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Abstract

Positive de�nite kernels and their associated Reproducing Kernel Hilbert Spaces provide
a mathematically compelling and practically competitive framework for learning from data.

In this paper we take the approximation theory point of view to explore various as-
pects of smooth kernels related to their inferential properties. We analyze eigenvalue decay
of kernels operators and matrices, properties of eigenfunctions/eigenvectors and �Fourier�
coe�cients of functions in the kernel space restricted to a discrete set of data points. We
also investigate the �tting capacity of kernels, giving explicit bounds on the fat shatter-
ing dimension of the balls in Reproducing Kernel Hilbert spaces. Interestingly, the same
properties that make kernels very e�ective approximators for functions in their �native�
kernel space, also limit their capacity to represent arbitrary functions. We discuss various
implications, including those for gradient descent type methods.

It is important to note that most of our bounds are measure independent. Moreover, at
least in moderate dimension, the bounds for eigenvalues are much tighter than the bounds
which can be obtained from the usual matrix concentration results. For example, we see
that eigenvalues of kernel matrices show nearly exponential decay with constants depending
only on the kernel and the domain. We call this �approximation beats concentration�
phenomenon as even when the data are sampled from a probability distribution, some of
their aspects are better understood in terms of approximation theory.

1. Introduction

Modern supervised machine learning is largely based on Empirical Risk Minimization (ERM),
a form of functional approximation. Kernel machines perform variants of ERM over Repro-
ducing Kernel Hilbert Spaces (RKHS). RKHS, also known as native spaces in the approxima-
tion literature, are generalizations of Sobolev spaces and have many attractive mathematical
and computational properties. In particular, these spaces correspond to positive de�nite ker-
nels, such as Gaussian, inverse multiquadrics, or Laplace kernels. Inference in these function
spaces is analytically tractable, practically competitive and often leads to convex optimiza-
tion problems, which can be viewed as linear methods in in�nite dimensional Hilbert spaces.

In this paper we take a look at the properties of kernels from the approximation point
of view. While there is an extensive and diverse literature on kernel methods and their
use in machine learning (including the books Scholkopf and Smola (2001); Shawe-Taylor
and Cristianini (2004); Steinwart and Christmann (2008)), we are aware of few works that
use powerful results now available in the approximation theory literature, with the notable
exception of Rieger and Zwicknagl (2010). There are a number of learning theory results
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based on certain assumption about kernel eigenvalue decay. However, there are few analyses
showing that speci�c practically used kernels, e.g., Gaussian kernels, satisfy these assump-
tions. Moreover, the exact nature of the dependence on the underlying measure has not, to
the best of our knowledge, been addressed in the literature. We feel that the approximation
point of view provides a rather di�erent perspective on the properties of kernel methods,
their strengths and limitations. In particular, we show the following:

1. Eigenvalues of smooth radial kernel operators/matrices decay at a nearly exponen-
tial rate1 with constants depending only on the kernel and the dimension of the space and
independent of the underlying data sample/measure. This also implies that kernel matri-
ces/operators corresponding to smooth kernels are uniformly e�ectively low rank.

2. A function in the reproducing kernel space of a smooth kernel K written in the basis
of eigenfunctions of K, must have nearly exponential coe�cient decay in L2

µ for any measure
µ. In particular, µ can be the empirical measure corresponding to a given dataset.

3. Eigenfunctions of a kernel matrix/operator can be nearly exponentially approximated
by a linear combination of kernel functions. The span of eigenfunctions corresponding to the
top eigenvalues is in a sense invariant to change of measure. Signi�cantly, this is not true
for individual eigenvectors, which are strongly in�uenced by the geometry of the underlying
measure.

4. The fat shattering (Vγ) dimension of balls of radius R in the RKHS of smooth ker-
nels is poly-logarithmic in R

γ . This limits the �tting power of any procedure whose output
belongs to a ball of a polynomial size in the RKHS. In particular, this analysis applies to
various regularization methods and to gradient descent-like algorithms with bounded step
sizes.

5. While reducing the width of a kernel (such as a Gaussian) expands the function
space, the RKHS corresponding to a wider kernel is contained in the RKHS of the narrow
kernel. Thus combining radial kernels of di�erent bandwidths is unlikely to yield results
signi�cantly di�erent from simply using a single kernel with smaller width.

Our results use powerful approximation theory available for radial kernels. At least in
moderate dimension they are signi�cantly stronger than learning theory results not relying
on these techniques. In particular, sample-independent nearly exponential decay for the
eigenvalues of kernel matrices seems counter-intuitive in view of the matrix concentration
results with rates of O( 1√

n
) (see the discussion in Section 3).

