-
verting these components into MLFs, we introduce three types of variables: indicator variable \; j;
parameter variable 0; ; 1., with the same definition in Section 2; and message variables Bgah . ﬁgab’)
for instantiation Sqp ¢.

In our method, we need to generate MLFs for P(X; | II;), ®g, and ®¢,, for each X; €
V,(a,b) € A,a € N. We use MLFx,, MLFg ,, MLF(, to represent MLFs for them respec-
tively. We define the corresponding MLFs for these components as follows:

e Forall X; € V, we define

MLFy, £ Z)\i,k/\z’,ﬂi,j,k, Ay = H At k! - (6)

3k Tyt ! €T
e Forall (a,b) € A, define

MLFg, 2 AweBS,,, MLFG, 2> AweBl, . Awe2 [[Air @
l l

Ti kESab,L

e Forall a € N, using the above MLF x, and MLFaab, we define

MLF¢, £ H MLFy, H MLF§ . (8)
X,ESN(Cq) (a,b)eA

Using the multi-valued multiplication algorithm (Minato et al., 2007) in ZDD operations, the
product of these MLFs produces all possible combinations of their terms. Variables such as \; j,
and \; 41 (variables representing different instances of the same variable) does not coexist in the
same term as they are mutually exclusive. Also, union operations of ZDDs make sure that no term
can contain the same variable more than once, so instead of)\%71 for duplicate variables, simply A1 1
will appear in the result.

For example the junction tree in Fig 2, first we generate the MLF for every CPT as follows:

MLFEx, = A 101,11 + A 201,12)
MLFE x, = AM1A2,102,1,1 + A1,1A220212 + A12A210221 + A1 2X220229. (10)
MLF x, = A123,103,1,1 + A1,1A320312 + A12A31032.1 + A1,2A3,203 2 2. (11)
MLF x, = A2 1A3,1A4,104,1,1 + A2,1A31 420421 + ... + A22A32A4 2044 2. (12)

Then we have MLF}9 ., and MLF% L, for C1 and Cs respectively:

MLF}S&Q = A271)‘3»1691621,%1 +)‘271/\372ﬁ;21,3¢32 +)‘272)‘371ﬂ:}:227131 +)‘272)\372/8;22@32' (13)
MLF%H =)\271)\3715321@31 +)\271)\3»2/832321@32 +)\272)\371ﬁ3221$31 + >\272)\372ﬁ£22@32' (14)

122

FAST MESSAGE PASSING ALGORITHM USING ZDD-BASED LOCAL STRUCTURE COMPILATION

By multiplying these MLFs, we get MLFs for ®¢, and ®¢, respectively as:

MLF ¢, = MLF x, MLF x,MLF x, MLF} (15)
=)\1,1)\2,1/\3,191,1,192,1,193,1,1591621,x31 +)\1,1/\2,1)\3,291,1,192,1,193,1,25;21@32 (16)
+ A1A2.203101,1,102.1,2032.1 Bapy o0y + A1 A2,2X3201.1,102.1,203.2,280,, 2a (17)

. (18)
+)\1,2)\2,2/\3,191,1,292,2,293,4,1591622,I31 +)\1,2/\2,2>\3,291,1,292,2,293,4,25;22@32- (19)

(20

MLF, = MLF x,MLFZ @1)
=)\2,1)\3,1/\4,194,1,1/3;%21@31 +)\2,1>\3,1/\4,294,1,25321,3331 (22)

(23)

+)\2,2)\3,2/\4,194,4,15322@32 +)\2,2)\3,2)\4,294,4,25322@32- (24)

3.2 Message Passing with MLFs

If we can manipulate MLFs to compute the same components as in the message passing algorithm,
we can accelerate the algorithm by compiling MLFs into ZDDs and utilizing ZDD techniques.

For the three types of variables \; 1., 0; ; 1., and Bgab’ , iIn MLFs as defined above, A; . € {0,1},
0 j ks Bgﬂb’ , € [0,1]. During our method, parameter variables 0; j.x keep the values consistent to
P(x; | m; ;) all the time. Values in message variables 63(“), , dynamically change according to the
messages passed between nodes a,b € N . For any set of variables W C V, we define MLFy,
representing probability distribution over W in the following sense. For any instantiation w of W,
we can evaluate MLFyy so it returns the probability over w denoted by ayy (w).

Definition 1 The value of MLFyy at instantiation w, denoted by oy (w), is the result of replacing
each indicator variable \; i, in MLFy, with 1 if \; j is consistent with w, and with 0 otherwise.

While using MLFs, messages over variables S,;, passed from a to b are obtained by calculating
ac, (Sape) for all £. The message passing algorithm with MLFs is summed up in Algorithm 3. It
works in accordance with the message passing algorithm introduced in Section 2 except operations
on potentials are transformed to operations on MLFs. We evaluate and change the values in message
variables of MLFs to implement the same computation on potentials.

