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Abstract

We propose restricted quasi Bayesian networks as an efficient prototyping tool for designing
computational models of individual cortical areas of the brain. Restricted quasi Bayesian
networks are simplified Bayesian networks that only distinguish probability value 0 from
other values. Using our tool, it is possible to concentrate on the essential part of model
design and efficiently construct prototypes. We demonstrate that restricted quasi Bayesian
networks actually work well as a prototyping tool by implementing a syntactic parser for
an ambiguous English sentence.
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1. Introduction

The cerebral cortex is a part of the brain. In humans, it is most deeply related with
intelligence, and is divided into about 50 areas, like the visual area, the language area, and
so on.

All areas in the cerebral cortex share similar anatomical structure. Thus it is reasonable
to assume a common functional principle. One of the promising hypotheses is that Bayesian
network (Pearl, 1988) or a kind of probabilistic graphical model is the common functional
principal (Lee and Mumford, 2003; George and Hawkins, 2005; Rao, 2005; Ichisugi, 2007;
Röhrbein et al., 2008; Litvak and Ullman, 2009; Chikkerur et al., 2010; Ichisugi, 2011;
Hosoya, 2012; Dura-Bernal et al., 2012; Raju and Pitkow, 2016; Pitkow and Angelaki,
2017)

One way to study the mechanism of information processing in the brain is to create
computational models of individual cortical areas. If we succeed in creating such models
using Bayesian networks, the said hypothesis will be more reliable.

However, creating realistic models of cortical areas using fairly large-scale Bayesian
networks forces us to resolve inessential problems, for example, tuning hyper parameters.
Moreover, it is often difficult to trace the real cause of unsatisfying results when the created
model does not behave as expected.

It is often helpful to create prototypes before creating a real model. By creating proto-
types, we can estimate the hopefulness of the fundamental design of the real model that we
are going to create.
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U = 0 V = 0 0 > 0

Figure 1: A conditional probability table in an ordinary Bayesian network (upper table)
and that in a restricted quasi Bayesian network (lower table).

In this paper, we propose restricted quasi Bayesian networks as an efficient prototyping
tool for creating models of cortical areas. Restricted quasi Bayesian networks are simplified
Bayesian networks that only distinguish probability value 0 from other values. In other
words, restricted quasi Bayesian networks cannot represent the joint probabilities of random
variables, but they can represent whether a given value combination of random variables is
possible or not.

Figure 1 gives an example. Suppose the variables U , V and X are all binary. If the
conditional probability table of X in an ordinary Bayesian network is given by the upper
table, its restricted quasi Bayesian network version is given by the lower table.

Since restricted quasi Bayesian networks do not have learning ability, conditional prob-
ability tables must be prepared by the designer. Because of their limited capabilities,
restricted quasi Bayesian networks may not be applied to practical, real-world problems.
However, they release us from inessential problems and allow us to concentrate on the essen-
tial part of model design. As a result of agile prototyping activities, we would find potential
problems in the model, which can be extremely difficult to find in a practical system.

The rest of this paper is organized as follows. Section 2 introduces restricted Bayesian
networks and explains their three node types. Section 3 further simplifies restricted Bayesian
networks to define restricted quasi Bayesian networks and describes their properties. In
Section 4, we present a syntactic parser for a small context free grammar using a restricted
quasi Bayesian network, then we show in Section 5 that the presented network successfully
parses an ambiguous English sentence to give all the possible parse trees. Section 6 briefly
summarizes the paper and addresses our plan for the future work.
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Figure 2: An OR node with three parent nodes.

2. Restricted Bayesian Networks

In an ordinary Bayesian network, the size of a conditional probability table increases ex-
ponentially against the number of parent nodes. Therefore, naively designed Bayesian
networks easily cause combinatorial explosion.

Humans, on the other hand, often resolve complex, real-world problems in real time. If
the cerebral cortex is a kind of Bayesian networks, it must be a special type of Bayesian
networks that do not cause combinatorial explosion.

With this working hypothesis, we are looking for a way to limit the number of parameters
in Bayesian networks that we use in the models of cortical areas. We first restrict the nodes
in Bayesian networks to the following three types to reduce the size of conditional probability
tables: OR nodes, gate nodes and exclusive nodes. All nodes are binary random variables
and take 0 or 1 as values. We call the resulted network restricted Bayesian network.

