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Editors: Lúıs Torgo, Bartosz Krawczyk, Paula Branco and Nuno Moniz.

Abstract

Classifiers have difficulty recognizing under-represented minorities in imbalanced datasets,
due to their focus on minimizing the overall misclassification error. This introduces predic-
tive biases against minority classes. Post-processing plug-in rules are popular for tackling
class imbalance, but they often affect the certainty of base classifier posteriors, when the
latter already perform correct classification. This shortcoming makes them ill-suited to
scoring tasks, where informative posterior scores are required for human interpretation. To
this end, we propose the ILoss metric to measure the impact of imbalance-aware classifiers
on the certainty of posterior distributions. We then generalize post-processing plug-in rules
in an easily tunable framework and theoretically show that this framework tends to im-
prove performance balance. Finally, we experimentally assert that appropriate usage of our
framework can reduce ILoss while yielding similar performance, with respect to common
imbalance-aware measures, to existing plug-in rules for binary problems.

Keywords: classification, class imbalance, plug-in rules, posterior certainty

1. Introduction

In class imbalance problems, where class distributions are often highly skewed, classifiers
tend to favor over-represented classes. This happens due to overall performance maximiza-
tion goals, which effectively place importance on classes according to their priors. However,
in many real-life problems, correct identification of minority classes is at least as impor-
tant as identification of majority ones. Therefore, there is a need to balance performance
between majority and minority classes.

Furthermore, it is desirable to improve performance balance without considerably affect-
ing posterior distribution certainty for correctly classified samples. This way, imbalance-
aware scoring systems are prevented from shifting their posteriors towards the uniform
distribution when attempting to downplay the importance of majority classes. Since shift-
ing posteriors towards the uniform distribution can drastically impact human judgment
(e.g., one can easily consider class distribution [0.45, 0.55] as uninformative), avoiding such
shifts would improve the trust in the respective scoring systems.
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In this work, we outline popular imbalance-aware methods and performance measures.
We also present a novel metric, called ILoss, for measuring the certainty loss on correct
posteriors. We then generalize cost-sensitive plug-in rules used to post-process classifier
posteriors in a setting that only partially skews them. We theoretically show that employing
a certain family of functions to do so tends to improve performance balance. Finally, we
experimentally assert that certain functions from this family yield superior ILoss compared
to existing plug-in approaches without impacting imbalance-aware performance measures.

2. Background

Taking into account recent surveys (Fernández et al., 2017; Mundle and Chaudhari, 2017),
we categorize imbalanced methods into data pre-processing (section 2.1) and learning algo-
rithm modifications. The latter typically comprise cost-based post-processing (Section 2.2)
and weighting (Section 2.3). Recent works have also used ensembling (Section 2.4) in the
context of class imbalance. We briefly outline the above methods, placing more emphasis
to pre-processing and cost-based post-processing, which are utilized throughout this work.

2.1. Data pre-processing

Data pre-processing aims to reduce imbalance between priors in the training set using un-
dersampling, oversampling or hybrid approaches. Such methods enjoy widespread use, since
they do not affect the classification model. Undersampling balances priors by reducing the
number of majority class samples, whereas oversampling proliferates minority class samples
(e.g. by duplication). Advanced methods, such as the one by Zikeba et al. (2014), try to mit-
igate lost or duplicate information. Hybrid approaches attempt to combine undersampling
with oversampling to preserve the favorable characteristics of each approach. Pre-processing
training data to obtain a uniform prior distribution is rarely optimal in imbalanced class
settings (Weiss and Provost, 2003) and various class ratios have been proposed.

Notable pre-processing techniques besides random undersampling and oversampling in-
clude methods that remove majority class samples that interfere with minority classifications
(Kubat and Matwin, 1997), as well as methods that perform synthetic minority oversam-
pling (SMOTE) (Chawla et al., 2002). Seiffert et al. (2008) also propose a combination of
undersampling and oversampling to preserve the total number of samples.

2.2. Cost-based post-processing

Cost-sensitive learning formulates sample misclassification costs and tries to minimize the
overall cost across classes instead of the classification error. To this end, plug-in rules are
often used to estimate misclassification costs according to class priors. To improve perfor-
mance balance, such rules are designed to favor minority classes. For binary problems, this
practice is equivalent to threshold adaptation (i.e. selecting a different decision threshold).