In the initialization step (line 2 in Algorithm 3), we initialize all message variables to 1. With
this assignment, all MLFs satisfy the following equations which are consistent with the initialization
in Algorithm 1 (linel-7):

MLF¢, (82, =1)= [[P(Xi|I), forallac N, (25)
X;€S5N(Ca)
MLFg, (B%,, =1) = Ay, MLFS (82,, =1) =) Aayy forall (a,b) € A, (26)

l l

Compared to the conventional algorithm, a message passing from node a to b in the collect-
ing and distributing operations is performed differently. In the message collecting operation, a
message passing from a to b done as follows:

123

SHAN GAO, MASAKAZU ISHIHATA, SHIN-ICHI MINATO

Algorithm 3 MessagePassingwithMLF(T")
1: // Initialize

2 B8, 1,62@7[< 1, Forall (a,b) € A, and ¢
3: // Collect messages : child to parent
4: ford =d(T) —1to 0 do
5: forallb e N,;do
6: for all a € child(b) do
7: Collect(a, b, MLF¢,, MLF¢,)
8: end for
9: end for
10: end for

[
—

: // Distribute messages : parent to child

12: ford = 1tod(T) do

13: forallb e N;do

14: for all a € par(b) do

15: Distribute(a, b, MLF ¢, , MLF ¢,)

16: end for

17: end for

18: end for

19: return evaluate all MLFs and return the results

e evaluate MLF ¢, on all instantiations of Sy, to get the messages o, (Sqp,¢) for all £, and
preserve them in corresponding message variables 8, in MLF ¢, (refer to line 1 in Algo-
rithm 4)

b

a0 for

e Node b absorbs messages ac, (Sqp,¢) by updating corresponding messages variables 3
all /in MLF ¢, . (refer to line 3 in Algorithm 4)

Algorithm 4 Collect(a, b, MLF¢,, MLF,)

1o B, , < ac,(Sabe), for all £// equivalent to ¢s,, , <= D2, \s., , Pea,m forall £
2. B “Calfant) gor gy g

Sab, L 62@ ‘

In the message distributing operation, a message passing from a to b is evaluated as follows:

e evaluate MLF ¢, on all instantiations of S, to get messages o, (Sqp,¢), and node b absorbs
messages by updating message variables (refer to line 1 in Algorithm 5).

Algorithm 5 Distribute(a, b, MLF¢,, MLF ¢,)

I: SW — W for all (a,b) € Aand ¢

Note that in the distributing operation, since a has absorbed messages in the collecting operation,
there is no need to change the message variables in MLF ¢, thus we only need to pass messages
out to MLF ¢, .

124

FAST MESSAGE PASSING ALGORITHM USING ZDD-BASED LOCAL STRUCTURE COMPILATION

After a full round of message passing, the MLFs for any ®, represents the joint distributions
over variables in C,:

MLF¢, = P(C,). 27)
Also, if messages over Sy, are passed outward from a and collected inward to a, then we have:
MLFg , = P(Sap) - (28)

Similarly, we can calculate the probability of any variable X; € V' by evaluating the MLF <, where
X; € C,. For the example in Fig 2, after performing the message passing algorithm on MLFs
generated according to the procedure explained above, we can get the MLFs satisfying:

MLF¢, = P(X1, X2, X3) ,MLF¢, = P(X2, X3,X4), (29)
MLF§ , = P(X2,X3). (30)

4. Experiment and Results

We implement our method on an Intel Core Quad CPU Q9550@2.83GHz * 4 PC with Ubuntu
12.04LTS and 3.8GiB of main memory. We can manipulate up to 40,000,000 nodes of ZDDs us-
ing the ZDD package implemented by Minato (Minato, 2001). We used dataset of BN Benchmark
(HebrewUniversity) ALARM, HAILFINDER, INSURANCE, etc. In our experiment. BN specifi-
cations with number of nodes and parameters are shown in Table 1. The experiment results of our
method comparing with conventional message passing algorithm are shown in Table 2.

Table 1: BN specifications

Dataset BN nodes | indicators | parameters
ALARM 37 105 509
ASIA 8 16 18
HAILFINDER 56 223 2656
INSURANCE 27 89 984
HEPAR2 70 162 1453
WINOSPTS 76 152 574
PIGS 441 1323 5618
WATER 32 116 10083

We first show the time of generating a junction tree and time of message passing algorithm. We
generated a junction tree for a Bayesian network using the heuristic algorithm known as min-fill-in
(Li and Ueno, 2015). We show the number of clusters and separators in a junction tree in the first and
second columns. We show the maximum size of a separator in the third column. The first number
in the third column is the number of variables in the maximum separator and the second number
in the bracket is the number of all instantiations of these variables. The fourth column shows time
for performing message passing algorithm once on the junction tree to get joint distribution over
variables in clusters and separators.

The last four columns are the results of our proposed method with the size of ZDDs, time for
generating ZDDs and time of message passing on ZDDs. As the same in junction trees, we perform a
full round message passing on ZDDs and get all MLFs representing joint distributions over variables
in clusters and separators. And then we evaluate these MLFs to get these joint probabilities. We

125

SHAN GAO, MASAKAZU ISHIHATA, SHIN-ICHI MINATO

Table 2: Results for the proposed method and the conventional algorithm.