All these three types of nodes can be transformed into different network structures, to
which we can apply the method of Heckerman (1993) to accelerate inference. When a node
has n parents, we can transform that part into a network of the depth O(n) with at most
constant number of parents. Using the transformed network, we can execute one step of
approximate inference and learning at O(n).

2.1 OR Nodes

The OR nodes in restricted Bayesian networks follow the noisy-OR model (Pearl, 1988).
Suppose binary random variables Ui(1 ≤ i ≤ n) and X take 0 or 1 as values. If we

define wi as

wi = P (X = 1|U1 = 0, . . . , Ui−1 = 0, Ui = 1, Ui+1 = 0, . . . , Un = 0), (1)

then the conditional probability P (X = 1|U1, . . . , Un) under the noisy-OR model is given
as the following.

P (X = 1|U1, . . . , Un) = 1−
n∏

i=1

(1− wi)
Ui (2)

We depict an OR gate as in Figure 2.

2.2 Gate Nodes

A gate node has two types of parent: one or more controller and an upstream. Let
U1, . . . , Un−1 be the controllers of a gate node X, and Un be the upstream of X. Us-
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Figure 3: (Left) A gate node (the small black dot) along with its upstream and a controller.
(Middle) Two gate nodes sharing the same upstream and the controller. (Right)
A shorthand of the two gate nodes that are shown in the middle part.

ing the definition of wi in Equation 1, the conditional probability P (X = 1|U1, . . . , Un) is
defined as follows.

P (X = 1|U1, . . . , Un) = (1− wn)
1−Un

n−1∏
i=1

(1− wi)
Ui (3)

Gate nodes are qualitatively similar to the noisy-OR model, but their definitions of
P (X = 0) and P (X = 1) are exchanged and the values of the controllers are inverted.

In this paper, we use gate nodes that have only one controller. We depict a gate node as
a small black dot as in the left part of Figure 3. When multiple gate nodes share the same
upstream and the same controller (as in the middle part of Figure 3), they are depicted as
in the right part of Figure 3.

2.3 Exclusive Nodes

An exclusive node has two or more parent nodes and takes value 1 if and only if at most
one parent node takes 1 (Figure 4). Exclusive nodes have no adjustable parameters. By
assigning 1 to an exclusive node as its observed value, it is possible to limit the number of
its active parents at most one.

Exclusive nodes are used to represent multi-valued variables using a set of binary vari-
ables. Suppose a 4-valued variable X takes values v0, v1, v2 and v3. X can be represented
by three binary variables X1, X2, and X3, and one exclusive variable RX as their child. We
can interpret, for example, X1 = X2 = X3 = 0 as X = v0, X1 = 1 and X2 = X3 = 0 as
X = v1, X2 = 1 and X1 = X3 = 0 as X = v2, and X3 = 1 and X1 = X2 = 0 as X = v3.
See Figure 5.

3. Restricted Quasi Bayesian Networks

We simplify restricted Bayesian networks so that only probability value 0 is distinguished
from other probability values. This is to concentrate on the qualitative aspects of models
of cortical areas. The resulted networks are called restricted quasi Bayesian networks. This
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X2 X3X1

RX

X1 X2 X3 P (RX = 1|X1, X2, X3)

0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1
otherwise 0

Figure 4: The conditional probability table of an exclusive node RX with its three parent
nodes X1, X2 and X3. Rx takes value 1 when at most one parent node is active.

X2 X3X1

RX

X1 X2 X3 RX Interpretation of X

0 0 0 1 v0
1 0 0 1 v1
0 1 0 1 v2
0 0 1 1 v3

Figure 5: Representing a 4-valued variable X using three binary variables X1, X2, X3, and
an exclusive node RX as their child. Unlisted value combinations of X1, X2 and
X3 are excluded because the exclusive node RX is fixed to 1.
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simplification makes it impossible to calculate the most probable explanation (MPE) from
partially observed values. Instead, a restricted quasi Bayesian network lists all possible
value combinations of observed- and latent variables whose joint probability are greater
than 0.

3.1 Properties of Restricted Quasi Bayesian Networks

Restricted quasi Bayesian networks discard quantitative probabilistic calculation, but they
still keep some essential properties of Bayesian networks. First, the restrictions to determine
the solution are locally defined in the conditional probability tables of the nodes. Secondly,
when observed values are assigned to a set of random variables, that information propagates
through the whole network and the only value combinations that satisfy the restrictions of
all the nodes are determined as solutions.

In other words, restricted quasi Bayesian networks largely ignore an aspect of ordinary
Bayesian networks, which is probability distribution manipulation, but still value another
aspect, which is optimization of the whole network.

3.2 Nodes in Restricted Quasi Bayesian Networks

We show how OR nodes and gate nodes are simplified in restricted quasi Bayesian networks.

Equation 2 equals to 0 when wi = 0 for all i, but that means none of Ui affects the value
of X and thus meaningless. Therefore, wi > 0 for at least one i.

Then Equation 2 is equal to 0 if Ui = 0 for all i, and is greater than 0 otherwise. Since
restricted quasi Bayesian networks distinguish only 0 from other probabilities, this means
noisy-OR is equivalent to Boolean OR within the framework of restricted quasi Bayesian
networks.

In a restricted quasi Bayesian network, the controllers of a gate node can be interpreted
as “blockers” between the upstream and the gate node. When a controller takes value 1, it
blocks the data flow from the upstream to the gate node. If all controllers of a gate node
take 0 and the upstream takes 1, the value of the gate node can be 1 with a probability
greater than 0. This is equivalent to Boolean AND if we invert the value of the controllers.

4. Application to Syntactic Parser

In this section, we demonstrate that restricted quasi Bayesian networks actually work well
as a prototyping tool. For this purpose, we construct a syntactic parser for a context free
grammar as a model of the language area.

Table 1 shows a small context free grammar to parse the sentence “Time flies like an
arrow”, which is syntactically ambiguous. The final part “an arrow” has no syntactical
ambiguity, thus can be handled as a single element. Then the number of the elements of
this sentence is four.

A restricted quasi Bayesian network that parses syntactically ambiguous sentences with
four elements is shown in Figure 6. Note that this network is not specialized for the
sentence “Time flies like an arrow.” It parses any sentence with four elements, as long as
an appropriate grammar is given.
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ID rule ID rule

S0 S → NP VP VP0 VP → V PP
NP0 NP → time VP1 VP → V NP
NP1 NP → flies VP2 VP → VP PP
NP2 NP → an arrow V0 V → time
NP3 NP → NP NP V1 V → flies
NP4 NP → NP PP V2 V → like
PP0 PP → P NP P0 P → like

Table 1: A grammar to parse the sentence “Time flies like an arrow.” S = sentence; NP
= noun phrase; VP = verb phrase; V = verb; PP = prepositional phrase; P =
preposition. An imperative sentence is interpreted as an S without the subject,
namely VP.

C15

J15

C25

C34C23 C45C12

J25J14

C14

C24 C35C13

Figure 6: A restricted quasi Bayesian network that parses sentences with four elements.
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C34 C45

C35

Node ID C34 C45 C35

Possible V → like NP → an arrow VP → V NP
combinations P → like NP → an arrow PP → P NP

Figure 7: Parent-children relationship of C nodes (excerpted) and their possible value com-
binations. When C34 and C45 take unlisted value combinations, C35 takes a
special value meaning “unused”.

The circles in Figure 6 are OR nodes; white nodes and grey nodes are called C nodes
and J nodes, respectively. Each OR node consults the values of its directly connected nodes
to determine its own value. The rectangles are shorthand of gate nodes. See Figure 3 for
detail.

C nodes correspond to the cells in a CYK parser (Cocke and Schwartz, 1970). Each C
node takes a production rule as its value. For example, if the nodes C34 and C45 respectively
take “V → like” and “NP → an arrow” as their values, the node C35 takes the value “VP
→ V NP”. See Figure 7.

Each J node works as a controller of gate nodes to determine the structure of the final
parse tree. For example, if the word list “C12 C23 C34” in Figure 8 is parsed as [C12 [C23
C34]], the sub-tree under C24 is used but the one under C13 is not. On the other hand, if
the same word list is parsed as [[C12 C23] C34], the sub-tree under C13 is used, but the
one under C24 is not.

Depending on the values of C13 and C24, J14 selectively blocks the connection between
the upstream C14 and the four children C12, C13, C24 and C34 so that one of the following
situation is realized.

1. Only C12 and C24 are the children of C14.

2. Only C13 and C34 are the children of C14.

3. C14 has no children and is not used by other nodes.

So far, we have explained as if the information flows from bottom to top (words to sen-
tence). However, as restricted quasi Bayesian networks inherit the information propagation
property of ordinary Bayesian networks, the actual information flow is bidirectional. We
can, for example, fix the topmost syntactical category and let the network select appropriate
word sequences.

Thanks to the restriction to the node types, the number of the parameters of the net-
work grows only polynomially against the number of words. However, if we straightfor-
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C13

C34

C14

C24

J14

C12 C23

J14 C13 C24 C12 C13 C24 C34

2 unused any Y N Y N
3 any unused N Y N Y

unused any any N N N N

Figure 8: Possible value combinations of J14, C13 and C24, and the resulting connection
between C14 and other C nodes. Y means that the C node of that column is a
child of C14, N means the other case.

Node Possible value Original rule

C12 NP0 NP → time
V0 V → time

C23 NP1 NP → flies
V1 V → flies

C34 V2 V → like
P0 P → like

C45 NP2 NP → an arrow

C15 S0 S → NP VP
VP0 VP → V PP
VP1 VP → V NP
VP2 VP → VP PP

Table 2: Possible values for the highest and lowest C nodes in Figure 6.

wardly implement a CYK parser using a Bayesian network, the number of parameters grow
exponentially against the number of words (Pynadath and Wellman, 1996).

5. Experiment

We implemented a domain specific language (DSL) for building restricted quasi Bayesian
networks. The structure and the conditional probability tables of the target network are
specified in the DSL.
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Parent Child 1 Child 2

S0 NPx VPx
NP3 NPx NPx
NP4 NPx PP0
VP0 Vx PP0
VP1 Vx NPx
VP2 VPx PP0
PP0 P0 NPx

Table 3: The possible value combinations for the intermediate C nodes. The parent takes
the indicated value only when the value combination of the two children matches
a row. The suffix x means a wild card.

time flies like an arrow

NP0 V0 P0 NP2

PP0

VP0

S0

time flies like an arrow

V0 NP1 P0 NP2

PP0

NP4

VP1

time flies like an arrow

V0 N1P P0 NP2

PP0VP1

VP2

time flies like an arrow

NP0 NP1 V2 NP2

VP1NP3

S0

Figure 9: Four parse trees for “Time flies like an arrow.” (Upper left) Time proceeds as
quickly as an arrow proceeds. (Upper right) Measure the speed of flies that
resemble an arrow. (Lower left) Measure the speed of flies in the same way that
you measure the speed of an arrow. / Measure the speed of flies in the same way
that an arrow measures the speed of flies. (Lower Right) Flies of a particular
kind, time-flies, are fond of an arrow. The paraphrases are taken from Pinker
(1994).
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Table 2 shows the possible values (values with probabilities greater than 0) for the
highest and the lowest C nodes in Figure 6. The possible value combinations for other C
nodes are given in Table 3, which follows the grammar specified in Table 1.

Figure 9 shows graphical representation of the possible value combinations of C nodes.
We can confirm that all four possible parse trees are obtained.

6. Summary and Future Work

We proposed restricted quasi Bayesian networks as an agile prototyping tool for creating
computational models of individual cortical areas. We also demonstrated their usefulness
through constructing a context free grammar parser.

Since restricted quasi Bayesian networks ignore the quantitative aspect of probabil-
ity distribution manipulation, it would be difficult to use them to solve practical problems.
Learning ability and probability distribution manipulation are absolutely necessary for prac-
tical problems, but combinatorial explosion must be avoided. Therefore we shall need real
restricted Bayesian networks (without “quasi”).

We are planning to implement the architectures of prototypes using real restricted
Bayesian networks, then make them learn from real, massive data, and finally evaluate
their performance.
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