Cost-sensitive analysis defines a cost matrix, where each element represents a misclas-
sification cost. Analysis then aims to minimize the overall misclassification cost. Several
works (Elkan, 2001; Dembczynski et al., 2013; Hong et al., 2016) posit that misclassification
costs can be estimated using class priors and plugged in the cost-sensitive function. For
classes i and user-defined class weights wi instead of costs, one can obtain the plug-in rule
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for sample x and classifier C that calculates posteriors Ci(x) = P (x ∈ i) using Eq. 1.

x ∈ argmax
i

[Ci(x)wi] (1)

2.3. Weighting

Weighting techniques assign misclassification costs on training samples. The classifier is
then responsible for taking those costs into account during training. Similarly to cost-based
post-processing, training weights are plugged-in using a prior-based estimation. Popular
classification algorithms have been adapted to account for weighted samples. For example,
weighted SVMs have been used by Silva et al. (2017). However, such analysis may prove
to be difficult for new classification models, since each model has different theoretical intri-
cacies. Seiffert et al. (2008) and Chawla et al. (2008) have found weighting practices to be
slightly inferior to sampling, since treating imbalance itself can yield more robust posteriors.

2.4. Ensembling

Ensembling aims to improve performance by aggregating weak base classifiers using vot-
ing. Arguably the most popular ensembling method is AdaBoost (Rätsch et al., 2001),
which trains different classifiers by adjusting the weights of training samples as it generates
base classifiers. Imbalance-aware approaches have used classifier ensembles to improve base
classifier performance towards minority classes while mitigating information loss. Boosting
approaches either disturb training weights (Seiffert et al., 2010) or use clustering (Ofek
et al., 2017) to train different base classifiers.

2.5. Notation and terminology

In this work, we use common stochastic analysis notation (Table 1). For clearer presentation,
we refrain from referencing the classifier when contextually obvious.

Table 1: Notation and terminology
EX [A(x)] Mean value of A(x) over all x ∈ X
1condition Yields 1 if condition holds true and 0 otherwise

P (A) Probability of event A.
P (A|B) Conditional probability of event A, assuming the event B

A(x) ∝ B(x) Denotes that A and B are proportional: ∃λ > 0 : A(x) = λB(x)∀x
TPRi True Positive Rate for class i is defined as TPi

TPi+FNi

FPRi False Positive Rate for class i is defined as FPi
FPi+TNi

accuracy(Ci) Accuracy for class i is defined as TPi+TNi
TPi+TNi+FPi+FNi

Ci Posteriors for class i of the classifier C

3. Imbalance-aware Metrics

Approaches aiming to tackle class imbalance measure performance using either Area Under
Curve (AUC) or performance means across classes. Mason and Graham (2002) propose AUC
of the Receiver Operating Characteristics curve (ROC) to evaluate separability between
different class posteriors. Oommen et al. (2011) point out that AUC is a robust measure
that remains unaffected from imbalance or sampling bias. Arithmetic Mean (AM) and
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Geometric Mean (GM) between True Positive Rates (TPRs) across all N classes i are also
popular performance measures for imbalanced datasets, since they are easy to explain when
calculating TPR trade-offs between classes. Menon et al. (2013) confirm certain favorable
theoretical properties for AM, but GM focuses more on balanced classifications and is
usually preferred for evaluation.

GM = N

√∏
i

TPRi (2)

Unfortunately, GM is not completely imbalance-insensitive, since it still favors higher overall
performance. Hence, one can also measure imbalance as average TPR disparity:

Imb =
1

N(N − 1)

∑
i

∑
j

|TPRi − TPRj | (3)

This metric completely discards performance maximization goals but can be used to com-
pare classifiers that exhibit similar GM.

There has been little to no work towards examining the impact of imbalance-aware
techniques on the certainty of posteriors in scoring systems. In such systems, it becomes
important for posteriors to be easily interpreted by humans. Although AUC evaluates
whether posteriors clearly separate classes, it fails to measure whether prediction certainty
is preserved for originally correct classifications. For example, imbalance-aware classifiers
could cause posteriors to differ from the uniform distribution by a small margin; the classi-
fication would still optimize performance goals, such as GM and AUC, but humans would
interpret posterior differences as unclear. Furthermore, as pointed out by Krawczyk (2016),
it is important to retain posteriors for samples correctly identified by the base classifier.

Assuming that the level of certainty for originally correct classifications is not mis-
placed, we propose that imbalance-aware classifiers should preserve this certainty as much
as possible. To this end, we compare the certainty of an imbalance-aware method against
the certainty of the base classifier. Employing entropy(C(x)) = −

∑
i ci(x) log ci(x) with

ci(x) = Ci(x)/
∑

iCi(x) to measure classification uncertainty (in bits), we can calculate the
certainty loss between an imbalance-aware classifier R(C) and a base classifier C:

ILoss = E
[
1y=argmaxC(x)

(
entropy

(
R(C(x))

)
− entropy(C(x))

)]
(4)

ILoss increases if imbalance-aware methods yield lower certainty (i.e. posteriors are closer
to the uniform distribution) than base classifiers for correct classifications.

4. Tunable Plug-in Rules

In this paper, we generalize post-processing plug-in rules in a framework that can use a
wide range of posterior distribution editing mechanisms. In that way, it is possible to
improve balance while exploring different heuristics that intertwine priors with posterior
rebalancing1. Furthermore, following previous concerns against heuristic costs (Krawczyk

1. Researchers often use the term rebalancing to indicate a process that yields performance balance between
majority and minority classes. For example, this terminology is used by Zhou and Liu (2010).
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and Woźniak, 2015; Yu et al., 2016), our framework allows non-heuristic tuning towards
the set goal. For our analysis, we examine cases where there exists a monotonic relation
between priors and classifier performance (which is always true for binary problems).

Definition 1 A classifier C will be called TPR-imbalanced if and only if, for every class
pair i, j with priors fi ≥ fj, TPRi(C) ≥ TPRj(C) and more samples are classified in class
i.

A simple way to rebalance posteriors would be skewing their distribution in the opposite
way imbalance does. Intuitively, if a class produces, on average, higher posterior scores than
other classes, we expect more classifications to be attributed to it, thus increasing TPR and
FPR. Of course, new assignments may be only erroneous or only correct, but the general
tendency is for an even distribution between TP and FP. Since our work aims to retain
posterior certainties, we also theorize that the posterior distribution of the base classifier
should preferably be only partially edited. Hence, we propose a weighted voting mechanism
between the base and the plug-in classifier posteriors. This formulation shares certain
similarities to the work of Weng and Poon (2008), who employ asymmetric ROC curves to
skew only a portion of the imbalanced posteriors.

Definition 2 For a probabilistic classifier C : S → WN ⊆ RN in feature space S, we may
use a suitable bounded function t : [0, 1] × W → R and a : WN → (0, 1] to obtain the
rebalanced classifier R(C) with:

R(C)i(x) =
(
1− a(x)

)
Ci(x) + a(x)t

(
fi, Ci(x)

)
(5)

The above process yields the classification rule x ∈ argmaxiR(C)i(x), which generalizes
Eq. 1. For example, it can be shown that using constant a and a posterior-independent
function t yields classification decisions equivalent to thresholding. We will later show that,
for an appropriate selection of t(f, w) and constant a, this rule tends to reduce imbalance. In
particular, in an imbalanced setting where classification performance and class frequencies
are monotonically related, rebalanced posteriors need to be staged in favor of minority
classes. Therefore, the function t(f, w) must be decreasing for class priors f . To preserve
same-class posterior orderings, this function should also be increasing for w.

Definition 3 A function t : [0, 1] ×W → R differentiable on W will be called a rebalance
function if:

fi ≥ fj ⇔ t(fi, w) ≤ t(fj , w)

∂t(f, w)

∂w
≥ 0, ∀w 6= 0

s.t. t(f, 0) = 0 and t(1, w) ≥ w

(6)

Theorem 4 For a binary imbalanced classifier, thresholding is equivalent to rebalancing
with rebalance function ∂t(f,w)

∂w = 0 and a ∈ [0, 1).
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Proof For a two-class problem with priors f1 ≥ f2, rebalance function t(f, w) and posteriors
w1, w2, the classification rule can be reduced to calculating the sign of quantity

sign((1− a)w1 + at(f1, w1)− ((1− a)w2 + at(f2, w2)))

= sign((1− a)(w1 − w2)− a(t(f1, w1)− t(f2, w2)))

= sign(w1 − w2 + θ)

where θ = − a
1−a(t(f1, w1) − t(f2, w2)). However, if ∂t(f,w)

∂w = 0 then t(f1, w1) − t(f2, w2) =
const ≥ 0. For a ∈ [0, 1) we obtain θ = const ∈ [0,∞), reducing the classification rule to
binary thresholding.

Theorem 5 For a TPR-imbalanced classifier C and rebalance function t : [0, 1]×W → R,
there exists amax ≤ 2 such that, ∀a ∈ (0, amax], rebalancing with Eq. 5 tends to induce:

Imb(C) > Imb(R(C)) (7)

Proof Defining Mean Class Scores (MCS) for a class i as MCSi = Ex[Ci(x)], for Ci(x) ∝
P (C(x) ∈ i) we obtain:

MCSi ∝ Ex[P (C(x) ∈ i)] = P (C(x) ∈ i)
= P (C(x) ∈ i|x ∈ i)P (x ∈ i) + P (C(x) ∈ i|x 6∈ i)P (x 6∈ i)
= TPRifi + FPRi(1− fi)

For fi ≥ fj , TPi + FPi ≥ TPj + FPj ⇔MCSi ≥MCSj and t(f, w)− w decreasing for w:

Ex

[
t(fi, Ci(x))− Ci(x)

]
≤ Ex

[
t(fj , Cj(x))− Cj(x)

]
⇔ ∆RMCSi ≤ ∆RMCSj

Otherwise, for fi ≥ fj , MCSi ≥MCSj , finite many samples and set K =
[
0, 1/ inf ∂t(f,w)

∂w

]
,

any K ∈ K yields ∂(Kt(f,w)−w)
∂w < 0 ⇒ Kt(f, w) − w is decreasing. For Ta,K(w) = w 1−a

1− a
K

,

rebalancing (1− a)w+ at(f, w) = (1− a
K )Ta,K(w) + a

KKt(f, w) is equivalent to rebalancing
with a′ = a

K and t′(f, w) = t
(
f, T−1a,K(w)

)
on classifier Ta,K(C). Trionym analysis then

shows that, ∀a ≤ 1.5 + 0.5/ inf ∂t(f,w)
∂w ⇒ a ≤ amax, amax ≤ 1.5 + 0.5/t(1, 1) ≤ 2 ∃K ∈ K:

(1− a)K2 −K + a ≥ 0⇔ 1
K

1− a
K

1−a − 1 ≤ 0

⇒ ∂t
∂w (f, T−1a,K(w))∂T

−1

∂w (w)− 1 ≤ 0⇔ ∂t′(f,w)
∂w − 1 ≤ 0

⇔ t′(f, w)− w is decreasing

⇒ ∆R(Ta,K)MCSi ≤ ∆R(Ta,K)MCSj

⇒ ∆RMCSi ≤ ∆RMCSj

We can also obtain a linear approximation to ∆RTPRi for small MCS fluctuations:

∆RMCSi ≈
∂MCSi
∂TPRi

∆RTPRi ∝ fi∆RTPRi

121



Tunable Plug-In Rules with Reduced Posterior Certainty Loss in Imbalanced Datasets

Therefore, since t(f, w) ≥ w ⇒ ∆RMCIj ≥ 0, for fi ≥ fj :

∆RMCSi −∆RMCSj ≤ 0

⇔ fi(∆RTPRi −∆RTPRj) +
fi−fj
fj

∆RMCSj ≤ 0

⇒ ∆RTPRi −∆RTPRj ≤ 0

Hence, ∆R|TPRi − TPRj | ≤ 0.

Finally, we recognize the case of inverse imbalance; a classifier could yield improved perfor-
mance for minority classes, e.g. due to class cost over-skewing.

Definition 6 A classifier C will be called inverse TPR-imbalanced if and only if fi ≥ fj ⇔
TPRi(C) ≤ TPRj(C) and less samples are classified in class i for class priors fi, fj.

Theorem 7 For an inverse TPR-imbalanced classifier C and any rebalance function tpos :
[0, 1]×W → R, there exists amax ≤ 2 such that, ∀a ∈ (0, amax], rebalancing with Equation 5
and t(f, w) = tpos(1− f, w) tends to induce:

Imb(C) > Imb(R(C))

Proof Proof is the dual of Theorem 5.

5. Experiments

5.1. Experimental Setup

To showcase the effectiveness of the presented rebalancing framework, we propose a post-
processing scheme based on Eq. 5, which we compare with other imbalance-aware schemes
on various imbalanced datasets. In all cases, we employ as base classifier Weka’s (Hall et al.,
2009) implementation of Logistic Regression (LR) with default parameters. The source code
for our experiments is available online.2

Our proposed scheme is called Tuned Inverse function Rebalance (TIR) and utilizes
the rebalance function w/f and parameter a ∈ [0, 2] tuned over the training set3 towards
maximizingGM−Imb/2 by Algorithm 1. This objective reflects thatGM is more important
than imbalance and was empirically found to provide a good performance trade-off.

Algorithm 1 Tuning Mechanism
1 Detect whether problem is TPR-imbalanced or negative TPR-imbalanced
2 Set a← 1, range← 1, step← 0.1
3 Select aBest ∈ a− range : step : a+ range maximizing the objective over the training set
4 a← aBest, range← step, step← 0.1× range
5 If training objective value changed more than 0.1%, go to 3

2. https://github.com/MKLab-ITI/Posterior-Rebalancing

3. Further splitting the training set to tune the parameter was found to yield inferior results.
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TIR is compared with the base classifier, tuned plug-in rules (employing the same tuning
mechanism) and a ROC-based Moving Threshold (RMT) approach. The latter bears a simi-
larity to our work, since it sets minority class weights equal to class ratio and tunes majority
class weights in the range [0, 200] for Eq. 1. We also compare post-processing mechanisms
when resampling is employed to pre-process datasets.4 Table 2 lists the compared schemes.

Table 2: Evaluated Schemes
Abbreviation Source Method

Base (LR) Weka (Hall et al., 2009) No rebalancing
TIR This paper Rebalancing with tuned a ∈ [0, 2] and w/f
TPlugIn Yu et al. (2016) Tuned plug-in rule for adaptive thresholding
RMT Krawczyk and Woźniak (2015) ROC-based moving threshold

Resampling Seiffert et al. (2008) Combination of under/oversampling
Resampling+TIR This paper Post-process resampling using TIR
Resampling+TPlugIn Thai-Nghe et al. (2010) Post-process resampling using TPlugIn
Resampling+RMT This paper Post-process resampling using RMT

As per Theorem 4, tuned plug-in rules make the same classification decisions as binary
adaptive thresholding that shifts the decision threshold. However, thresholding does not
alter posteriors and is thus unsuitable for scoring mechanisms.

Experiments are carried out on a collection of 28 imbalanced datasets commonly used in
the literature for imbalanced classification experiments. Of those, 19 come from the publicly
available HDDT algorithm validation (Cieslak and Chawla, 2008), whereas the rest were
extracted from the public UCI repository (Lichman, 2013). Although Eq. 5 supports multi-
class problems, in practice priors and performance are not always correlated in multi-class
datasets among multiple minority classes. Thus, in case of multi-class labels, we focus
on recognizing the smallest minority class. As seen in Table 3, our experiments encompass
datasets with various numbers of instances, features and, importantly, degrees of imbalance.

Evaluation uses stratified 10-fold cross-validation and applies the same random splits
each time. To measure the effectiveness of various schemes in tackling class imbalance, we
employ the GM and Imb metrics described in Section 3, whereas AUC is used to measure
the impact on base classifier posterior ranks, and confidence loss (ILoss) is used to measure
the impact on rank descriptiveness.

To test for statistically significant differences between schemes across datasets, we follow
the methodology suggested by Demšar (2006). In particular, we first use the Friedman test
as a non-parametric alternative of repeated ANOVA measures. The Friedman test operates
on the average ranks of the methods and checks the validity of the (null) hypothesis that
all methods are equivalent. When the null hypothesis of the Friedman test is rejected
(p < 0.05), we proceed with the Nemenyi post-hoc test, which compares schemes to each
other across datasets and finds the statistical significance of differences between their average
performance ranks. Lower ranks indicate superior performance but only differences over a

4. The selected resampling methodology of Seiffert et al. (2008) performs sampling (with replacement) to
create a new dataset of the same size with specified class frequencies. This process is equivalent to
simultaneously performing both undersampling and oversampling. For class ratios less than 10, we set
sampling to produce a 50 : 50 split, but for higher imbalances we set a 65 : 35 resampled dataset split,
which Khoshgoftaar et al. (2007); Anand et al. (2010) have found to yield better results.
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Table 3: Details of binary evaluation datasets. Class ratio is calculated as fmax/fmin.
Name Source Instances Features Class Ratio
Boundary HDDT 3,505 176 27.5
Breast-Y HDDT 286 10 2.4
Cam HDDT 18,916 133 19.1
CompuStat HDDT 13,657 21 25.3
CovType HDDT 38,500 11 13.0
Credit-G HDDT 1,000 21 2.3
Estate HDDT 5,322 13 7.4
Heart-V HDDT 200 14 2.9
Hypo HDDT 3,163 26 19.9
ISM HDDT 11,180 7 42.0
Letter HDDT 20,000 17 24.3
Oil HDDT 937 50 21.9
Page HDDT 5,473 11 8.8
PenDigits HDDT 10,992 17 8.6
Phoneme HDDT 5,404 6 2.4
PhosS HDDT 11,411 481 17.6
SatImage HDDT 6,430 37 9.3
Segment HDDT 2,310 20 6.0
Sick HDDT 3,772 30 15.3
Adult UCI 32,561 15 3.2
Car UCI 214 7 25.6
Contraception UCI 1,473 10 3.4
Glass UCI 214 11 22.8
Lung Cancer UCI 32 56 2.6
Page Blocks UCI 1,728 7 194.5
Sick Euthyroid UCI 3,163 26 9.8
Thoraric Surgery UCI 470 16 5.7
Yeast UCI 1,484 10 295.8

certain Critical Difference (CD) are considered statistically significant. Since this test is
considerably strict, we use a slightly lower confidence (p < 0.1) to calculate CD.

5.2. Experimental Results

Table 4 indicates that all three posterior editing methods yield similar GM and AUC values,
i.e. the Friedman null hypothesis is not rejected. The Nemenyi post-hoc test shows that
TIR yields significantly better ranks for Imb compared to RMT, whereas TIR and RMT
yield significantly better ILoss ranks compared to TPlugIn. These results indicate that TIR
is superior to the other two methods, since it exhibits desirable behavior both for obtaining
more balanced classification and for retaining posterior certainty. It must be noted that all
three posterior editing schemes dominate the GM and Imb of the base classifier.

In agreement with previous works, the findings in Table 5 provide evidence in favour of
TIR and TPlugIn to improve balance on base classifiers trained under resampling. Although
the Friedman test reveals statistically significant differences only for AUC and ILoss, where
Resampling outperforms its combination with post-processing techniques, TPlugIn and TIR
are able to improve GM and Imb for a significant portion of datasets. Instead, RMT fails
to produce similar improvements in this setting. These findings indicate that, for certain
problems, there is merit in using TIR and TPlugIn to improve resampling GM and Imb.

6. Conclusions and Future Work

In this paper, we explore the concept of partially editing classifier posteriors as a general-
ization to plug-in rules. We show the relation of such practices to thresholding for binary
problems and prove that they tend to reduce imbalance. Our analysis outlines the required
characteristics for rebalance functions. Experiments show that there is merit to applying
Equation 5 on binary imbalance problems, as suitable rebalance functions are superior to
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Table 4: Posterior Editing LR Experiments. Arrows indicate whether metrics need to be
maximized (↑) or minimized (↓). For all metrics, lower Average Ranks indicate
superior results. Nemenyi CD is 0.55. Friedman test is rejected for Imb and ILoss.

Base TIR TPlugIn RMT
Dataset GM↑ Imb↓ AUC↑ GM↑ Imb↓ AUC↑ ILoss↓ GM↑ Imb↓ AUC↑ ILoss↓ GM↑ Imb↓ AUC↑ ILoss↓
Boundary .39 .83 .76 .56 .22 .60 .64 .56 .22 .60 .85 .56 .22 .60 .64
Breast-Y .50 .61 .66 .62 .08 .67 .10 .61 .09 .68 .18 .62 .10 .68 .10
Cam .32 .89 .84 .49 .02 .61 .58 .50 .02 .61 .76 .50 .02 .61 .58
CompuStat .15 .98 .80 .58 .01 .58 .58 .58 .01 .58 .77 .58 .01 .58 .58
CovType .51 .72 .90 .60 0 .72 .55 .61 .01 .72 .72 .61 .02 .72 .55
Credit-G .60 .49 .76 .71 0 .75 .09 .70 0 .75 .21 .70 .01 .75 .10
Estate .16 .97 .63 .61 0 .63 .42 .61 .01 .63 .44 .60 .05 .63 .42
Heart-v .55 .58 .71 .65 .08 .71 .13 .65 .08 .71 .27 .64 .06 .71 .13
Hypo .86 .25 .97 .87 .03 .90 .77 .87 .03 .90 .89 .87 .03 .90 .77
ISM .63 .59 .92 .69 .20 .69 .80 .69 .19 .69 .90 .69 .20 .69 .81
Letter .92 .16 .99 .90 .01 .92 .85 .90 .01 .92 .92 .90 .01 .92 .85
Oil .74 .41 .82 .77 .25 .80 .40 .77 .25 .77 .88 .77 .25 .80 .40
Page .80 .34 .94 .77 .01 .86 .49 .78 .01 .86 .72 .79 .05 .86 .49
PenDigits .94 .10 .99 .93 0 .95 .76 .93 .01 .95 .86 .93 .01 .95 .75
Phoneme .64 .40 .81 .75 0 .81 .08 .75 0 .81 .25 .75 0 .81 .08
PhosS .33 .88 .76 .49 .07 .55 .58 .49 .07 .55 .75 .49 .07 .56 .58
SatImage .15 .97 .77 .55 .02 .56 .47 .55 .01 .56 .58 .55 .01 .56 .47
Segment .99 .01 1 .99 .01 1 .10 .99 .01 1 .86 .99 .01 1 .10
Sick .78 .37 .94 .83 .04 .87 .69 .84 .04 .87 .82 .83 .05 .87 .69
Adult .65 .50 .85 .75 0 .84 .18 .75 0 .84 .37 .76 .06 .84 .17
Car .66 .54 .98 .80 .04 .91 .48 .80 .04 .90 .88 .80 .03 .91 .48
Contraception .30 .88 .72 .67 0 .72 .16 .67 0 .72 .27 .67 .01 .72 .16
Glass 1 0 1 .99 .02 1 .07 .99 .02 1 .95 .82 .33 1 .04
Lung Cancer .74 .16 .72 .72 .12 .81 .49 .69 .17 .75 .65 .56 .62 .71 .14
Page Blocks .71 .50 .99 .82 0 .87 .73 .81 .03 .87 .97 .80 .04 .87 .73
Sick Euthyroid .82 .30 .96 .90 .01 .95 .55 .90 .01 .95 .76 .91 .02 .95 .54
Thoracic Surgery .23 .91 .65 .62 .13 .66 .33 .62 .13 .65 .42 .62 .10 .66 .33
Yeast 1 0 1 1 0 1 .02 1 0 1 .98 1 0 1 .01
Average Ranks 1.98 1.77 1.96 1.57 1.96 1.89 2.11 3.00 2.05 2.34 1.93 1.43

Table 5: Resampling LR experiments. Arrows indicate whether metrics need to be maxi-
mized (↑) or minimized (↓). For all metrics, lower Average Ranks indicate superior
results. Nemenyi CD is 0.79. Friedman test is rejected for AUC and ILoss.

Resampling Resampling+TIR Resampling+TPlugIn Resampling+RMT
Dataset GM↑ Imb↓ AUC↑ ILoss↓ GM↑ Imb↓ AUC↑ ILoss↓ GM↑ Imb↓ AUC↑ ILoss↓ GM↑ Imb↓ AUC↑ ILoss↓
Boundary .63 .43 .75 .01 .62 .46 .73 .26 .62 .48 .66 -.01 .62 .48 .73 .19
Breast-Y .65 .05 .68 .07 .66 .06 .68 .08 .66 .06 .68 .06 .67 .04 .68 .08
Cam .76 .04 .84 .42 .76 .05 .83 .45 .76 .05 .83 .42 .73 .11 .81 .47
CompuStat .75 .04 .81 .55 .75 .01 .81 .56 .75 .02 .81 .58 .45 .78 .82 .56
CovType .85 .02 .91 .28 .85 0 .90 .35 .85 0 .90 .26 .80 .23 .90 .46
Credit-G .69 .03 .74 .07 .69 .02 .74 .07 .69 .02 .74 0 .69 .01 .74 .07
Estate .60 .03 .63 .41 .61 0 .63 .41 .61 0 .63 .41 .35 .81 .63 .39
Heart-v .61 .10 .64 .02 .62 .09 .66 .07 .64 .05 .67 -.12 .65 .04 .66 .07
Hypo .95 .02 .96 .04 .94 .05 .96 .41 .94 .05 .96 .11 .90 .06 .95 .46
ISM .87 .05 .92 .46 .87 .01 .91 .54 .87 .01 .91 .66 .87 .01 .91 .54
Letter .95 .01 .99 .13 .95 0 .97 .62 .95 0 .97 .69 .82 .27 .96 .70
Oil .80 .25 .83 -.01 .80 .25 .84 .02 .80 .25 .79 .65 .79 .28 .82 .01
Page .91 .02 .96 .20 .91 .01 .95 .36 .91 .01 .95 .45 .91 .02 .95 .40
PenDigits .95 0 .99 .08 .95 .01 .97 .54 .95 .01 .97 .52 .95 .03 .97 .66
Phoneme .74 .10 .81 .06 .74 .02 .81 .05 .74 0 .81 -.14 .74 0 .81 .05
PhosS .66 .20 .74 .26 .66 .25 .72 .36 .66 .25 .72 .22 .66 .25 .72 .36
SatImage .70 .23 .76 .22 .68 .01 .76 .27 .67 .04 .76 .10 .67 .04 .76 .27
Segment .99 0 1 0 .99 0 1 .02 .99 0 .99 .76 .99 0 1 .02
Sick .89 0 .94 .20 .89 .03 .93 .36 .89 .03 .93 .18 .89 .03 .93 .36
Adult .77 .02 .85 .13 .77 0 .84 .16 .77 0 .84 .18 .77 0 .84 .16
Car .94 .03 .98 .03 .93 .01 .97 .19 .92 .03 .97 0 .92 .03 .97 .16
Contraception .66 .13 .72 .15 .66 .01 .72 .14 .67 .02 .72 .05 .67 .02 .72 .14
Glass .98 .04 .98 0 .98 .04 .98 .13 .98 .04 .98 .79 .93 .08 .98 .07
Lung Cancer .60 .10 .68 -.06 .60 .10 .64 .09 .60 .10 .65 .60 .62 .43 .68 .04
Page Blocks .93 .08 .98 .05 .93 .09 .98 .23 .94 .09 .94 .01 .86 .06 .95 .26
Sick Euthyroid .90 .05 .95 .15 .91 .02 .94 .32 .92 0 .94 0 .92 0 .94 .29
Thoracic Surg. .60 .15 .61 .16 .60 .09 .61 .22 .60 .09 .60 .26 .60 .06 .61 .22
Yeast 1 0 1 0 1 0 1 .01 1 0 1 .95 1 0 1 0
Average Ranks 2.41 2.70 1.79 1.75 2.43 2.20 2.59 3.00 2.32 2.32 2.89 2.30 2.84 2.79 2.73 2.95
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previous plug-in rule approaches in reducing imbalance while retaining classification cer-
tainty. Hence, the proposed framework can be used to obtain better scoring mechanisms.
Furthermore, we confirm that it is possible for posterior editing approaches to improve
sampling GM and balance for certain problems.

In the future, we are interested in conducting experiments on more base classifiers,
datasets and rebalance schemes. Since performance may not directly correlate to minority
priors, if there are multiple minority classes, we also propose extending the multiclass aspect
of our analysis to using an increasing function of the imbalanced metric instead of priors.
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