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Abstract
Algorithms based on discretizing Langevin diffusion are popular tools for sampling from high-
dimensional distributions. We develop novel connections between such Monte Carlo algorithms,
the theory of Wasserstein gradient flow, and the operator splitting approach to solving PDEs. In
particular, we show that a proximal version of the Unadjusted Langevin Algorithm corresponds to
a scheme that alternates between solving the gradient flows of two specific functionals on the space
of probability measures. Using this perspective, we derive some new non-asymptotic results on the
convergence properties of this algorithm.
Keywords: Langevin Monte Carlo, Fokker–Planck, Wasserstein gradient flow, operator splitting,
proximal operators

1. Introduction

In this paper, we shed new light on Langevin-based Monte Carlo algorithms by drawing connections
to the Wasserstein gradient flow literature and the operator splitting approach to solving PDEs. In
a seminal paper, Jordan et al. (1998) expressed the solution of the Fokker–Planck equation as the
gradient flow of the relative entropy functional (otherwise known as the KL-divergence) with respect
to the 2-Wasserstein distance. Their constructive proof used a time discretization approach that has
since become known as the JKO scheme. We show that applying the JKO scheme in conjunction
with a splitting approach to solving the Fokker–Planck equation reduces to a proximal version of
the Unadjusted Langevin Algorithm. Our proofs rely heavily on the theory developed by Ambrosio
et al. (2005), and have the benefit of holding for potentials that are not necessarily differentiable. In
turn, this allows us to provide some new results regarding the convergence of the algorithm. Our
work is related to Durmus et al. (2016), and we will make comparisons to their theoretical results.

To motivate the use of Langevin-based Monte Carlo algorithms, consider a log-concave target
distribution π, given in terms of the Lebesgue density π(x) = Z−1e−V (x), where V : Rd → R is
a convex function, d ∈ N is an integer, and Z is the normalizing constant. In the case where V is
differentiable, we can associate with it the Langevin diffusion, given in terms of the Itô stochastic
differential equation

dX(t) = −∇V (X(t))dt+
√

2dW (t), X(0) = X0 ∼ ρ0. (1)

It represents the position X(t) ∈ Rd of a particle at time t > 0, initialized at the random location
X0 ∼ ρ0, with drift according to the gradient of the potential V and subject to random perturbations
dW (t). The process W (t) is the standard Wiener process. The density of X(t) at time t, written
ρ(t), satisfies the linear Fokker–Planck equation:

dρ

dt
= div(ρ∇V ) + ∆ρ, ρ(0) = ρ0. (2)
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A classical result says that under quite weak convexity and smoothness conditions on V , the
unique stationary solution of (2) is equal to π, and that convergence to π is exponentially fast (see for
example Pavliotis, 2014, Chapter 4). These attractive properties have spawned a range of sampling
algorithms targeting π based on time discretizations of the process in (1). Notably, the Unadjusted
Langevin Algorithm (ULA) and its Metropolis adjusted counterpart MALA have received much
attention.

The Unadjusted Langevin Algorithm is simply an explicit Euler discretization of (1): for a
time-step h > 0 and for k ≥ 0,

Xk+1
h = Xk

h − h∇V (Xk
h) +

√
2hηk+1, X0

h = X0, (3)

where (ηk)k≥1 is a sequence of independentN (0, Id) random variables and Id is the d-dimensional
identity matrix. In MALA,Xk+1

h is either accepted or rejected in a Metropolis step with the purpose
of removing the asymptotic bias of ULA stemming from discretization error.

Originating with Roberts and Tweedie (1996), there has been a lot of interest in quantifying the
performance of these algorithms, with early work primarily focusing on MALA (see e.g. Jarner and
Hansen, 2000; Roberts and Stramer, 2002; Pillai et al., 2012; Xifara et al., 2014). It was not until
Dalalyan (2014), who gave precise bounds for the total variation distance between the law of Xk

h

and π in terms of d, k, and h, that ULA garnered similar attention. His results were further improved
and extended to other metrics and discrepancies by Durmus and Moulines (2016b, 2017); Cheng
and Bartlett (2017); Dalalyan (2017). For instance, Dalalyan and Karagulyan (2017) show that if V
is strongly convex and has Lipschitz continuous gradient, then Ω(d/ε2) iterations are sufficient for
ULA to achieve an error of ε in the 2-Wasserstein distance. Similar results also hold in situations
where only a (sufficiently regular) approximation of the gradient is available.

In what follows, we will view Langevin-based Monte Carlo through the lens of Wasserstein
gradient flow, and show that this perspective can lead to interesting results on the computational
complexity of such algorithms. Wasserstein gradient flow was also used by Cheng and Bartlett
(2017) as a theoretical tool to study ULA, but our approach makes closer connections to the operator
splitting literature, and as such leads to different results. We hope that further connections can
have methodological implications in these fields, by considering the wide variety of JKO schemes,
splitting schemes, and Langevin Monte Carlo algorithms that exist.