The paper is organized as follows: in Section 2 we collect some important background
de�nitions and results on kernels, RKHS and approximation theory. In Section 3 we give
results on low-rank approximations for kernels and consequences for eigenvalue decay of
kernel operators/matrices. We proceed to discuss the �approximation beats concentration�
phenomenon. In Section 4 we analyze �Fourier� coe�cient decay of RKHS functions in the
basis of eigenvectors. We proceed to show approximation properties for top eigenvectors and
their spans. Section 5 gives bounds on the fat shattering dimensions for balls in RKHS and
discusses implications for regularized kernel algorithms. In Section 6 we address the e�ect
of kernel width. We conclude in Section 7.

1. By nearly exponential we will mean a function of the form O(exp(−Cn−α)), where C,α > 0.
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2. Spaces and operators associated to positive de�nite kernels

We �rst establish some background facts about RKHS, kernels and approximation theory
needed for further development. We recommend Wendland (2004) for a comprehensive in-
troduction to the subject. Let Ω be a domain2 in Rd. Let K(x, z) be a positive de�nite
kernel on Rd. We will denote by H the Reproducing Kernel Hilbert Space (RKHS) corre-
sponding to the kernel K. Given a probability measure µ on Ω, we can de�ne the integral
operator Kµ : L2

µ → L2
µ:

Kµf(z) =

∫
K(x, z)f(x)dµ (1)

It is easy to check that Kµ is a self-adjoint operator on L2
µ and is compact when the kernel

K(·, ·) is continuous. Notice that while f ∈ L2
µ needs to be de�ned only on the support

of the measure µ, Eq. 1 de�nes Kµf everywhere on Rd. We will often consider the case
when µ is supported on a �nite set of points, so the di�erence between the support of µ
and the domain of de�nition of Kµf is signi�cant. Moreover, it can be shown that the
Kµf ∈ H for any f ∈ L2

µ. Notice also that a function f ∈ H gives rise to a function in L2
µ

by restricting it to the support of µ. We will call the restriction operator Rµ : H → L2
µ.

Thus we will suppress Rµ, where no ambiguity arises. For example, for f ∈ H, we will write
‖f‖L2

µ
:= ‖Rµf‖L2

µ
. Note that Rµ does not change the function values at any point, just

the domain of the de�nition and the function space norm. It can be shown by an extension
of the argument in Wendland (2004) (Proposition 10.28) that Rµ is the adjoint of the kernel
operator Kµ : L2

µ → H. Speci�cally, for f ∈ H, g ∈ L2
µ we have

〈f,Kµg〉H = 〈Rµf, g〉L2
µ

(2)

Moreover, it turns out that that the square root K1/2
µ exists and is an isometric embedding

of L2
µ → H. Speci�cally, for f, g ∈ L2

µ we have:

〈K1/2
µ f,K1/2

µ g〉H = 〈f, g〉L2
µ

Kernel matrices. Given a set of points X = {x1, . . . , xn} ⊂ Ω we can construct the
corresponding kernel matrix Kn, (Kn)ij = 1

nK(xi, xj). Note that Kn can be viewed as a
special case of Kµ, where µ is a uniform discrete measure on X, µ = 1

n

∑
δxi .

Eigenfunctions/Nystrom extension. The eigenfunctions of the operator Kµ are de�ned
by the equation ∫

K(x, z)e(x)dµx = λe(z), λ ∈ R

Note that e(z) is technically an element of L2
µ. However, as the image of Kµ is actually in

H, we can de�ne e(z) in H, and, indeed, on all of Rd:

e(z) =
1

λ

∫
K(x, z) e(x) dµx

This formula is known as the Nystrom extension.

2. Ω can be taken to be a unit cube or a more general bounded domain.
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Remark 1 Note that technically there are two objects corresponding to e(z), eH(z) ∈ H
and eL2

µ
(z) ∈ L2

µ. These functions coincide on the support of the measure µ, eH(z) =

eL2
µ
(z), z ∈ supp(µ), but have di�erent norms in their respective spaces. More precisely (cf.,

e.g., the discussion in Rosasco et al. (2010)), RµeH = eL2
µ
, 1

λKµeL2
µ

= eH. Overloading

the notation, we will simply write e(x), while keeping note of the norms.

The Nystrom extension allows us to directly compare eigenfunctions of operators with di�er-
ent measures µ, potentially with disjoint support. We can compare eigenvectors of di�erent
kernel matrices by comparing the Nystrom extensions of the corresponding operators.
The spectral decomposition for kernel operators. We will now establish some prop-
erties of eigenfunctions of kernel operators. Let e and e′ be two orthogonal eigenfunctions
of Kµ in L2

µ. Note that since Kµ is self-adjoint any two eigenfunctions corresponding to
di�erent eigenvalues are orthogonal. Additionally, as K is a positive de�nite kernel, there
are no eigenfunctions with eigenvalue 0. Using Eq.2 We have

〈Kµe,Kµe′〉H = 〈RµKµe, e′〉L2
µ

= λ〈e, e′〉L2
µ

= 0 (3)

Hence we see that the Nystrom extensions of eigenfunctions orthogonal in L2
µ are also or-

thogonal in H.
The spectral theorem for compact self-adjoint operators (see, e.g., Reed and Simon

(1980), Theorem VI.16) guarantees the existence of an orthogonal Hilbert space basis e1, e2, . . .
of eigenfunctions of Kµ in L2

µ. This basis is �nite if µ is supported on a �nite set (and L2
µ

is �nite-dimensional) and in�nite otherwise. The discussion above shows that the basis
e1, e2, . . . extends to an orthogonal (possibly partial) basis in H.
Interpolant operators and the �ll. Given a set X = {x1, . . . , xn} ⊂ Ω and a RKHS H
with a positive de�nite kernel K, we can construct the interpolation operator SX : H → H
de�ned by SX(f) = arg min

g∈H, g(xi)=f(xi)
‖g‖H

SettingKn to be the (positive de�nite) kernel matrix corresponding to X, there is an explicit
formula in terms of the inverse of Kn:

SX(f)(x) =
∑

αiK(xi, x), where (α1, . . . , αn)t = K−1
n (f(x1), . . . , f(xn))t (4)

From Eq. 4 it is clear that SX is a linear operator, and it can be easily veri�ed that
SX(f)(xi) = f(xi). In fact, SX is an orthogonal projection operator, which maps H to
the (�nite-dimensional) orthogonal complement to the space of functions vanishing on all
points of X.

Another important concept associated to the set X, is the �ll hX , which describes how
well the set X covers Ω, hX = maxx∈Ω minxi∈X ‖x− xi‖.
Notation for the norm. Given that we will deal with several functional spaces at once and
that �same� operators have di�erent norms depending on the range and the domain, we will

use the �→� notation. For example, ‖SX‖H→Lpµ := sup
f∈H, f 6=0

‖SX(f)‖
L
p
µ

‖f‖H denotes the norm of

SX as a map from H to L2
µ. Note that the operator norm can be de�ned for any, even

non-linear, map between two normed spaces in the same way.
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Approximation Theory. We will now state the key result from the approximation theory
which provides a bound on the di�erence f − SX(f) in terms of the �ll hX .

Let K(x, z) be a smooth radial kernel. Speci�cally, let K(x, z) = φ(‖x − y‖) and put
f(·) := φ(

√
·). We require that |f (l)(r)| ≤ l!M l for all l large enough and r > 0.

Two types of important kernels satisfying these conditions are Gaussian kernelsK(x, z) =
exp

(
−‖x− z‖2/σ2

)
and inverse multiquadric kernels K(x, z) = (c2 + ‖x − z‖2)−α, α > 0

(for the popular Cauchy kernel, α = 1).

Theorem A Under the conditions on the kernel stated above, for any set X ⊂ Ω and any

p ∈ [1,∞] there exist constants C,C ′ > 0, such that

‖Rµ − SX‖H→Lpµ < C ′ exp(−C/hX)

Theorem A is a special case (and a slight reformulation) of Theorem 11.22 in Wendland
(2004) (see also Rieger and Zwicknagl (2010), Theorem 6.1). This is a powerful approxi-
mation theory result showing that any function in H can be accurately reconstructed from
its values at a small number of points. The implications are wide-ranging and, perhaps,
surprising in their scope.

Remark 2 (Gaussian kernels) The bound in Theorem A can be made slightly tighter for

Gaussian kernels, to be of the form C ′ exp(C log(hX)/hX) (see Wendland (2004)). The

extra logarithmic factor does not substantially change our discussion and we will not treat

this case separately. This leads to slightly looser but more general bounds.

3. Low rank approximations to kernel operators and their eigenvalues.

We start by showing that any (potentially non-linear) bounded map T from a Hilbert space3

to an RKHS H corresponding to a smooth radial kernel, satisfying the conditions of Theo-
rem A, allows a universal low-rank approximation in Lpµ. That is, the output of any such
map is close to a low-dimensional subspace in H according to the norm in Lpµ. This subspace
only depends on H and is independent of µ and T .

Theorem 3 Suppose T : V→ H is a (not necessarily linear) map from a Hilbert (Banach)

space V to a RKHS of functions on Rd, H. Then there exists a map Tn from V to an n-
dimensional linear subspace Hn ⊂ H, such that

‖T − Tn‖V→Lpµ < C ′‖T ‖V→H exp(−Cn−1/d)

for some constants C,C ′ > 0 independent of T and µ. Moreover:

(1) While the map Tn depends on T , the subspace Hn is independent of T .
(2) If T is a linear operator, Tn is also a linear operator.

Proof Let X = (x1, · · · , xn) be a �nite subset of Ω. Notice that T −SX ◦T = (Rµ−SX)◦T .
Using the de�nition of the norm we see that

‖(Rµ − SX) ◦ T ‖V→Lpµ ≤ ‖Rµ − SX‖H→Lpµ‖T ‖V→H.

3. A Banach space can be used as well.
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Applying Theorem A we obtain ‖T − SXT ‖V→Lpµ < C ′‖T ‖V→H exp(−C/hX) for some
constants C,C ′ > 0. Choosing the set X appropriately (e.g., a d-dimensional grid), we can
ensure that hX = O(n−1/d), where d is the dimension of the space. Notice that the image
of SX belongs to a n-dimensional subspace of H spanned by the functions K(xi, ·), xi ∈ X.
Taking Hn = span{K(x1, ·), . . .K(xn, ·)} and Tn = SX ◦ T completes the proof.

Thus the image of a bounded operator to H can be nearly exponentially approximated by a
�nite-dimensional subspace independent of T and µ. To provide a bound on the eigenvalues
of kernel operators and matrices we will need the following perturbation result:

Lemma 4 Suppose A is a self-adjoint operator on a Hilbert space V, A : V→ V and An
is a �nite rank operator with rank n, such that ‖A − An‖ < ε. Then all eigenvalues of A
except for at most n (counting multiplicity) are smaller than ε.

Proof As rank An = n, every n + 1 dimensional subspace contains a non-zero vector v,
such that Anv = 0. Suppose A has at least n + 1 linearly independent eigenvectors with
eigenvalues ≥ ε. Then there exists a vector v 6= 0, in the span of these eigenvectors, such
that Anv = 0. As A is self-adjoint we can assume that these eigenvectors are orthogonal
and hence it is easily seen that ‖Av‖ > ε‖v‖. We see that ‖Anv‖ = ‖(A + An − A)v‖ >
‖Av‖ − ε‖v‖ > 0, which is a contradiction.

We can now apply Theorem 3 to easily obtain a bound on eigenvalues of kernel matrices
and operators. Important related work includes Schaback and Wendland (2002); Santin and
Schaback (2016), which deal with approximation of spectral properties of integral operators
with uniform measure. In contrast, we provide a measure-independent bound, which is key
in our learning-theoretic context.

Theorem 5 (Eigenvalue decay) Let κ = supx∈ΩK(x, x). Then for some C,C ′ > 0.

λi(Kµ) ≤
√
κC ′ exp(−Ci1/d) (5)

Proof Consider Kµ as an operator from L2
µ → H. Recall from Section 2 that there exists a

basis of eigenfunctions of Kµ in L2
µ which is also orthogonal in H. Let e1 be an eigenfunction

of Kµ with the largest eigenvalue. We have

‖Kµ‖L2
µ→H =

‖Kµe1‖H
‖e1‖L2

µ

=
λ1‖e1‖H
‖e1‖L2

µ

.

Recall now that Kµ is adjoint to the restriction operator Rµ : H → L2
µ. We have ‖e1‖2H =

1
λ1
〈e1,Kµe1〉H = 1

λ1
‖e1‖2L2

µ
. Hence ‖Kµ‖L2

µ→H = λ1√
λ1

=
√
λ1 ≤

√
Tr(Kµ) ≤

√
κ.

Applying Theorem 3 to Kµ, we have ‖Kµ − Tn‖L2
µ→L2

µ
< C ′

√
κ exp(−Cn−1/d), where

Tn = SX ◦ Kµ is a linear operator of rank n. Noticing that Kµ : L2
µ → L2

µ is self-adjoint, we
can apply Lemma 4. That completes the proof.

Remark 6 Notice that all quantities in the inequality in Theorem 5 are independent of the

measure µ. In particular when µ is a �nite measure, Kµ can be viewed as a matrix. Hence

this result provides a uniform bound on the eigenvalue decay, independent of the size of the

matrix.
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Approximation beats concentration. Suppose X is a set of n points sampled iid from
a probability distribution µ on Ω. Let µn denote the empirical measure associated to X.
Concentration results for matrices (e.g., Tropp et al. (2015)) combined with spectral pertur-
bation results (e.g., Rosasco et al. (2010)) in the bounds for eigenvalues of the form

|λµ,i − λµn,i| ≤
C√
n

where C is a constant independent of i. In comparison, from Eq. 5 we see that

|λµ,i − λµn,i| ≤ max(λµ,i, λµn,i) ≤ C ′ exp(−C ′′i1/d)

We see that approximation �beats� concentration by providing a tighter bound as long as
O(exp(−C ′′i1/d)) < O( 1√

n
). In other words we need n to be nearly exponential in the

eigenvalue index i for the concentration bounds to be tighter. Moreover, unlike concentra-
tion results, approximation also shows that the corresponding eigenvalues must actually be
nearly exponentially close to 0. In addition, these approximation-based bounds are measure-
independent and do not require any iid-type assumption4.

This suggests that signi�cant care should be taken when applying concentration-type
analyses of kernel methods in the iid setting, as essential inferential properties may become
invisible in these statistical analyses. We conjecture that this is one of the reasons why
concentration bounds often turn out to be too pessimistic in practice.

4. Spectral characterization of RKHS functions and eigenfunctions of
kernel operators.

We will now use Theorem 5 to provide a spectral characterization of RKHS functions in
terms of their restrictions to �nite (or in�nite) sets. This characterization should be viewed
as parallel to the classical description of Sobolev spaces in terms of their Fourier coe�cients.
In particular, we will see that the �Fourier� coe�cients of a function from H written in
the basis of eigenvectors of any kernel matrix, regardless of the dataset, must show nearly
exponential decay with coe�cient independent of the measure. This is signi�cant as in many
regression/classi�cation problems we can compute these coe�cients explicitly from the data.
The decay of the coe�cients can thus be analyzed empirically.

Theorem 7 (Coe�cient decay for functions in RKHS) Let f ∈ H and consider the

restriction of f , Rµf ∈ L2
µ. Write the spectral decomposition of Rµf in terms of the eigen-

functions ei of Kµ as
Rµf =

∑
aiei, ai = 〈Rµf, ei〉L2

µ

Then |ai| ≤
√
λi‖f‖H < C ′ exp (−Ci1/d)‖f‖H

for some C,C ′ > 0 independent of µ.

4. On the other hand, strong approximation bounds are speci�c to the smooth kernel setting while concen-
tration results can be applied to a broad class of random matrix problems. Moreover, unlike approxima-
tion, concentration results are often dimension-independent.
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Proof Recalling Eq.2, showing that operator Kµ is adjoint to Rµ, we have 〈f, ei〉H =
〈f, 1

λi
Kµei〉H = 1

λi
〈Rµf, ei〉L2

µ
and

〈Rµf, ei〉L2
µ
≤ λi〈f, ei〉H ≤ λi‖ei‖H‖f‖H

Notice that
‖ei‖2H =

1

λi
〈ei, ei〉L2

µ
=

1

λi

Hence by Theorem 5

|ai| = |〈Rµf, ei〉L2
µ
| ≤ λi

1√
λi
‖f‖H =

√
λi‖f‖H < κ1/4C ′ exp(−Ci1/d)‖f‖H

for some constants C,C ′ > 0 independent of the measure µ.

Properties of eigenfunctions. We will now proceed with some basic properties of
eigenfunctions which follow from the analysis above. The �rst observation is that any
eigenfunction of Kµ with a su�ciently large eigenvalue is well-approximated by the span
K(xi, ·), xi ∈ X, i = 1, . . . , n, where X is chosen as in Theorem 3. Speci�cally,

Corollary 8 Let λe = Kµe be an eigenfunction of Kµ. Then there is a function eX ∈
span{K(x1, ·), . . .K(xn, ·)}, such that

‖e− eX‖Lpµ ≤
C

λ
exp(−C ′n1/d)

for some universal constants C,C ′ > 0, and any p ∈ [1,∞].

Proof From Theorem 3 we obtain

1

λ
‖Kµe− SXKµe‖Lpµ ≤

C

λ
exp(−C ′n1/d).

Putting eX = 1
λSXKµe yields the result.

Remark 9 Notice that by taking p = ∞ we can make the bound to be pointwise. For

example, if µ is a �nite set of �data� points, the approximation holds for every point uniformly

over the choices of µ. Hence a particular µ is unimportant in this sense.

Similarly, for two measures µ, ν, the top eigenfunctions/eigenvectors of Kµ are nearly con-
tained in the span of the top eigenfunctions of Kν , when restricted to the support of ν.

Theorem 10 Let λµeµ = Kµeµ be an eigenfunction of Kµ. Then there is a function

e ∈ span{e1, . . . , ek}, of eigenfunctions of Kν , such that for some constants C,C ′ > 0

‖eν − e‖L2
µ
≤ C√

λν
k
d−1
d exp(−C ′k−1/d)
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Proof First note that ‖eµ‖H = 1√
λµ
. Now write eν =

∑∞
i=1 aiei, where ei are eigefunctions

of Kν . Put e =
∑k

i=1 aiei. By Theorem 7, we have for some C,C ′

‖eν − e‖2L2
µ
≤

∞∑
i=k+1

a2
i ≤ C ′

1

λµ

∞∑
i=k+1

exp(−Ci−1/d).

The last sum can be estimated by noticing that

∞∑
i=k+1

exp(−Ci1/d) <
∫ ∞
k

exp(−Cx1/d) dx = d

∫ ∞
k1/d

e−Czzd−1 dz

Integrating by parts shows that for k su�ciently large, the last integral is of the order
O(k(d−1)/d exp(−Ck1/d)), which completes the proof.

Remark 11 It is interesting to note that top eigenvectors of Kµ contain important infor-

mation about the structure of the measure µ, e.g., its clustering structure (e.g., Shi et al.

(2009)). However, the span of the top eigenvectors is relatively invariant to the measure.

Theorem 10 shows that eigenfunctions of ν will not signi�cantly �spill� onto eigenfunctions

of µ with much smaller eigenvalues.

5. The (low) fat shattering dimension of balls in RKHS and its
algorithmic implications

Approximation-theoretic results are easily turned into bounds on the fat shattering dimen-
sion Vγ for balls in RKHS, which are signi�cantly tighter than those found in the literature.
Combining these bounds with some standard learning theory results, we immediately ob-
tain generalization guarantees for a number of regularized kernel methods and algorithms
including gradient descent with early stopping. We start by recalling the de�nition of the
fat shattering dimension Vγ for a function class F (see, e.g., Alon et al. (1997)). We say
that a set x1, . . . , xn is γ-shattered by functions from F if there exist si ∈ R, i = 1 . . . , n,
such that for any assignments of signs σi ∈ {−1, 1} there is a function f in F , satisfying

f(xi) > si + γ, if σi = 1
f(xi) < si − γ, if σi = −1

Vγ(F) is taken to be the maximum cardinality of a set of points that is γ-shattered by
functions from F . To clarify the role of si's, note that it is easy to verify that V0-dimension5

is simply the VC-dimension of the sets {(x, t) ∈ Rd × R | f(x) < t} in Rd+1. Thus Vγ for
γ > 0 is a more demanding version of the VC-dimension appropriate for analyzing real-
valued functions.

Theorem 12 (Vγ-dimension of RKHS balls) Let BR := {f ∈ H, ‖f‖H < R} be a ball

of radius R > 0 in H. Under our standard assumptions on the kernel, we have

Vγ(BR) < O

(
logd

(
R

γ

))
(6)

5. Note that 0-shatters and �shatters� are not exactly the same notion.
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Proof Let S be a linear space of functions Rd → R. We will say that S γ-approximates
BR in the L∞ norm, if for any f ∈ BR, there exists f1 ∈ S, s.t. for any x, |f(x) −
f1(x)| < γ. Suppose we have S that γ-approximates BR. By replacing each f ∈ BR with its
approximation f ′ ∈ S, we see that S will 0-shatter any set of points x1, . . . , xN whenever
BR γ-shatters these points.

Hence Vγ-dimension of BR is bounded by the VC-dimension of the subgraph sets {(x, t) ∈
Rd × R | f(x) < t}, f ∈ S. If S is �nite-dimensional, rewriting that inequality in a basis of
S, we see that these sets can be viewed in as half-planes in RdimS+1, passing through the
origin in that space. It is well-known that VC-dimension of these is simply the dimension of
the space which is dimS + 1. Thus we get Vγ(BR) ≤ dimS + 1. It remains to �nd a space
S, which γ approximates BR. From the Theorem 3 (with p = ∞ and V = H), we obtain
C ′‖f‖H exp(−Cn−1/d) < γ. Solving for n after substituting ‖f‖H = R and taking S = Hn
completes the proof.

Remark 13 It should be noted that in contrast to Vγ dimension for γ > 0, V0-dimension

and, indeed, VC-dimension for the indicator functions sign(f), f ∈ BR are in�nite. This

follows easily from the interpolating property of H. Speci�cally, for any set (xi, yi), yi ∈
{+1,−1}, there exists f ∈ H, such that f(xi) = yi. Scaling this function by a scalar does

not change the corresponding indicator functions but allows to make ‖f‖H arbitrarily small.

At this point we should compare the bound in Theorem 12 to the literature. The pa-

per Evgeniou and Pontil (1999), gives a bound of the form Vγ(BR) = O
(
R2

γ2

)
. While our

bound is generally much tighter, the result from Evgeniou and Pontil (1999) is dimension
independent and also applies to a broad class of RKHS. Bounds on the closely related notion
of covering numbers for balls in RKHS corresponding to Gaussian kernels are given in Stein-
wart and Scovel (2007) (Theorem 3.1). However, the bounds there are still polynomial in 1

ε
(roughly corresponding to our γ). We are not aware of any poly-logarithmic results. Note
that an alternative approach to obtain poly-logarithmic bounds for covering numbers similar
to those for Vγ dimension in Eq. 6 would be to combine the results based on eigenvalues
from Guo et al. (1999) with the eigenvalue bound in our Theorem 5. However, the direct
proof is signi�cantly simpler and, arguably, more informative.
Generalization bounds. Assume we are in a standard learning setting where (xi, yi) ∈
Ω×{−1, 1} is a labeled dataset, L is a Lipshitz loss function and the data are chosen from a
probability measure p on Ω×{−1, 1}. Suppose our (otherwise arbitrary) learning algorithm
A outputs functions in BR. In that case our Theorem 12 together with Alon et al. (1997)
immediately imply the following �universal� generalization bound for smooth radial kernels

Theorem 14 (Generalization for kernels) Let f be the output of our learning algo-

rithm A. Then with high probability

1

n

∑
L(f(xi), yi) < EpL(f(x), y) +O

(
logd/2 (nR)√

n

)

This bounds applies to most kernel-based learning algorithms as nearly all of them output
a function in a certain ball of radius R. We discuss some of the implications below.
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Algorithmic implications and the limitations of kernel methods. We have seen
that the poly-logarithmic bound on the fat shattering dimension in Eq. 6 implies broad and
strong generalization guarantees given in Theorem 14. The �ip side of that is that even
mild regularization (i.e., constraining R) imposes severe limitations on the �tting capacity
of kernel methods, at least when the dimension d is not very high. 6.

For example, consider the popular �Tikhonov� regularizer of the form λ‖f‖2H. It is easy
to see that adding this term in conjunction with a bounded loss function implies that the

output of the algorithm belongs to an RKHS ball with radius O
(

1√
λ

)
. Thus a constant

increase to the �tting capacity of BR requires a nearly exponential increase of R. That
suggests choosing small values of λ, which is consistent with practice, where very small
values of λ often produce best results7.

Another important example is that of gradient descent for kernel methods. It is easy to
see that in the kernel setting each step of gradient descent increases the norm by at most a
constant depending only on the kernel and the loss function. Thus, t steps of gradient descent
output a function with norm bounded by O(t). As each step of gradient descent typically
requires O(n2) computations (a matrix-vector multiplication), we see that R = O(c/n2),
where c is the number of operations. Fixing γ (and omitting constants), we see that the
dimension of the function space reachable by c computations is of the order of logd/2( c

n2 ). It

follows immediately that at least order of n2en
2/d

computations are needed to �t arbitrary
functions on the data points with accuracy γ.

Note that for square loss, empirical minimization problem is simply matrix inversion,
which can be done using only n3 operations using, e.g., Gaussian elimination. We see that
gradient descent compares unfavorably with matrix inversion in terms of computational
complexity, when no assumption about function values are made. On the other hand, when
the function is in RKHS, or more generally, has rapidly decaying coe�cients in the �Fourier
basis� of eigenfunctions, subcubic computational complexity can be demonstrated Yao et al.
(2007); Raskutti et al. (2014). This functional algorithmic reach for gradient descent with
smooth kernels is discussed in Ma and Belkin (2017) from the spectral decay point of view.
Analyzing Vγ dimension, as we do here, clari�es that point and connects it to other standard
capacity measures.

It appears that for many real datasets, gradient descent does require cubic or even super-
cubic complexity. Indeed, it could hardly be expected that nature should co-operate by
matching the decay of Fourier coe�cients for class membership functions to that of kernels
chosen primarily for computational reasons!

Remark 15 Our results suggest that smooth kernels would struggle to �t labels assigned

randomly to a set of points, as such a �t would generally require O(n2en
2/d

) operations

(aside from the issues of numerical accuracy). Indeed, empirically random assignment are

di�cult to �t using smooth kernels, while less smooth Laplace kernels �t random labels far

more easily Belkin et al. (2018). Interestingly, ReLU neural networks appear to be similar

to Laplace kernels, capable of �tting random labels with ease Zhang et al. (2016).

6. While d is the ambient dimension, the e�ective dimensionality of the data can be much lower.
7. We note that even minimum norm interpolation (i.e., λ = 0) shows excellent generalization results Belkin

et al. (2018). While this �nding is compatible with our analysis, it is directly explained by it.
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Remark 16 Our bounds for Vγ dimension do not imply that the corresponding VC-dimension

is small. Indeed, as noted above, VC-dimension of indicator functions from a ball in RKHS

is in�nite. However, a function with a small RKHS norm, corresponding to a random as-

signments of labels on a set of data points must take values which are exponentially small

on all data points. We conjecture that despite their bounded norm, most of such functions

are outside of the computational reach of polynomially many steps of gradient descent.

6. Kernels of di�erent width

We will now brie�y discuss the in�uence of the width (or shape) parameter for kernels from
the approximation point of view. It is intuitive that �narrow� kernels have better �tting
capacity. In particular data can be trivially represented as a sum of δ-functions, which
can be thought of as radial kernels of width zero. However, it is not apriori clear whether
choosing a di�erent kernel width can result in a signi�cantly di�erent function space. We
will see that making the width of the kernel larger simply shrinks the corresponding RKHS
space without adding any new functions. The proof relies on a quite simple Fourier domain
description of RKHS. Despite its usefulness, this characterization does not seem to be widely
known in the learning literature. While we will state the theorem for Gaussian kernels, it
also applies to any radial kernel with Fourier transform that decays fast enough, with the
precise condition clear from the proof (see Appendix A).

Theorem 17 let K1(x, z) = φ(‖x − z‖) be a Gaussian kernel (with φ a one-dimensional

Gaussian) and let K2(x, z) = φ(‖x − z‖/σ), where 0 < σ < 1. Let H1 and H2 be the

corresponding RKHS. Then

1. H1 ⊂ H2.

2. For any R > 0, the ball of radius R in H1, BR(H1) is contained in Bσ−d/2R(H2) the ball

of radius 1
σd/2

R in H2. On the other hand, BR(H2) 6⊂ H1.

7. Conclusions

The main goal of this note is to bring the powerful tools of approximation theory to kernel
learning. Approximation theory provides a di�erent perspective on a number of important
inferential problems, yielding results which are di�cult to obtain using the more standard
concentration-based analyses, and are sometimes much tighter. We have not tried to specify
constants and their dependence on the parameters of the kernel, including the kernel width.
This can be done explicitly, and is an important aspect of understanding kernel methods.
Furthermore, fundamentally, we need to understand how these approximation-based results
relate to the intrinsic dimensionality of the data. Finally, it is crucial to understand the in-
terface between approximation and concentration. We believe that combining these modes
of analysis, and better understanding the regimes where one of them becomes dominant,
can yield signi�cant further insight into kernel inference and, likely, other machine learning
problems.
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Appendix A. Proof of theorem 17

The result follows easily from the Fourier characterization of RKHS, see Wendland (2004)(The-
orem 10.12). If K(x, z) = ψ(x− z) is a translation-invariant kernel the RKHS norm of f in
the RKHS H corresponding to K can be written as

‖f‖2H = (2π)−d/2
∫
Rd

|F(f)(ω)|2

F(ψ)(ω)
dω (7)

Here F denotes the Fourier transform. Recall now that (from the scaling property of Fourier
transform) F(φ(x/σ))(ω) = σdF(φ)(σω). Since Fourier transform of a Gaussian is also a
Gaussian and σ < 1, we obtain

F(φ(x/σ))(ω)

F(φ)(ω)
=

1

σd
F(φ(x))(σω)

F(φ)(ω)
≥ 1

σd

Hence using Eq. 7, we see that
‖f‖H2 ≤

1

σd/2
‖f‖H1

This completes the proof except for the claim that BR(H2) 6⊂ H1, which is straightforward
to see in the Fourier domain.
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