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Abstract

Generalized linear models (GLMs) arise in high-dimensional machine learning, statistics, commu-
nications and signal processing. In this paper we analyze GLMs when the data matrix is random,
as relevant in problems such as compressed sensing, error-correcting codes or benchmarks mod-
els in neural networks. We evaluate the mutual information (or “free entropy”) from which we
deduce the Bayes-optimal inference and generalization errors. Our analysis applies to the high-
dimensional limit where both the number of samples and dimensions are large and their ratio is
fixed. Non-rigorous predictions for the optimal inference and generalization errors existed for spe-
cial cases of GLMs, e.g. for the perceptron in the field of statistical physics based on the so-called
replica method. Our present paper rigorously establishes those decades old conjectures and brings
forward their algorithmic interpretation in terms of performance of the generalized approximate
message-passing algorithm. Furthermore, we tightly characterize, for many learning problems,
regions of parameters for which this algorithm achieves the optimal performance, and locate the
associated sharp phase transitions separating learnable and non-learnable regions’.
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We discuss generalized linear estimation models (GLMs) Nelder and Baker (1972); McCul-
lagh (1984) where data are generated as follows: Given a n-dimensional vector X*, hidden to the
statistician, he/she observes instead an m-dimensional vector Y where each component reads

b
NG

where ® is a m x n “measurement” or “data” matrix. The model is “linear” because the output Y,
depends on a linear combination of the data z, = [®X*], = > | ®,,X. The GLM generalizes
the ordinary linear regression by allowing the output function ¢(z) to be non-linear and/or stochas-
tic. There are two main learning problems in GLMs: i) The estimation task requires, knowing the
measured vector Y and the matrix ®, to infer the unknown vector X*; i7) the prediction or general-
ization task instead requires, again knowing Y and ®, to predict accurately new values Y; ey When
new rows (i.e. data-points) are added to the matrix ®.

In the present work, we build a rigorous theory for these tasks for random instances of the GLM.
In this setting each element ®,; of the matrix is sampled i.i.d. from a probability distribution of zero
mean and unit variance, and the unknown vector X* has been also created randomly from a prob-
ability distribution Py, with each of its iid components X7, ..., X ~ Fy. We assume that ;) and
o are known to the statistician: if they are not, the task can only be harder. Our results are derived
in the challenging and interesting high-dimensional limit where m, n — oo while m/n — « a con-
stant. Random instances of GLMs are both practically and theoretically relevant in many different
contexts: In compressed sensing Donoho and Tanner (2005); Candes and Tao (2006); Donoho et al.
(2009); Rangan (2011); Zdeborové and Krzakala (2016); In statistical learning: Bayati and Mon-
tanari (2012); El Karoui et al. (2013); Donoho and Montanari (2016); In artificial neural networks:
Gardner and Derrida (1989); Seung et al. (1992); Watkin et al. (1993); In communications: Shannon
(1948); Tanaka (2002); Guo and Verdu (2005); Barbier and Krzakala (2017).

Many previous studies rely on the algorithmic performance of the so-called generalized approx-
imate message-passing algorithm (GAMP) Mézard (1989); Donoho et al. (2009); Rangan (2011).
GAMP is remarkable in that its asymptotic (n, m — oo, m/n — «) performance can be analyzed
rigorously using the so-called state evolution Bolthausen (2014); Bayati and Montanari (2011); Bay-
ati et al. (2015). However, GAMP is not expected to be always information-theoretically optimal.
Most results giving information-theoretic predictions (except for the linear case Barbier et al. (a,b);
Reeves and Pfister) are based on powerful and sophisticated but non-rigorous techniques originat-
ing in statistical physics of disordered systems, such as the cavity and replica methods Mézard et al.
(1987). Historically, the first of these non-rigorous, yet correct, results on information-theoretic
limitations of learning was for the perceptron with binary weights and was established using the
replica method in Gardner and Derrida (1989); Gyorgyi (1990); Seung et al. (1992).

We closed the above gap between mathematically rigorous work and conjectures (some of them
several decades old) from statistical mechanics. In particular, we prove that the results for GLMs
stemming from the replica method are indeed correct and imply the optimal value of both the es-
timation and generalization error. The proof is based on a powerful evolution of the interpolation
method Guerra and Toninelli (2002) called the adaptive interpolation method, and recently devel-
oped in Barbier and Macris (2017). We compute in particular the asymptotic mutual information
(or free energy in the statistical mechanics language) between the unknown variable X* and the
measurement Y. We also compute the minimal mean-square error on the reconstruction of X* and
the generalization error in the so-called teacher-student scenario.

V= o(—~@X ), 1<p<m, (1)
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A second object of focus is the algorithmic complexity: When is it possible to efficiently per-
form these optimal estimations? To answer this question, we compare our information-theoretic
results to the performance of the GAMP algorithm and its state evolution Rangan (2011). We deter-
mine regions of parameters where this algorithm is or is not information-theoretically optimal. Up
to technical assumptions, our results apply to all activation functions ¢ and priors Fp, thus unifying
a large volume of previous work where many particular functions have been analyzed on a case
by case basis. This generality allows us to provide a unifying understanding of the types of phase
transitions and phase diagrams that we can encounter in GLMs. Among other, we discuss the per-
ceptron problem, one-bit compressed sensing, real valued-phase retrievial (or sign-less compressed
sensing) and Relu-type measurements.
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