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Abstract

Dealing with class imbalance is a challenging issue in churn prediction. Although resampling-
based ensemble solutions have demonstrated their superiority in many fields, previous re-
search shows that they cannot improve the profit-based measure in churn prediction. In
this paper, we explore the impact of the class ratio in the training subsets on the predictive
performance of resampling-based ensemble techniques based on experiments on real-world
churn prediction data sets. The experimental results show that the setting of the class
ratio has a great impact on the model performance. It is also found that by choosing suit-
able class ratios in the training subsets, UnderBagging and Balanced Random Forests can
significantly improve profits brought by the churn prediction model. The demonstrated
results provide some guidelines for both academic and industrial practitioners.

Keywords: Churn prediction, Class imbalance, Profit-based measure, Resampling-based
ensemble

1. Introduction

Churn prediction aims at identifying potential churning customers based on past informa-
tion and prior behaviors and is an important issue in customer relationship management.
Due to fierce market competitions customers can easily switch between competitors. The
literature has suggested that attracting new customers is five to six times more expen-
sive than serving current customers (Colgate and Danaher, 2000). Therefore, companies
have been forced to pay more attention to retaining existing customers than acquiring new
customers. Accurate churn prediction can help companies to focus their retention efforts
towards the right customers at the right time and we have witnessed various applications
of data mining techniques in this field.

One important issue in churn prediction is to deal with class imbalance. The number of
churners is usually significantly outnumbered by the non-churners in many industries. In
the telecom sector for instance, the monthly churn rate is 2%. The class imbalance problem
has a negative influence on the standard classification algorithms as they tend to misclassify
the minority instances more often than the majority instances. In extreme cases, they may
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Resampling-based ensemble

simply classify all instances to the majority class, resulting in high overall precision but
unacceptably low accuracy with respect to minority class of interest. To deal with this
issue, many solutions have been proposed, which can be roughly categorized into data-level,
algorithm-level and ensemble solutions (Branco et al., 2016; Krawczyk, 2016). Ensemble
solutions try to develop or modify existing ensemble learning algorithms to improve the
performance on imbalanced data sets. This approach has demonstrated its superiority in
many fields, especially the resampling-based ensemble which integrates sampling strategies
into the base classifiers training stage. However, our previous research has shown that
ensemble solution shows no improvement of the profits brought by the churn models (Zhu
et al., 2017), which is arguably the main metric of interest in the context of churn and other
business-oriented data mining models, rather than accuracy or related metrics.

In this paper, we explore the impact of the class ratio in the training subsets on the
behavior of resampling-based ensemble models and try to find a way to improve the model
performance of resampling-based ensembles in terms of the profit-based measure. Most cur-
rent resampling-based solutions assume equally balanced post-sampling class ratios for base
classifiers training as our previous empirical research has done (Zhu et al., 2017). However,
some scholars have have found that such a balanced class ratio is not optimal when using
sampling as a preprocessing step to learn single classifiers (Albisua et al., 2013). There-
fore, one reasonable conjecture is that the class ratio does not need to be balanced when
training the base classifiers in a resampling-based ensemble. In order to justify this conjec-
ture, we carry out a set of experiments on real-world churn prediction data sets to study
the relationship between the class ratio in the training subsets and the model performance
of resampling-based ensemble. A recently developed profit-based measure called expected
profit measure (EMP) is used as the measure in the experiment to calculate the profit
brought by the churn prediction model. Our experiments show that the class ratio in the
training subsets has a significant impact on the model performance. By choosing a suitable
ratio, UnderBagging and Balanced Random Forest can gain significant improvements in
terms of the profit-based measure.

The remainder of this paper is organized as follows. In Section 2, we will briefly review
related work in churn prediction and class imbalance. Then, Section 3 presents the exper-
imental methodology and Section 4 discusses the experimental results. Finally, Section 5
gives conclusions and directions for further research.