The rest of this paper is structured as follows. Section 1.1 defines the notation and states some
important definitions, Section 2 reviews some concepts from the Wasserstein gradient flow litera-
ture, Section 3 briefly discusses the operator splitting approach to solving PDEs, Section 4 estab-
lishes connections between Wasserstein gradient flow, operator splitting and Langevin Monte Carlo
and includes some convergence results on the proximal version of the ULA algorithm, and Section
5 concludes. Proofs are given in the Appendix.

1.1. Notation and definitions

Let ‖ ·‖p be the `p-norm on Rd, unless p = 2, in which case it reduces to the Euclidean distance and
is denoted by ‖ · ‖. Define P2(Rd) to be the set of probability measures on Rd with finite second
moments with respect to the Euclidean distance. The 2-Wasserstein distance is a metric on P2(Rd),
and is for any µ, ν ∈ P2(Rd) defined by

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

‖x− y‖2dγ(x, y)

) 1
2

, (4)
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where Γ(µ, ν) is the set of all joint distributions with marginals µ and ν. A desirable feature of the
2-Wasserstein distance is thatW2(µn, µ) → 0 as n → ∞ if and only if µn converges weakly to µ
and the corresponding sequence of second moments also converges (Villani, 2008, Theorem 6.9).

The entropy and potential energy functionals, ρ 7→ H(ρ) and ρ 7→ V(ρ) respectively, are given
by

H(ρ) =

{∫
log ρdρ for ρ� µLeb,

+∞ otherwise,
(5)

where µLeb denotes the Lebesgue measure on Rd, and

V(ρ) =

∫
V dρ. (6)

The relative energy functional ρ 7→ H(ρ|π), also called the KL-divergence, is given by

H(ρ|π) = H(ρ) + V(ρ) + logZ. (7)

An important concept in optimal transport, which will play a significant role later, is the notion
of displacement convexity. A functional ρ 7→ F(ρ) is said to be λ-displacement convex for some
λ ∈ R if, for all t ∈ [0, 1],

F(µt) ≤ (1− t)F(µ0) + tF(µ1)− λ

2
t(1− t)W2

2 (µ0, µ1) (8)

for any constant speed geodesic µ : [0, 1] → P2(Rd). A curve µ : [0, 1] → P2(Rd) is a constant
speed geodesic if, for any 0 ≤ s ≤ t ≤ 1, we have thatW2(µs, µt) = (t− s)W2(µ0, µ1).

We use the following notation for the density of a Gaussian distribution with zero mean and
covariance matrix 2tId:

φt(x) =
1

(4πt)d/2
exp

(
−‖x‖

2

4t

)
. (9)

By a Markov operator, we mean a linear functionalR that maps the set of non-negative Lebesgue
integrable functions into itself. A family of Markov operators (Rt)t≥0 is called a Markov semigroup
if R0 is the identity map, Rt+s = RtRs for any s, t ≥ 0, and the map t 7→ Rtf is continuous for
any non-negative and Lebesgue integrable f .

2. Wasserstein gradient flow

The theory of gradient flows in the space of probability measures was pioneered by Ambrosio,
Gigli and Savaré in their book Ambrosio et al. (2005), generalizing the variational structure Jordan
et al. (1998) had used to describe the diffusion and Fokker–Planck equations. With Langevin Monte
Carlo in mind, we provide only a brief introduction to this theory, and refer to the aforementioned
references and the accessible review of Santambrogio (2016) for further details.

We first consider continuous time flows, which will lead to a useful perspective on generaliza-
tions of the continuous time processes in (1) and (2). Secondly, we consider the time discretizations
through which the existence and uniqueness of gradient flows are typically established. Although
they were originally introduced as theoretical tools in the literature, it will later become clear that
Langevin Monte Carlo in fact numerically approximates such a time discretization.
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2.1. Continuous time flows

In Euclidean space, a curve x : [0,∞)→ Rd is the gradient flow, or steepest descent, of a differen-
tiable function f : Rd → R if

dx

dt
= −∇f(x), x(0) = x0. (10)

By analogy, one can interpret the gradient flow of a functional F : P2(Rd) → R to be a curve
ρ : [0,∞)→ P2(Rd) that satisfies

dρ

dt
= −∇W2F(ρ), ρ(0) = ρ0, (11)

for some generalized notion of gradient ∇W2 , in terms of theW2 metric. For sufficiently regular ρ
and F ,∇W2F(ρ) corresponds to −div(ρ∇ δF

δρ ), where δF/δρ is the first variation of F . Applied to
the functional of interest, namely F(ρ) = H(ρ|π), one has that δF/δρ = V + log ρ + 1. Thus, if
V is differentiable one recovers (2) (see e.g. Ambrosio et al., 2005, Lemma 10.4.1).

Due to the technically challenging nature of defining Wasserstein gradients this way when V is
not differentiable, we instead adopt the definition given in Ambrosio et al. (2009), inspired by the
characterization of gradient flows in terms of evolution variational inequalities (EVIs) shown in Am-
brosio et al. (2005, Theorem 11.1.4). In particular, we say that a continuous curve ρ : (0,+∞) →
P2(Rd) is a gradient flow of a λ-displacement convex functional F if

d

dt

1

2
W2

2 (ρ(t), ν) +
λ

2
W2

2 (ρ(t), ν) + F(ρ(t)) ≤ F(ν), (12)

holds in the sense of distributions, for all ν ∈ D(F) = {µ ∈ P2(Rd) : F(µ) < +∞}. The flow is
said to start from ρ0 ifW2(ρ(t), ρ0)→ 0 as t→ 0. Here, “in the sense of distributions” means that
for all infinitely differentiable and compactly supported test functions, denoted f ∈ C∞c ((0,∞);R),
such that f ≥ 0, we have

− 1

2

∫ ∞
0
W2

2 (ρ(t), ν)f ′(t)dt ≤
∫ ∞

0

[
F(ν)−F(ρ(t))− λ

2
W2

2 (ρ(t), ν)

]
f(t)dt. (13)

The connection between (12) and (13) can be seen by imagining the left hand side of (13) being
integrated by parts.

One of the most attractive features of gradient flows are their convergence properties. For any
λ-displacement convex functional F with λ > 0, the map ρ 7→ F(ρ) has a unique minimum ρ̄, and
Theorem 11.2.1 of Ambrosio et al. (2005) states that there exists a unique gradient flow t 7→ ρ(t),
which satisfies

W2(ρ(t), ρ̄) ≤ W2(ρ0, ρ̄)e−λt and F(ρ(t))−F(ρ̄) ≤ [F(ρ0)−F(ρ̄)] e−2λt, (14)

or any t ≥ 0. Convergence results also exist in the case where λ = 0, but do not yield the exponential
convergence observed above.

This result can be applied to the relative entropy by making the following observations: when
V is λ-strongly convex with λ > 0, it follows that ρ 7→ V(ρ) is λ-displacement convex (Ambrosio
et al., 2005, Proposition 9.3.2). In turn, this implies that ρ 7→ H(ρ|π) is λ-displacement convex.
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Recall thatH(ρ|π) ≥ 0 for any ρ, and that ρ 7→ H(ρ|π) is uniquely minimized at π due to the strict
convexity of the function x 7→ x log x for x > 0 appearing in H(ρ), and Jensen’s inequality. The
result in (14) can then be formulated as

W2(ρ(t), π) ≤ W2(ρ0, π)e−λt and H(ρ(t)|π) ≤ H(ρ0|π)e−2λt. (15)

This is a more general statement of the exponential convergence to π of the solution to the Fokker–
Planck equation mentioned in the introduction, and is as such one of the main motivations for
studying Langevin Monte Carlo algorithms.

2.2. Time discretized flows

An important theoretical tool in establishing the existence of gradient flows is the minimizing move-
ment scheme, often also called the JKO scheme. For a time-step h > 0, k ≥ 0, and ρ0

h = ρ0,
consider the iterated minimization problems

ρk+1
h = argmin

ρ∈P2(Rd)

F(ρ) +
1

2h
W2

2 (ρ, ρkh). (16)

Such minimizers exist and are unique under weak assumptions, such as lower semi-continuity and
(strong) displacement convexity of F (see e.g. Ambrosio et al., 2009, Proposition 4.2). Both of
these conditions hold for the relative entropy functional ρ 7→ H(ρ|π) when V is convex: the first
property holds in more generality and is well-known, whereas the second was proved in McCann
(1997).

In the Euclidean setting, the sequence (xkh)k≥0 is an implicit Euler discretization with step-size
h of the gradient flow of f : Rd → R given in (10) with initial condition x0

h = x0 if

xk+1
h = argmin

y∈Rd
f(y) +

1

2h
‖xkh − y‖2. (17)

The map defined by the right hand side of (17) is often written proxhf (xkh) in the optimization liter-
ature, and is referred to as the proximal operator (see e.g. Parikh and Boyd, 2014).

By analogy, the JKO scheme (16) can be seen as an implicit Euler discretization of the flow in
(11). It was this time discretization scheme applied to the functional ρ 7→ H(ρ|π) that Jordan et al.
(1998) employed, showing that the interpolation

ρh(t) = ρk+1
h for t ∈ (kh, (k + 1)h] (18)

converges (in some formal sense) to the solution of the Fokker–Planck equation as h → 0, in the
case where V is smooth and satisfies certain growth conditions.