Dataset junction tree Algorithm ZDD-based Message Passing
Clus | Separ | Compile | Maximum | Inference ZDD Message | Compile Infer
-ters | -ators (ms) separator (ms) size Variables (ms) -ence(ms)
ALARM 27 26 117 3(36) 56 6770 482 100 4
ASIA 6 5 67 2(4) 5 278 64 4 1
HAILFINDER | 43 42 160 4(297) 321 45815 3116 3571 83
INSURANCE 19 18 114 6(2400) 4273 359963 13712 6313 545
HEPAR2 58 57 123 6(96) 109 18678 1376 336 67
WINOSPTS 50 49 190 7(128) 103 26477 1756 548 31
PIGS 368 367 697 10(59049) | 3148153 - 248922 - -
WATER 19 18 197 9(110592) 6119 - 515856 - -

also show the number of message variables introduced in our approach which play an important
role in our ZDD-based message passing algorithm. While passing messages with ZDDs, we need
to evaluate all instantiations of separators. Thus time consumption of our method is linear time to
the ZDD size and exponential to the size of separators.

From the results, we can see that the inference with our ZDD-based message passing algorithm
are more efficient comparing to the conventional one. Especially for the network INSURANCE,
time for message passing accelerates about 8 times.

Unfortunately, for the networks PIGS and WATER, we could not conduct our method since the
numbers of massage variables become too large for our ZDD package. This is mainly because there
are too many message variables to generate ZDDs. While constructing a junction tree for a given
Bayesian network, most research considers to construct a junction tree that has a treewidth, the
maximum size of a cluster, as small as possible. However in our approach, the size of separators
factors the most since we have to generate two message variables for every instantiation of the
separators (see Eq. (7)). According to the result of message variable numbers, for the BN of
WATER, it has only about 10000 parameters but we need to generate about 1 million message
variables.

Since our ZDD-based message passing is not only applicable to the conventional junction tree
structure, but can also be used for any tree structure that satisfies junction tree property. Thus we
consider not directly using junction trees to construct ZDDs, but selecting some of the separators in
a junction tree to decompose a Bayesian network into a tree structure who also satisfies running in-
tersection property and family preserving property. Using junction tree structure to generate ZDDs,
node sharing and cache memory can not be fully utilized because there are too many independent
clusters and the corresponding ZDDs nodes.

5. Related Work

Darwiche (2013) has shown a different efficient approach to factor MLFs of BN based on an arith-
metic circuit called Conjunctive Normal Forms (CNFs). They also show how to compile the smallest
circuits possible using a given junction tree. The main difference is that in their method, they do not
use the message passing algorithm, but attribute probabilistic semantics to the partial derivatives of
a network polynomial. They proposed an efficient way to evaluate and differentiate CNFs in time
and space which is linear in the size of CNFs. In our method, we did not consider using the partial
derivatives of polynomial functions based on ZDDs to calculate probability. We hope that if we take

126

FAST MESSAGE PASSING ALGORITHM USING ZDD-BASED LOCAL STRUCTURE COMPILATION

into account this idea, it can bring us a significant improvement to our ZDD-based method while
comping BNs.

6. Conclusion and Future Work

We proposed an improved method for exact inference in Bayesian networks to perform the message
passing algorithm on ZDDs to accelerate the inference efficiency by exploiting local structures in
the message passing algorithms. In some cases, the junction tree with small clusters works well in
the conventional message passing algorithm, but it gives rise to a considerable number of ZDDs in
our method.

As a future work, we will find proper d-separation structure to partition a given Bayesian net-
work into several conditional independent subgraphs and then compile these small graphs into ZDDs
to improve our method.

Acknowledgments

This work is partly supported by JSPS KAKENHI(S) 15H05711.

References

Mark Chavira and Adnan Darwiche. Compiling bayesian networks with local structure. In IJCAI,
volume 5, pages 1306-1312, 2005.

Adnan Darwiche. A differential approach to inference in bayesian networks. pages 123—132, 2013.

HebrewUniversity. Bayesian network repository. http://www.cs.huji.ac.il/~galel/
Repository/.

Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide. International
Jjournal of approximate reasoning, 15(3):225-263, 1996.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society. Series
B (Methodological), pages 157-224, 1988.

Chao Li and Maomi Ueno. A fast clique maintenance algorithm for optimal triangulation of
bayesian networks. In Workshop on Advanced Methodologies for Bayesian Networks, pages
152-167. Springer, 2015.

Shin-ichi Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In
DAC, pages 272-277, 1993.

Shin Ichi Minato. Zero-suppressed bdds and their applications. International Journal on Software
Tools for Technology Transfer, 3(2):156-170, 2001.

Shin-ichi Minato, Ken Satoh, and Taisuke Sato. Compiling Bayesian Networks by Symbolic Prob-
ability Calculation Based on Zero-Suppressed BDDs. In IJCAI 2007, Proceedings of the 20th

127

SHAN GAO, MASAKAZU ISHIHATA, SHIN-ICHI MINATO

International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007,
pages 2550-2555, 2007.

G. Nuel. Tutorial on exact belief propagation in bayesian networks: from messages to algorithms.
Statistics, 2012.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
Kaufmann, 2014.

128