2. Related Work

Class imbalance is intrinsic to many data sets used in churn prediction. Most standard
classification algorithms exhibit a bias towards the majority class and hence suffer from
class imbalance (Sun et al., 2009). Many solutions have been proposed to address this
issue, which can be roughly divided into three categories: data-level, algorithm-level and
ensemble solutions. The data-level solution tries to re-balance the class distribution by
resampling the original unbalanced data sets. This solution consists of many different forms
of resampling techniques such as random over-sampling, random under-sampling, and the
synthetic minority over-sampling technique (SMOTE). Algorithm-level solutions attempt
to adapt existing learning algorithms to strengthen their learning ability with regards to
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the minority class. Cost-sensitive learning, active learning, one-class learning are typical
methods in this group.

Ensemble solutions have become increasingly popular in recent years. They either mod-
ify existing ensemble learning algorithms at the data-level to preprocess the data before the
learning base classifiers or they embed a cost-sensitive framework in the ensemble learn-
ing process. Consequently, ensemble solutions can be further divided into cost-sensitive
ensembles and resampling-based ensembles. Cost-sensitive ensembles assign different mis-
classification costs to different classes in the ensemble algorithm, so that a heavier penalty is
placed for misclassifying the minority class. The main difficulty with such techniques is then
to configure suitable misclassification costs for the different classes, which is a non-trivial
task.

Resampling-based ensemble techniques embeds data-preprocessing into the training of
the base classifiers. It is preferred for its simplicity and effectiveness. Many ensemble solu-
tions based on Bagging, Boosting, and Random Forests techniques have been proposed. For
example, UnderBagging and OverBagging (Wang and Yao, 2009) use random undersam-
pling and oversampling respectively so that the class distribution is balanced when building
each base model in the ensemble. Roughly Balance Bagging (Hido et al., 2009) is also based
on undersampling, but the size of the majority examples is determined probabilistically ac-
cording to a negative binomial distribution, whereas the number of minority examples is
always the same. In SMOTEBagging (Wang and Yao, 2009), each training data subset is
composed of a bootstrap sample taken from the majority class, and a sample of the minority
class created through a combination of random oversampling and SMOTE. Chawla et al.
proposed an approach called SMOTEBoost by the combination of SMOTE sampling and a
boosting procedure (Chawla et al., 2003), in which SMOTE sampling is used before com-
puting the new instance weights in each iteration. Seiffert et al. (2010) presented a different
ensemble method named RUSBoost, which removes instances from the majority class by
random undersampling in each iteration of the boosting procedure. Chen et al. (2004) pro-
posed the Balanced Random Forest (BRF), which combines random undersampling with
the Random Forest approach. For each repetition, the same number of instances from the
minority class and the majority class are drawn at random. Galar et al. (2012) developed a
thorough empirical comparison by the consideration of a wide range of ensemble solutions.
One of their main conclusions states that resampling-based solutions provide better results
than cost-sensitive ensembles.

In churn prediction, the techniques to deal with class imbalance do not go beyond
the scope of data-level, algorithm-level and ensemble-based solutions. Burez and Van de
Poel (2009) performed experiments to investigate how to better handle class imbalance in
churn prediction, where random undersampling and Weighted Random Forests show their
effectiveness in terms of the AUC measure. Meanwhile, our previous research shows no
improvement for the ensemble-based solutions when a profit-based measure is considered
and the predictive performance of cost-sensitive ensembles are worse than the resampling-
based ensembles (Zhu et al., 2017).
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Table 1: Summary of the churn data sets used in the experiment

Data set Source Region #Obs. #Att. Churn Rate (%)

Chile Operator South American 5300 41 5.66
Duke1 Duke North American 51306 173 1.80
Duke2 Duke North American 100462 173 1.80
KDDcup KDD CUP 2009 Europe 50000 231 7.34
K1 Operator East Asia 2019 10 3.96
K2 Operator East Asia 2941 14 4.42
K3 Operator East Asia 5990 36 4.34
K4 Operator East Asia 2183 9 4.58
K5 Operator East Asia 26224 11 4.19
Tele1 Operator Europe 4350 87 8.05
UCI UCI ML repository - 3333 19 14.5

3. Experimental Framework

Ensemble algorithms usually consist of two stages, i.e. base model training and aggregation,
so that the improvement of model performance can be done in both stages. In this paper,
we focus on the base classifier training stage and try to investigate how changes of the class
ratio influence the final predictive performance based on experiments on the real-world data
sets.

The profits brought by the model are of main concern in the context of churn prediction.
However, the commonly used measure metric AUC does not take this factor into account. To
measure the profit, Neslin et al. (2006) presented a framework and established the following
expression to get the total profit for a retention campaign:

P = Nα[βγ(CLV − c− δ) + β(1 − γ)(−c) + (1 − β)(−c− δ)] −A (1)

where P is the profit of the retention campaign, N is the number of customers in the
current customer base, α is the fraction of the target customers in the retention campaign,
β is the portion of churners within the targeted customers, γ is the probability of would-be
churners accepting the offer and staying in the company, CLV is the average customer
lifetime value of retained customers, c is the cost of the incentive when a customer accepts
the offer, δ is the cost of contacting a customer to offer the incentive, and A is the fixed
administrative cost of running a retention program. By taking into account the uncertainty
of the probability of accepting incentive offer, Verbraken developed the expected maximum
profit (EMP) (Verbraken et al., 2013), which is calculated as follows:

EMP =

∫
γ
Pc(T (γ);CLV, δ, φ) · h(γ)dγ (2)

where h(γ) is the probability density function for γ. Given a γ value, T (γ) is the optimal
threshold and Pc(T (γ);CLV, δ, φ) is the maximum profit obtained by selecting an optimal
targeting size α in equation (1). γ is assumed to follow a Beta distributed random variable
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B(α, β). We use the EMP measure as the main performance measure in our experiments.
The parameters CLV , δ, and c were set to be 200, 10 , and 1, respectively. The two
parameters in B(α, β) were set to be 6 and 14. The parameter settings were based on
previous scientific literature (Verbraken et al., 2013; Jahromi et al., 2014) and discussion
with data scientists in the telecommunication industry.

We considered four different options for the minority-to-majority class ratios in the ex-
periments: 1:1, 1:1.5, 1:3, and cost-weighted ratio W = 1 : C−∗N−

C+∗N+
. C+ and C− are the mean

misclassification costs for the minority and majority class while N+ and N− are the number
of instances of the two classes. According to Equation (1), the mean misclassification costs
of both class are C− = δ+ c = 11 and C+ = E(γ(CLV − δ)− c) = 56. We use these options
to determine the class ratio of the training data subsets used to build base classifiers. For
OverBagging and UnderBagging, Oversampling and undersampling were used in combina-
tion with bootstrap sampling to generate the training subsets so that the class ratio in each
subset reaches the considered value. In SMOTEBagging, the number of minority instances
created through a combination of random oversampling and SMOTE were determined by
each class ratio setting. The implementation of BRF is similar to UnderBagging and un-
dersampling was used in each repetition to randomly select majority instances to get the
desired class ratio. In RUSBoost and SMOTEBoost, we used undersampling to remove
majority instances or SMOTE to generate new minority instances in each iteration to reach
the ratio value before computing the new instance weights.

Eleven real-world data sets coming from the telecommunication industry were used in the
experiments. Table 1 summarizes the main characteristics of the dataets, where each column
presents the name, data source, region, number of observation (#Obs.) and attributes
(#Att.) as well as the churn rate. Usually, the customer behavioral attributes used to
churn predication are temporal. They have been transformed into static ones through
aggregation, so all the attributes in the eleven data sets are static. As Table 1 shows, the
churn rates range from 1.8% to 14.5%. In order to avoid the “curse of dimensionality”
problem, a feature selection procedure was conducted as a step of data preparation. The
feature selection approach based on the Fisher score was used on five data sets: Chile,
Duke1, Duke2 , KDD and Tele1. Features with highest Fisher scores are retained and the
numbers of variables in these data sets were reduced to 30.

A 5*2 cross-validation strategy was applied in our study as follows: each original data
set was randomly split into two equally-sized parts. First, one part was used as training data
to build models, while the other part acted as test data to calculate the performance.Then,
the two parts reversed their role. This process was repeated five times to get average values
of the EMP measure. The state-of-the-art ensemble techniques used in our experiments
are three Bagging-based ensembles (UnderBagging, OverBagging and SMOTEBagging),
two Boosting-based ensembles (RUSBoost, SMOTEBoost), and one Random-Forest-based
ensembl(Balance Random Forest). We also included the original Bagging, AdaBoost and
Random Forest algorithms to allow for a comparison with a solid base. In all ensemble
techniques, C4.5 decision trees were used as a base classifier. We set the confidence level
to 0.25. The minimum number of instances per leaf was set to 2 and pruning was used to
obtain the final tree. We set the number of bags in Bagging-based ensembles, the number
of iterations in Boosting-based ensembles and the number of trees in RandomForest-based
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ensembles to be 40, which is consistent with previous research (Galar et al., 2012; Liu and
Zhou, 2009).

4. Experimental Results and Discussion

Our analysis consists of three consequential steps.

• First, we compare the performance of different setting within each technique to check
whether the class ratio has a significant, overall influence.

• Then, we perform a comparison between techniques that are influenced by the class
ratio and the original ensemble algorithm without considering class imbalance to find
whether the technique at hand is well-suited to increase the EMP measure.

• Finally, we further analyze the techniques that show such improvement over the origi-
nal method and investigate how their performance changes with different class ratios.

Let us first check the overall influence of different class ratios. Table 2 to Table 5
provide the detailed results grouped by the ensemble strategies. Each entry in these tables
provides the mean value of the EMP measure in the 5*2 cross validation and the best
option for a method among the four class ratios is highlighted in bold in each row. To
judge the statistical significance of the difference among different class ratios, the Friedman
test with Iman-Davenport extension are used, the last rows provide the p-values of the
Iman-Davenport test. We can see from these tables that there is no universally “winning”
setting and the optimal class ratio depends on the data sets. From the experimental results
of the Bagging-based ensemble shown in Table 2 and 3, we can see there is no statistical
difference at the 5% significance level among different class ratios for OverBagging and
SMOTEBagging according to the Iman-Davenport test. With respect to UnderBagging,
on the contrary, there is an obvious statistical difference among different ratios. The EMP
measure favors the cost-weighted ratio for UnderBagging, which obtains the best results on
six out of eleven data sets. Next, we will analyze the Boosting-based ensemble solutions
in Table 4. For RUSBoost, there is no evidence of statistical significance among different
class ratios. Meanwhile, a cost-weighted ratio seems to be a good option in SMOTEBoost
and gets the best results on seven out of the eleven data sets. The results in Table 5
demonstrate that a significant difference exists within different class ratios for Balanced
Random Forest, with the cost-weighted ratio or class ratio of “1:3” giving better results,
the latter outperforming the former with a small margin.

After finding the best setting for each solution, we now compare their performance with
their corresponding original algorithms without considering class imbalance to see whether
they can improve the profit-based measure. We only choose the techniques that show a
statistically significant difference among different class ratio settings. The Wilcoxon test
is exploited to perform a pairwise statistical comparison. Table 6 presents the results,
where the second column gives the profit gains over the original method with the best class
ratio setting, the third column provides the p-values of Wilcoxon test, and the last column
presents the decision on the null hypothesis of equivalence. As can be seen from Table
6, both UnderBagging and BRF improve the profit significantly over the original method.
SMOTEBoost can improve the result, but the improvement is not significant.
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Table 2: Experimental results of Bagging-based ensemble

Data
set

Bagging
OverBagging UnderBagging

1:1 1:1.5 1:3 W 1:1 1:1.5 1:3 W

Chile 0.8749 0.9115 0.9078 0.8534 0.8667 0.8429 0.8151 0.8491 0.8632
Duke1 0.0009 0.0012 0.0010 0.0006 0.0015 0.0004 0.0005 0.0005 0.0012
Duke2 0.0063 0.0020 0.0019 0.0024 0.0034 0.0020 0.0049 0.0048 0.0053
KDD 0.4295 0.2827 0.2806 0.2822 0.2706 0.4684 0.4588 0.4414 0.4576
K1 0.1902 0.1345 0.1790 0.2276 0.1988 0.2484 0.3688 0.3699 0.3122
K2 0.4695 0.4297 0.4025 0.4417 0.4125 0.4635 0.5008 0.5005 0.5413
K3 1.4552 1.3570 1.3442 1.3500 1.3189 1.4510 1.4788 1.4785 1.4856
K4 2.2814 2.2498 2.2416 2.2451 2.2623 2.2587 2.2807 2.2863 2.2840
K5 0.6525 0.5786 0.5700 0.5841 0.5915 0.6267 0.6548 0.6680 0.6753
Tele1 1.5778 1.4740 1.5564 1.5273 1.5328 1.5325 1.6160 1.6773 1.7323
UCI 6.2587 6.1710 6.1445 6.2188 6.2080 6.2632 6.2627 6.3331 6.2467

Iman-Davenport p = 0.2457 p = 0.0074

Table 3: Experimental results of Bagging-based ensemble (Continued)

Data
set

Bagging
SMOTEBagging

1:1 1:1.5 1:3 W

Chile 0.8749 0.8706 0.8571 0.8738 0.8599
Duke1 0.0009 0.0003 0.0006 0.0008 0.0004
Duke2 0.0063 0.0044 0.0024 0.0033 0.0031
KDD 0.4295 0.2851 0.3012 0.3311 0.3389
K1 0.1902 0.2306 0.1952 0.2053 0.2394
K2 0.4695 0.4072 0.4233 0.4095 0.4261
K3 1.4552 1.3867 1.4091 1.4443 1.4454
K4 2.2814 2.2769 2.2836 2.2689 2.2921
K5 0.6525 0.5805 0.5912 0.6083 0.6000
Tele1 1.5778 1.5442 1.5147 1.5198 1.5127
UCI 6.2587 6.1891 6.2792 6.3255 6.1995

Iman-Davenport p = 0.1346

Now we will further explore how the predictive performance varies with class ratio.
Beside the four above mentioned class ratios, we also consider the two new ones around the
cost-weighted ratio: W− = 1 : (C−∗N−

C+∗N+
− 1) and W+ = 1 : (C−∗N−

C+∗N+
+ 1). Figure Figure 1

to Figure 11 illustrate how EMP measure varies with class ratios. As these figures shown,
EMP measure first increases and then decreases on most data sets. The optimal class ratio
is not a fixed value but usually reaches the maximum EMP value around the cost-weighted
ratio. Seven out of eleven data sets follow this pattern. There are also some exceptions on
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Table 4: Experimental results of Boosting-based ensemble

Data
set

AdaBoost
RUSBoost SMOTEBoost

1:1 1:1.5 1:3 W 1:1 1:1.5 1:3 W

Chile 0.9058 0.6833 0.6424 0.6794 0.6800 0.8574 0.8637 0.9126 0.8933
Duke1 0.0004 0.0002 0.0004 0.0006 0.0004 0.0003 0.0004 0.0007 0.0007
Duke2 0.0019 0.0018 0.0025 0.0021 0.0017 0.0021 0.0020 0.0018 0.0023
KDD 0.2191 0.2580 0.2293 0.1820 0.1826 0.2001 0.2099 0.2125 0.2194
K1 0.1656 0.3252 0.2772 0.2050 0.1656 0.2132 0.1451 0.1408 0.2026
K2 0.2687 0.3723 0.3946 0.3348 0.2741 0.3585 0.4007 0.3441 0.4093
K3 1.2387 1.1767 1.2061 1.1327 1.0657 1.2703 1.2664 1.2694 1.3378
K4 2.2859 2.2004 2.1879 2.2285 2.2395 2.2503 2.2657 2.2631 2.2682
K5 0.5450 0.5578 0.5457 0.5497 0.5361 0.5222 0.5086 0.5336 0.5304
Tele1 1.3578 1.4773 1.3733 1.4059 1.4482 1.2680 1.2871 1.3305 1.3458
UCI 6.2028 5.8458 5.7820 1.5662 5.7438 6.2616 6.3116 6.3491 6.2590

Iman-Davenport p = 0.1149 p = 0.0164

Table 5: Experimental results of RandomForest-based ensemble

Data
set

RandomForest
BRF

1:1 1:1.5 1:3 W

Chile 0.8534 0.7034 0.7403 0.8254 0.8110
Duke1 0.0002 0.0010 0.0012 0.0014 0.0012
Duke2 0.0038 0.0016 0.0042 0.0060 0.0065
KDD 0.3227 0.3798 0.4231 0.4421 0.4404
K1 0.2179 0.2667 0.3388 0.3112 0.3264
K2 0.2995 0.4402 0.4289 0.4050 0.4155
K3 1.3235 1.1396 1.3283 1.3881 1.3931
K4 2.2328 2.0986 2.1095 2.1576 2.2404
K5 0.6188 0.5979 0.6239 0.6416 0.6589
Tele1 1.4450 1.3831 1.5211 1.6084 1.5458
UCI 6.2960 6.1104 6.1546 6.3039 6.1244

Iman-Davenport p = 0.0003

three data sets. For data set UCI, the class imbalance level is low, so the changes of class
ratio have limited influence on the EMP measure. On data set KDD, Chile and K4, there
is no obvious difference across different class ratios for UnderBagging. The performance of
BRF seems to decrease as the class ratio becomes more balanced on Chile and K4.

To summarize, we can draw the following conclusions:

• The optimal class ratio is not a fixed value, and depends on the data sets.
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Table 6: Pairwise comparison with base ensemble algorithm

Methods Profit gain p-value Action

SMOTEBoost vs AdaBoost 0.0252 0.3652 Not reject
UnderBagging vs Bagging 0.0371 0.0674 Reject
BRF vs RandomForest 0.0434 0.0537 Reject

• Some ensemble solutions can increase the performance of the EMP measure by altering
the class ratio. UnderBagging and BRF can gain a statistically significant increase.

• For UnderBagging and BRF, a generally well-performing setting for the class-ratio is
around the cost-weighted ratio.

Although the above interesting findings have been found, several issues need to be further
discussed. The first one is the coherence of optimal class ratio of training data subsets used
to generate base classifiers. The experimental results indicate that the optimal class ratio is
around the cost-weighted ratio on most data sets. But there it is not a fixed value and there
are also some exceptions. Therefore, some other factors that measure the characteristic of
each data set should be considered to help finding the optimal class ratio. One possible
measure may be the local class distribution near the class boundary. The second is the
impact of base classifier. Decision tree is almost the standard configuration for ensemble
solutions in imbalance learning. However, weather the change of base classifier will bring
different results needs further exploration. The final issue is about the aggregation strategy.
In this paper, we use default aggregation strategy of the original ensemble methods. The
experiments show the Boost-based solutions do not significantly improve the performance
in terms of profit-based measure. The results may be caused by their usage of weighted
average to aggregate the base classifiers. How do different aggregation strategies influence
the performance would be of great interest.
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5. Conclusion

Churn prediction is an important part in customer relationship management. To address the
class imbalance issue, many resampling-based ensemble solutions have been proposed. In
this paper, we have explored the relationship between profit-based measure and class ratio
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Figure 10: Model performance on Tele1

5.0

5.5

6.0

original 1:3 w+ 1:1.5 w 1:1 w−
Ratio

E
M

P

BRF UnderBagging

Figure 11: Model performance on UCI

in the training subsets. The experiments on real-world data sets show that the data ratio
in the training subsets has a great impact on the profit-based measure for some resampling-
based ensemble solutions. By altering the class ratio, UnderBagging and Balanced Random
Forest can improve the profit-based measure. In future work, we plan to perform further
studies to find deeper explanations behind the experimental results and to propose a new
resampling-based ensemble solution by developing new aggregation strategy.
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