Building on results by Cépa (1998), Ambrosio et al. (2009) used a minimizing movement
scheme to show existence and uniqueness of the gradient flow of the relative entropy functional
given any convex V . In particular, they show that there exists a semigroup (Pt)t≥0 and a unique
Markov family {Px : x ∈ Rd} of probability measures on (Rd)[0,+∞) such that Exf(Xt) = Ptf(x)
for all bounded Borel functions f and all x ∈ Rd. Moreover, it is shown that {Px : x ∈ Rd}
is reversible with respect to π, and that π is uniquely invariant for (Pt)t≥0. Restricting (Pt)t≥0

to indicator functions of Borel sets B ∈ B(Rd), we define (Rt)t≥0 by Rtρ0(B) =
∫
Pt1Bdρ0.
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The process ρ(t) = Rtρ0 then uniquely satisfies (12) and the associated properties outlined in the
previous section.

After originally being introduced as a theoretical tool, there has recently been interest in devel-
oping numerical implementations of the JKO scheme for solving PDEs. Several Eulerian grid-based
approaches exist, see e.g. Burger et al. (2012); Carrillo et al. (2015a); Peyré (2015). By virtue of
being grid-based, these have limited application in the high-dimensional sampling setting.

It will later be seen that Langevin-based Monte Carlo can be considered a Lagrangian scheme
using a particle approximation to the gradient flow. Other Lagrangian approaches have been con-
sidered by e.g. Carrillo et al. (2015b); Benamou et al. (2016); Carrillo et al. (2017). These methods
are typically adapted to accurately solving PDEs in two or three dimensions, and do not scale well
with d. For instance, Carrillo et al. (2017) used the modified relative entropy functional

Fγ(ρ) =

∫
log(φγ ∗ ρ)dρ+

∫
V dρ+ logZ, (19)

where ϕγ = γ−dϕ(x/γ) denotes a mollifier, typically a Gaussian kernel with standard deviation
γ > 0. This modification makes the functional well-behaved when evaluated at an empirical mea-
sure, with the first term providing a kernel-based estimate of the entropy of the underlying distri-
bution. For small time steps h, their algorithm reduces to solving a system of ODEs to evolve the
particles in the empirical measure. The application of this approach to the high-dimensional setting
is limited by the kernel-based estimate of entropy.

3. Operator splitting

In the previous section, we alluded to the idea that Langevin Monte Carlo numerically approximates
the time discretizations used to theoretically study Wasserstein gradient flows. Before making this
connection clear, we first need to introduce the concept of operator splitting.

Consider the generic Cauchy problem

df

dt
= A(f), f(0) = f0, (20)

with solution given by f(t) = Stf0 in semigroup notation. In many situations, the operator A can
be split into the sum of two simpler operators: A = A1 +A2. Let fj(t) = Sjt f0 for j = 1, 2 denote
the solutions to the problems

dfj
dt

= Aj(fj), fj(0) = f0. (21)

One can hope to estimate the solution f of (20) via f(t) ≈ (S2
t/nS

1
t/n)nf0 for some large positive

integer n, which can be justified if a Lie–Trotter–Kato product formula of the form

f(t) = lim
n→+∞

(S2
t/nS

1
t/n)nf0 (22)

holds. The book of Holden et al. (2010) contains a thorough overview of such results.
Returning to the Fokker–Planck equation (2), there is a natural split between the transport part

of the equation:
dρ

dt
= div(ρ∇V ), ρ(0) = ρ0, (23)
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and the diffusion part:
dρ

dt
= ∆ρ, ρ(0) = ρ0. (24)

In his Ph.D. thesis, Stojković (2011) considers such a split for the Fokker–Planck equation with
smooth drift satisfying a monotonicity property, but which is not necessarily a gradient. Bowles
and Agueh (2015) also consider this split for the fractional Fokker–Planck equation, where the
Laplacian in the diffusion equation (24) is substituted for a fractional Laplacian. In both of these
works, operator splitting is introduced as a theoretical tool to establish the existence of solutions to
generalized Fokker–Planck equations, but they do not consider numerical aspects nor the general
case of convex V .

The splitting interpretation carries over to the Wasserstein gradient flow formulation, where the
transport equation (23) can be interpreted as the gradient flow of the potential energy functional
ρ 7→ V(ρ), and the diffusion equation (24) can be interpreted as the gradient flow of the entropy
functional ρ 7→ H(ρ). We now take a brief closer look at these two gradient flows.

3.1. The transport equation

In addition to the formulation in (12), the gradient flow of ρ 7→ V(ρ) can be characterized by the
semigroup (Tt)t≥0, induced by the differential inclusion

d

dt
Tt(x) ∈ −∂V (Tt(x)), T0(x) = x for all x s.t. V (x) < +∞. (25)

According to Theorem 11.2.3 of Ambrosio et al. (2005), there exists a unique gradient flow of
ρ 7→ V(ρ) and solution to (25). This gradient flow satisfies ρ(t) = (Tt)#ρ0, where (Tt)# denotes
the push-forward map associated with Tt.

The corresponding JKO scheme performs minimizations of the form

ρk+1
h = argmin

ρ∈P2(Rd)

V(ρ) +
1

2h
W2

2 (ρ, ρkh). (26)

By the proof of Proposition 10.4.2 in Ambrosio et al. (2005), it is clear that these steps are well-
defined. Moreover, the map Th(x) = proxhV (x) is such that ρk+1

h = (Th)#ρ
k
h. Since the proximal

operator satisfies y = proxhV (x) ⇐⇒ (x − y)/h ∈ ∂V (x) (see e.g. Parikh and Boyd, 2014), this
can be seen as an implicit Euler step for the evolution of Tt given in (25).

3.2. The diffusion equation

The classical diffusion equation (24), also known as the heat equation, was first described as the
gradient flow of the entropy functional ρ 7→ H(ρ) on the set of densities in P2(Rd) by Jordan
et al. (1998). Note that H(ρ) is the negative Gibbs–Boltzmann entropy of ρ. As pointed out in the
aforementioned paper, the interpretation of the diffusion equation as the gradient flow ofH therefore
provides a natural interpretation of diffusion as the tendency of a system to maximize entropy.

Unlike the other gradient flows we have discussed, the flow of ρ 7→ H(ρ) is known in closed
form: it is well-known that the solution of the diffusion equation (24) is given by the density ρ(t) =
φt ∗ ρ0, where φt is the Gaussian kernel defined in (9).

7
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4. Proximal Langevin Monte Carlo

We are now ready to describe connections between JKO discretized gradient flows, operator split-
ting, and Langevin-based Monte Carlo algorithms. For a time-step h > 0 and for k ≥ 0, consider
the iterative scheme

ρ
k+1/2
h = (Th)#ρ

k
h, ρk+1

h = φh ∗ ρ
k+1/2
h , (27)

which can be seen as alternating between performing a JKO step for the gradient flow of ρ 7→ V(ρ)
and solving the exact gradient flow of ρ 7→ H(ρ). Taking instead the particle perspective, let
X0
h ∼ ρ0 and perform

X
k+1/2
h = Th(Xk

h) = proxhV (Xk
h), Xk+1

h = X
k+1/2
h +

√
2hηk+1, (28)

where (ηk)k≥1 is a sequence of independent N (0, Id) random variables. For each k, the laws of
X
k+1/2
h and Xk+1

h are equal to ρk+1/2
h and ρk+1

h respectively. A generalization of this algorithm
was proposed by Pereyra (2016) and studied further in Durmus et al. (2016).

Note that proxhV (x) = x− h∇Mh
V (x), where

Mh
V (x) = inf

y∈Rd

{
V (y) +

1

2h
‖x− y‖2

}
(29)

is the Moreau–Yosida regularization of V . Moreover, in the case where V is twice differen-
tiable with positive definite Hessian D2V (x) for every x ∈ Rd, it is known that proxhV (x) =
x − h∇V (x) + o(h) as h → 0 (see e.g. Parikh and Boyd, 2014, Section 3.3). Hence, for small h,
the steps in (28) can be thought of as approximating the Unadjusted Langevin Algorithm.

4.1. Convergence analysis

We follow the approach of Clément and Maas (2011), which itself is an adaptation of the methods in
Ambrosio et al. (2005, Chapter 4), to establish that the scheme in (27) satisfies a Lie–Trotter–Kato
formula. We will also derive an upper bound on the 2-Wasserstein distance between the interpolation
ρh(t) = ρk+1

h for t ∈ (kh, (k + 1)h] and the gradient flow ρ(t) of ρ 7→ H(ρ|π). In turn, this allows
us to bound the quantity of interest, W2(ρh(t), π). Before stating the main results, we introduce
some notation.

For any n ≥ 1 and any 0 ≤ k ≤ n− 1, define the quantities

δk+1
h = V(ρk+1

h )− V(ρ
k+1/2
h ), ∆k+1

h =

k+1∑
j=1

δjh. (30)

Note that δk+1
h can also be expressed

δk+1
h = EV (X + η)− EV (X), (31)

where X ∼ ρk+1/2
h and η ∼ N (0, 2hId) independently. By convexity of V and Jensen’s inequality,

it is clear that δk+1
h ≥ EV (E(X+η|X))−EV (X) ≥ 0. The next results show that controlling these

quantities is sufficient to establish convergence. We also remark that if one has access to independent
runs of the algorithm given in (28), one can estimate δk+1

h by averaging V (Xk+1
h )− V (Xk

h) across
those runs.

8



LMC AND JKO SPLITTING

Theorem 1 Let (ρhm(t))m≥1 be a sequence of discrete solutions generated from ρ0, such that
hm∆m

hm
→ 0 and hmm → T for some T > 0, as m → ∞. Then, ρhm(t) converges uniformly on

[0, T ] to ρ(t), the gradient flow of ρ 7→ H(ρ|π) started from ρ0. Moreover, if h > 0 and n ≥ 1 are
such that hn ≤ T , then for any t ∈ [0, hn],

W2(ρh(t), ρ(t)) ≤
√

6h
(
H(ρ0|π) + ∆n

h

)
. (32)

The corollary below follows from combining (15) and (32) via the triangle inequality.

Corollary 2 Suppose V is λ-strongly convex. Then, under the assumptions of Theorem 1, we have

W2(ρh(t), π) ≤
√

6h
(
H(ρ0|π) + ∆n

h

)
+W2(ρ0, π)e−λt, (33)

for any t ∈ [0, hn], where h > 0 and n ≥ 1.

4.2. Explicit rates

It is clear that the rate at which h∆n
h → 0 as h → 0 is crucial in determining the quality of the

approximation ρh(t). Under some assumptions on ρ0 and V , we can obtain explicit bounds on ∆n
h

in terms of h, n, and d, as will be seen below.
Suppose V = f + g, where f is λ-strongly convex and has Lipschitz continuous gradient, and g

is convex and Lipschitz. That is, assume that there exist M(d) and L(d) such that for all x, y ∈ Rd,

‖∇f(x)−∇f(y)‖ ≤M(d)‖x− y‖ (34)

|g(x)− g(y)| ≤ L(d)‖x− y‖, (35)

where the notation M(d) and L(d) reflects potential dependence of the Lipschitz constants on di-
mension. Under this assumption, we can bound δk+1

h as follows:

EV (X + η)− EV (X) = E[f(X + η)− f(X)] + E[g(X + η)− g(X)] (36)

≤ E
[
∇f(X)>η +

M(d)

2
‖η‖2

]
+ L(d)E‖η‖ (37)

≤M(d)hd+ L(d)
√

2hd, (38)

where (37) follows from the basic property that

f(y) ≤ f(x) +∇f(x)>(y − x) +
M(d)

2
‖x− y‖2, (39)

for all x, y ∈ Rd, see for example Nesterov (2013). Then, h∆n
h ≤M(d)hd · hn+ L(d)

√
2hd · hn.

Hence, for any T > 0 we could take hm = T/m and satisfy the conditions of Corollary 2.
Next, we can use these bounds to derive explicit rates for n and h that yield a desired approxi-

mation error. When selecting the initial distribution, it is not unreasonable to assume that one can
choose ρ0 such thatW2(ρ0, π) = O(

√
d) and H(ρ0|π) = O(d). See Appendix B for justifications

and an explicit example where these assumptions hold.
Now, if we want W2(ρh(hn), π) = O(ε) for a threshold ε > 0, we could require that both

hH(ρ0|π) + h∆n
h = O(ε2) andW2(ρ0, π)e−λhn = O(ε). Under the assumptions above, to ensure

9
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W2(ρ0, π)e−λhn = O(ε), it is sufficient to take hn = Ω(log(d/ε2)). To get hH(ρ0|π) = O(ε2),
one can require that h = O(ε2/d). Lastly, to get h∆n

h = O(ε2), one can in turn require that both
M(d)hd log(

√
d/ε) = O(ε2) and L(d)

√
2hd log(

√
d/ε) = O(ε2). The former can be achieved if

n = Ω

(
dM(d) log(

√
d/ε)2

ε2

)
and h = O

(
ε2

dM(d) log(
√
d/ε)

)
, (40)

while maintaining hn = Ω(log(d/ε2)). Similarly, the latter can be achieved if

n = Ω

(
dL(d)2 log(

√
d/ε)3

ε4

)
and h = O

(
ε4

dL(d)2 log(
√
d/ε)2

)
, (41)

still keeping hn = Ω(log(d/ε2)).
In the case where g = 0 (or equivalently L(d) = 0) and M(d) = O(1), we recover the

assumptions on V that were made in e.g. Dalalyan (2017); Dalalyan and Karagulyan (2017). Using
(40), we see that n = Ω(dε−2 log(dε−2)2) iterations with a step-size of h = log(d/ε2)/n are
sufficient to achieve a 2-Wasserstein error of O(ε). Up to log-terms, this is the same rate as those
derived for ULA in the aforementioned papers.

In the case where g(x) ∝ ‖x‖1 so that L(d) = O(
√
d), we get that n = Ω(d2/ε4) iterations are

sufficient (ignoring the log-terms). This improves upon the recent results of Grappin (2018), who
showed that if additionally f is quadratic, then n = Ω(d3/ε4) iterations are sufficient to yield a
2-Wasserstein error of O(ε). Comparing to the remark accompanying Theorem 3 of Durmus et al.
(2016), our results appears less sharp than the TV bounds they derive, in which n depends linearly
on d (up to log-terms) whenever V is strongly convex. As can be seen in Appendix A, this likely
stems from not optimally accounting for λ-displacement convexity in Lemma 6.

5. Conclusion

In this paper, we have developed novel connections between the fields of Wasserstein gradient flow,
operator splitting, and Langevin Monte Carlo. We have demonstrated that the gradient flow per-
spective allows us to derive new convergence results about a proximal version of the Unadjusted
Langevin Algorithm. Under certain assumptions on the potential V , we derive results that are on
par with the contemporary literature on ULA. However, we point out that there is room for im-
provement in our current proofs. In particular, they could be improved by better accounting for the
condition that V is λ-strongly convex, allowing us to obtain sharper bounds when that assumption
is present. On the other hand, the proof of Theorem 1 generalizes to any convex V . Hence, to
obtain control over the proximal ULA algorithm in such a case, one would only need to formulate
conditions under which one can still derive a rate of convergence of the exact gradient flow to π,
though one should no longer expect this convergence to be exponentially fast. Some recent progress
in this direction based on Lojasiewicz inequalities was made by Blanchet and Bolte (2016).

We also hope that these connections can have implications on methodology. The many other
splitting schemes discussed by Holden et al. (2010) and in the optimization literature can potentially
lead to new sampling algorithms. The same holds for other numerical schemes, such as the alterna-
tive JKO algorithm developed by Legendre and Turinici (2017). For the Fokker–Planck equation,
they show that their new scheme is second-order convergent, improving the original JKO scheme’s

10
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first-order convergence. Recently, Plazotta (2018) developed a variational formulation of the BDF2
scheme applicable to the estimation of gradient flows. It is also likely that the growing literature
on Langevin Monte Carlo and its variations can lead to new time discretization schemes that are of
both practical and theoretical interest to the gradient flow community.
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Space of Probability Measures. Birkhäuser Verlag AG, Basel, second edition, 2005.
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Gabriel Peyré. Entropic approximation of Wasserstein gradient flows. SIAM Journal on Imaging
Sciences, 8(4):2323–2351, 2015.

Natesh S. Pillai, Andrew M. Stuart, and Alexandre H. Thiéry. Optimal scaling and diffusion limits
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Appendix A. Proofs

Closely following Clément and Maas (2011) and Ambrosio et al. (2005), we start by proving a
discrete version of the evolution variational inequality used to characterize gradient flows. Using
interpolations of the discrete solutions, we use the discrete EVI to build a continuous approximation
to the desired EVI. With this approximation, we derive a bound that quantifies the closeness of two
discrete solutions. This bound is used to show that under appropriate assumptions on a sequence of
discrete solutions, this sequence is Cauchy and therefore has a limit. Lastly, this limit is shown to
be the desired gradient flow.

Lemma 3 (Discrete Evolution Variation Inequality) For any n ≥ 1, h > 0, ν � µLeb and
k = 0, . . . , n− 1 we have

1

2h

[
W2

2 (ρk+1
h , ν)−W2

2 (ρkh, ν)
]

+
λ

2
W2

2 (ρ
k+1/2
h , ν)

≤ H(ν|π)−H(ρk+1
h |π)− 1

2h
W2

2 (ρ
k+1/2
h , ρkh) + δk+1

h .

(42)
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Proof By Corollary 4.1.3 of Ambrosio et al. (2005) (see also their Lemma 9.2.7), for any ρkh �
µLeb, we have

1

2h

[
W2

2 (ρ
k+1/2
h , ν)−W2

2 (ρkh, ν)
]

+
λ

2
W2

2 (ρ
k+1/2
h , ν)

≤ V(ν)− V(ρ
k+1/2
h )− 1

2h
W2

2 (ρ
k+1/2
h , ρkh).

(43)

Recall that t 7→ φt ∗ρk+1/2
h is the gradient flow of the 0-displacement convex entropy functional

ρ 7→ H(ρ). Therefore,

d

dt

1

2
W2

2 (φt ∗ ρk+1/2
h , ν) +H(φt ∗ ρk+1/2

h ) ≤ H(ν), (44)

in the sense of distributions. By Remark 1.2 of Clément and Maas (2011), an equivalent condition
is: for all 0 < a < b <∞,

1

2

[
W2

2 (φb ∗ ρ
k+1/2
h , ν)−W2

2 (φa ∗ ρk+1/2
h , ν)

]
≤ (b− a)H(ν)−

∫ b

a
H(φt ∗ ρk+1/2

h )dt.

(45)

Noting that t 7→ H(φt ∗ ρk+1/2
h ) is non-increasing by Theorem 11.2.1 of Ambrosio et al. (2005)

(see equation 11.2.4), we have that for all 0 < a < b <∞,

1

2

[
W2

2 (φb ∗ ρ
k+1/2
h , ν)−W2

2 (φa ∗ ρk+1/2
h , ν)

]
≤ (b− a)H(ν)− (b− a)H(φb ∗ ρ

k+1/2
h ).

(46)

Letting a→ 0, b = h, we have

1

2h

[
W2

2 (ρk+1
h , ν)−W2

2 (ρ
k+1/2
h , ν)

]
≤ H(ν)−H(ρk+1

h ). (47)

Adding inequalities (43) and (47), as well as adding and subtracting V(ρk+1
h ) to the right hand side

to make δk+1
h appear, yields the result.

It can be deduced from Lemma 3 that

1

2h
W2

2 (ρk+1
h , ρkh) ≤ H(ρkh|π)−H(ρk+1

h |π)− 1 + λh

2h
W2

2 (ρ
k+1/2
h , ρkh) + δk+1

h , (48)

by taking ν = ρkh, so that

n−1∑
k=0

W2
2 (ρk+1

h , ρkh) ≤ 2h
[
H(ρ0

h|π)−H(ρnh|π) + ∆n
h

]
, (49)

≤ 2h
[
H(ρ0

h|π) + ∆n
h

]
. (50)

Similarly,

W2
2 (ρ

k+1/2
h , ρkh) ≤ 2h

1 + λh

[
H(ρkh|π)−H(ρk+1

h |π) + δk+1
h

]
, (51)
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so that
n−1∑
k=0

W2
2 (ρ

k+1/2
h , ρkh) ≤ 2h

1 + λh

[
H(ρ0

h|π) + ∆n
h

]
. (52)

Before proceeding, we introduce some more notation. Introduce the delayed interpolation
ρh(t) = ρkh if t ∈ [hk, (k + 1)h), and note that ρh(t) and ρh(t) are left and right continuous
respectively. Introduce also an interpolation of the half-steps, denoted by ρh1/2(t) = ρ

k+1/2
h if

t ∈ [hk, (k + 1)h).
Define the piecewise affine function

`h(t) =
t− hk
h

if t ∈ [hk, (k + 1)h), (53)

and in turn let

W2
h(t, ν) = (1− `h(t))W2

2 (ρh(t), ν) + `h(t)W2
2 (ρh(t), ν), (54)

Hh(t) = (1− `h(t))H(ρh(t)|π) + `h(t)H(ρh(t)|π). (55)

Let also
Rh(t) = 2(1− `h(t))

(
H(ρkh|π)−H(ρk+1

h |π) + δk+1
h

)
+ 2`h(t)δk+1

h (56)

for t ∈ [hk, (k + 1)h). By (48) and δk+1
h ≥ 0, it is clear that Rh(t) ≥ 0. The following result is an

analog of Theorem 4.1.4 of Ambrosio et al. (2005).

Lemma 4 (Gradient flow approximation) For any n ≥ 1, h > 0, ν � µLeb and t ∈ [0, hn] \
{kh : k = 0, . . . , n}, we have

d

dt

1

2
W2
h(t, ν) +

λ

2
W2

2 (ρh1/2(t), ν) +Hh(t)−H(ν|π) ≤ 1

2
Rh(t), (57)

where d/dt denotes the pointwise derivative.

Proof If t ∈ (hk, (k + 1)h), then

d

dt

1

2
W2
h(t, ν) =

1

2h

[
W2

2 (ρk+1
h , ν)−W2

2 (ρkh, ν)
]
. (58)

By Lemma 3, this means

d

dt

1

2
W2
h(t, ν) +

λ

2
W2

2 (ρh1/2(t), ν) +Hh(t)−H(ν|π) (59)

=
1

2h

[
W2

2 (ρk+1
h , ν)−W2

2 (ρkh, ν)
]

+
λ

2
W2

2 (ρh1/2(t), ν) +Hh(t)−H(ν|π) (60)

≤ Hh(t)−H(ρk+1
h |π) + δk+1

h (61)

= (1− `h(t))H(ρkh|π) + `h(t)H(ρk+1
h |π)−H(ρk+1

h |π) + δk+1
h (62)

= (1− `h(t))
(
H(ρkh|π)−H(ρk+1

h |π)
)

+ δk+1
h (63)

=
1

2
Rh(t). (64)
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Lemma 5 For any n ≥ 1, h > 0 and k = 0, . . . , n− 1, we have the estimate

0 ≤
∫ (k+1)h

0
Rh(t)dt ≤ h

(
H(ρ0

h|π) + 2∆n
h

)
. (65)

Proof The lower bound follows from Rh(t) ≥ 0 for all t ∈ [0, hn]. