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Abstract

This paper addresses for the first time the problem of engines’ damage prediction using
huge amounts of imbalanced data from ”structure borne noise” signals related to the in-
ternal engine excitation. We propose the usage of a convolutional neural network on our
temporal input signals, subsequently combined with additional static features. Using in-
formative mini batches during training we take the imbalance of the data into account.
The experimental results indicate good performance in detecting the minority class on our
large real-world use case.
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1. Introduction

Combustion engines are becoming increasingly complex to meet a variety of standards. To
guaranty a smooth assembly process and functional engines, an efficient cost effective cold
test is performed at the end of each production line. During the cold test, the engine is
passively driven by an electric motor. In doing so, several measurements including structure
bornes – mechanical vibrations at lower frequencies as 50 Hz or 100 Hz – are measured for
determining the properties of the materials of the engines (Cremer and Heckl, 2013). Based
on these structure-borne measurements, the goal of our work is to predict the result of the
endurance run for the tested engine: is the engine fully functional or defective?

The collected measurements, however, implicate various challenges, making the predic-
tion task very hard: (1) The available signals collected from different process steps refer to
different views. While the structure-borne measurements are collected during the cold test,
other views such as the engine information in general or environment features are addition-
ally considered. Such ’multi-view’ data are of different types followed by different statistical
distributions and different kinds of uncertainties (Sun, 2013). (2) Furthermore, the high
dimensionality of the collected signals pose a huge challenge: each signal itself represents a
time series. It is worth point out that the lengths of these time series differ between signals.
Thus, it can not simply be treated as a multivariate time series. (3) Most importantly,
the data suffers from a highly imbalanced distribution of class labels. That is, the class
of defective engines is highly under-represented compared to the class of non-defect ones
which makes learning quite a difficult task.
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Motivated by the effectiveness of deep learning techniques in recent years, we study in
this work – using data from a real world use case – whether such architectures also enable
to predict defective engines from the collected imbalanced data.

2. Related Work

Deep learning has achieved extremely high performance in many tasks in the field of image
or video recognition (Schmidhuber, 2015; Karpathy et al., 2014) as well as natural lan-
guage processing (Mikolov et al., 2013). Likewise, researchers have investigated deep neural
network architectures and algorithms to evaluate their performance in time series tasks
– particularly, real world applications with focus on multivariate time series classification
have become increasingly important, such as in health care, human activity recognition, or
renewable energies (Doucoure et al., 2016; Yang et al., 2015; Zheng et al., 2014; Borovykh
et al., 2017).

Since neural networks are capable of extracting non-linear information from data they
are a natural fit for time series which rarely represent only linear effects. While on a
first sight, temporal/sequence neural network models such as RNNs/LSTMs seem to be a
natural choice for temporal data classification, the early work of Kim (2014) has shown that
simple Convolutional Neural Networks (CNNs) are equally or even better suited for such
tasks. With this idea in mind, (Cui et al., 2016; Borovykh et al., 2017) have shown that
CNNs perform impressively not only in classical use cases like face verification and audio
classification but also in tasks like time series classification.

The main reason for the success of CNN in this context is explained by its ability to
learn from local information, being correlated to further features by sliding the convolutional
filter along time axis. Denoting the convolution as the main advantage of this model, in
this paper we focus on the questions: (a) Having a real-world multi-view dataset with high
dimensionality, is a CNN architecture capable of predicting engines affected by malfunctions
with a high Area Under the Curve (AUC)? (b) Can CNNs perform well even when the data
is massively imbalanced?

To answer these questions, we investigate a CNN deep learning architecture (Section 4)
to predict defective engines using data from a real-world use case (Section 3). We investigate
different architectures of the CNN, including different number of layers, using different
pooling functions and activation functions in our experimental study – as well as different
properties of the data and its effect on the result (Section 5).

3. Data Description

To gather the structure borne noise of each engine, a vibrometer is used to measure different
mechanical surface vibrations in time domain. Besides, the influence of the engine vibration
on the air pressure is measured. Using fourier transformation, the measured signals are
converted in sequential frequency domain. Figure 1 shows a snippet of 3 measured signals
for one engine. While the x-axis shows different sequence of frequency spectra, the y-axis
presents the measured values pointing to e.g. a vibration signal or crankshaft motions etc.

Formally, the resulting data is a set of matrices Si ∈ RN×Li , where each i ∈M represents
one signal measured for all instances. Here, N denotes the number of instances/engines and
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Figure 1: Visualization of three different signals for one engine.

Li the length of frequency spectra regarding signal i. Accordingly, the jth row of Si refers
to the frequency spectrum collected for engine j ∈ N regarding signal i. For simplicity
we denote these row vectors with xij . Note again that for each signal i the length of these
vectors Li might differ.

Furthermore, for each engine we have a set of non-sequential (environmental) variables,
which are indicated by the matrix E ∈ RN×LE – with ej denoting the jth row vector. And
each instance j ∈ N is assigned to a label yj with yj ∈ {0, 1}. Here, yj = 1 represents class
of instances with a certain issue and yj = 0 the opposite. We denote with N1 all instances
having label 1, and N0 all instances with label 0.

Overall, for our use case we have ≈ 93, 000 engines. For each engine, 6 different sequen-
tial based signals complemented with 7 environment features are considered. The ratio of
defected instances compared to non-defective ones is around 1:32.

It is worth noting that the signals of functional and defect instances cannot be distin-
guished easily, making the prediction very difficult and not possible by humans. It is also
noticeable that the illustrated signals include strong fluctuations with several local minima
and maxima. By using CNNs on Si, our goal is to exploit this information to perform
accurate predictions.

4. Convolutional Neural Network on Engine Vibration Signals

In the following we will describe the structure of our deep CNN used to classify an engine
as a malfunction one or not.

4.1. Deep CNN Architecture

Figure 2 shows the general structure of the deep feedforward neural network used in our
proposed model.

(A) First, to facilitate the training of CNN layers and simultaneously to improve the
efficiency, straight after signal processing, we first down-sample our signals by applying a
(1x5) Max-pooling. In doing so, we progressively reduce the spacial size of the amount of
features and computation complexity while keeping the location sensitivity in the model
since the size of pooling is small.

(B) Second, we use multiple CNN/pooling layers as non-linear learnable feature extrac-
tors on the temporal signals. More precise, we combine the following three functions whose
variations we investigate in our experimental analysis:
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Figure 2: An overview of the two layered CNN-architecture: as input it obtains the engine
signals which are concatenated with environment data on a later layer

(i) Convolutional layer: It convolves learnable kernel filters across the input data Si
to compute a dot product between the entries of the filter and the input. For each signal
(and layer) we learn different kernel weights, thus, accounting for the multi-view nature
of the data. As a result, the network learns different filters which aim to detect specific
type of features at certain positions. To extract maximum local temporal information
from the whole data, it is beneficial to restrict the size ml of the filters f li , where l is the
corresponding layer and i the ith signal. Note that in contrast to, e.g., images our filters
are one-dimensional (i.e. vectors).

(ii) Activation layer: The results generated by the convolutional layer is given as
an input to the activation function to capture some of the non-linearities from the input
data. In our model we use the exponential linear unit (ELU) activation function (Clevert
et al., 2015). While generally the most used activation function is the rectified linear units
(ReLUs) Nair and Hinton (2010), it turned out that ELUs are more powerful in our scenario
(see experimental study). By mapping negative values to zero, ReLU are helpful in leading
to less dense solutions. However, as a disadvantage the phenomena of dead ReLU can be
observed – e.g. in the case when having a large negative bias term from the previous layer.

One attempt to address this issue is the Exponential Linear Units (ELUs), defined as:

f(x) =

{
xl−1
i , if xl−1

i > 0

α(exp(xi)− 1), if xl−1
i ≤ 0

(1)

In contrast to ReLUs, ELU can deal with negative values of feature maps from convo-
lutional layers (Clevert et al., 2015). This is realized by α with α > 0. The negative values
of feature maps push the mean activations closer to zero which enable faster learning for
bringing the gradient closer to the natural gradient. When the input gets smaller, ELUs
saturate to a negative value. This decreases the variation and the information propagate
to the next layer. The performance of both functions if analyzed in Section 5.

(iii) Pooling Layer: Finally, we down-sample the resolution of the input from the
previous layer using either a) the average value in each neighborhood within the selected
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pooling window or b) the maximum value. The intuition is, that the exact location of
features is not important as its rough location relative to other features Zheng et al. (2014).
Note that the last convolutional layer is not followed by a pooling. We analyzed the effects
of different pooling window and convolution sizes in our experimental study.

(C) Last, after performing potentially multiple CNN/pooling layers (operating on each
temporal signals) we combine the output with the static environmental data by feeding
them jointly into a fully connected neuron – followed by a softmax activation function to
generate the final classification decision.

More precise, let x̂ij ∈ Rki be the output of the last CNN layer (for engine j and
signal i) and ej the environmental features of engine j, the predicted probability of being a
malfunction engine is given by

ỹj =
1

1 + exp(−wT · δj + b)
where δj = [x̂1

j , x̂
2
j , . . . , x̂

M
j , ej ]

Here w ∈ RLE+
∑M

i=1 ki and b ∈ R are learnable weights. Since we consider here a two-class
problem, the probability of being a correctly functional engine is accordingly 1− ỹj .

4.2. Loss function, class imbalance, and batch learning

To learn the parameters of the neural network, we have to define a corresponding loss
function – operating on the predicted class probabilities. Naively, in a (binary) classification
task one could employ the cross entropy loss:

L1({ỹi}i∈N ) = − 1

N

N∑
i=1

[yi · log(ỹi) + (1− yi)log(1− ỹi)] (2)

where yi denotes the true label and ỹi the predicted probability of the instance i, respectively.
By minimizing the loss – e.g. using gradient descent –, our goal is to lower the prediction
error with the hope to keep the AUC on the test set as high as possible.

Class Imbalanced Problem However, the engine dataset analyzed in this paper is hit
by the class imbalance problem (Japkowicz and Stephen, 2002), where number of positive
instances (i.e. the number of malfunctioned engines in our case), is clearly less than the
total number of non-damage engines. When the number of instances from one class arises
the other one, the learning process from the training data is adversely effected. Due to the
importance of this issue, many existing research works have addressed this problem (Bermejo
et al., 2011; Mazurowski et al., 2008). In general, these approaches can be divided into
three main classes (Galar et al., 2012): (a) Algorithm level approaches try to modify
the learning algorithm to bias the learning with focus on the even class as the minority
one. Required is here a prior know how why the learning behaviour of the algorithms
fails when e.g. the class of damaged engines is in minority. (b) Data level approaches
rebalance the dataset by resampling the even class and the non even class in e.g. an equal
distribution (Stefanowski and Wilk, 2008). (c) Cost sensitive learning is a combination
of the first two versionsa) and b). While the focus is to assign costs to different instances
to e.g. prioritize them in the minority class, the classifier is biased toward the even class
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by minimizing e.g. the result of the loss function used in classification (Maldonado et al.,
2014; Günnemann and Pfeffer, 2017).

In this paper, we tackled the class imbalance problem by using a combination of data
level and cost sensitive approaches. More precise, we used stochastic learning (mini batches)
to not only speed up the learning process but also to handle imbalance data.

First, we aim to minimize the following loss function

L2({ỹi}i∈N ) = − 1

N

N∑
i=1

[α · yi · log(ỹi) + (1− yi)log(1− ỹi)] (3)

where α = |N0|
|N1| is the ratio of class 0 to 1 (in our data: α ≈ 32). That is, class 1 is α

times less frequent than class 0. Intuitively, using Eq. 3, the less frequent class gets higher
influence.

Second, we minimize the loss function using stochastic gradient descent using informa-
tive mini batches. Instead of randomly selecting instances for the minibatch, each minibatch
B contains all instances N1 and a random subset of instances from N0 of the same carnal-
ity. Thus, the batch B is ’biased’ towards the minority class (compared to the original data
distribution). This is specifically helpful if the minority class is very small in the overall
data since the likelihood to pick these instances in a minibatch would be small.

Using the informative batches B, the stochastic gradient descent step is now computed
based on the loss L1 (not L2): L1({ỹi}i∈B). The class imbalance factor α is already absorbed
by the minibatch. Thus, overall we not only deal with class imbalance problem but also
speed up the learning process by training our CNN on a stochastic sample.

5. Experimental Results and Discussions

As mentioned in Section 3, the performance of proposed CNN network was tested on a
structure born noise dataset consisting of multiple signals, each in turn, representing 92890
frequency spectra vectors. In our case, each vector presents an engine mapped to a binary
label. Using the proposed CNN architecture on our dataset, our goal is to classify the two
groups of damaged respectively no damaged engines from each other with a high AUC. We
will now analyze our model in more details. All experiments were performed using a train-
test split of 80:20 and learning was done using the ADAM optimizer until convergence. All
numbers indicate the results on the test set. The model was implemented in TensorFlow
and executed on a K80 GPU disposing of 6 cores and 56GB Memory.

5.1. Analysis of parameters

We start by assessing the performance of our model when varying different parameters of
the architecture and learning method.

Window sizes and number of layers. Table 1 summarizes different AUCs produced
by using different sizes of convolutional filters or pooling windows used in our model – as
well as the number of layers used in the architecture (see Fig 2). As described, a convolution
layer is followed by a pooling layer unless the last layer of the model. For a fair comparison,
we used the same activation function (ELUs), pooling function (Max-function), and learning
rate 0.0001 for all architectures.
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nr. layer 1 layer 2 layer 3 auc
conv pool conv pool conv pool

1 (1,3) (1,3) (1,3) - - - 0.889
2 (1,5) (1,5) (1,5) - - - 0.913
3 (1,3) (1,5) (1,3) - - - 0.90
4 (1,3) (1,10) (1,3) - - - 0.90
5 (1,5) (1,10) (1,5) - - - 0.91
6 (1,3) (1,3) (1,3) (1,3) (1,3) - 0.87
7 (1,5) (1,5) (1,5) (1,5) (1,5) - 0.89

Table 1: Impact of size of filters and poolings on AUC.

For the convolution layer, we consider the two filters of size (1x3) and (1x5) since any
bigger size would cause loss of information in the temporal domain. In addition to this,
we analyzed the influence of max-pooling windows of size (1x3), (1x5) and (1x10) on AUC
values. Considering the results of the 2 layers architectures, it is obvious that using pooling
and filter with size of (1x5) leads to the best result followed by a pooling size of (1x10),
where AUC value drops slightly.

Considering the results of the 3 layers’ architecture, a better result is not achieved. One
reason might be the larger number of parameters, which makes the learning approach more
difficult and also might lead to overfitting. Therefore, in the following experiments, we focus
on the two layer architecture with a window size of (1x5) for pooling and filtering.

Learning rate and convergence. We also evaluated the AUC of our model in de-
pendency of the learning rate parameter. From the results in Figure 3, we can see that by
setting the value of the learning rate denoted by lr equal to 0.01, the loss value fluctuates
unstably.

However, by decreasing the learning rate parameter, a continuously decreasing loss can
be obtained. The AUC values for several selected learning rates are shown in Figure 4, with
0.001 achieving the highest AUC value (and being efficient at the same time) and thus also
used in the following.

Figure 3: Evaluation of Learning rate
versus convergence

learning rate auc

0.0001 0.929

0.001 0.913

0.01 0.899

Figure 4: Analyzing prediction performance
in dependency of learning rate
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Figure 5: Evaluation of pooling functions Figure 6: Evaluation of activation functions

function loss auc

activation
ELUs 785.71 0.929
ReLUs 1024 0.84

pooling
Max 785.71 0.929
Avg 1065.7 0.895

Table 2: Evaluation of activation and
pooling functions.

Pooling and activation functions. In
Figure 5 and 6, we explore the impact of the
two pooling functions max-pooling vs. average-
pooling on AUC values as well as the activation
functions ELUs vs. ReLUs. In Figure 5, it is
obvious that by using max-pooling function a
lower loss has been achieved. The AUC results
in Table 2 confirm that this lower loss is re-
flected in a better AUC values. Important to mention is that the used activation function
in both cases was the ELU. Exploring the impact of ReLU on AUC value versus ELU is
shown in Figure 6 as well as in Table 2 under the activation row. Again, here we can
conclude that ELU combined with max-pooling returns the best result.

Overall, our experimental analysis on our real-word dataset has shown that a two layered
CNN architecture including an ELU activation function combined with Max pooling leads
to the best AUC results.

5.2. Impact of data properties on the confusion matrix

In industry, it is essential for prediction tasks to reach a high precision and recall on the
minority class – since our main goal is to avoid malfunctions and high costs. Having
imbalanced data, such as in our use case, makes the realization of this goal difficult since
often false positives (i.e. functional engines will be predicted as defective) are reported.

As discussed in Section 4.2, we use informative mini batches to handle the imbalanced
data, thus, realizing the loss presented in Eq. 3. In the following we compare the classifica-
tion performance when considering or ignoring the aspect of imbalance (effectively setting
α = 1 in Eq. 3).

Figure 7 (left) shows the results by considering the corresponding recall-precision curves.
While the x axis shows the recall value, presenting the proportion of true positive in the
set of truly damaged instances, the y axis refers to precision. The red line shows our
principle while the blue line the result when ignoring the imbalance. As clearly shown, our
informative minibatches lead to a significantly higher precision even for larger recall values.

Considering the red line, we can observe that for high recall values of around 0.75-0.80,
we clearly outperform the blue line – considering the imbalance improves the results. In
contrast to the original class label distribution of 1:32 we can reach a level of around 1:1
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Figure 7: Comparing classification performance on precision-recall curves: left) Prediction
when considering class imbalance (red line) clearly outperforms prediction when
ignoring class imbalance (blue line). right) Influence of different data sources on
prediction performance.

(precison > 0.5) even for high recall values – a significant improvement. It is also worth
noting that our method does not simply lead to a trivial solution where all instances are
predicted as being in the majority class – a common issue for imbalanced data.

Multi-view data. Another important property of our dataset is that the data origi-
nates from different sources. In general, we have the two main data sources, one related to
the cold test results (temporal data) and the other one related to the (static) environmental
data including features such as engines’ model or number of cylinders. To examine the
relevance of each source on prediction performance, we analyzed each source individually.
Figure 7 (right) shows the corresponding recall-precision curve for each dataset.

Considering the lines for the environmental data only, it is clear that the classifier
only slightly discriminates the classes. In case of the temporal data, only for small recall
values high precision can be reached; followed by a quick drop. However, as it becomes
apparent both sources cover different combination: by combined them (our approach; red
line) we clearly outperform each individual source. Our proposed architecture realizes this
combination in an effective way.

6. Conclusion

In this paper, state of the art convolutional neural networks are used to deal with predicting
defective engines from a real-world use case. The data contains multi-view information and
is highly imbalanced. To predict the defective engines, we used a two layer CNN-architecture
operating on the temporal signal including different attempts on different activation and
pooling functions to reach the best results. To deal with the imbalance problem, we used
a combination of datalevel and cost sensitive approaches. The experimental results showed
that this approach leads to better recall and precision results.

While this paper analyzed for the first time the highly challenging scenario of engine
classification based on structure-borne noise measurements there are multiple directions for
future work. First, we aim to analyze ensemble methods to further improve the precision
and to handle the class imbalance. Additionally, it is of interest to combine our CNN
architecture with different sequential models as in e.g. Günnemann et al. (2014a,b) with
the goal to capture further dependencies.
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Nikou Günnemann, Stephan Günnemann, and Christos Faloutsos. Robust multivariate
autoregression for anomaly detection in dynamic product ratings. In Proceedings of the
23rd international conference on World wide web, pages 361–372. ACM, 2014a.
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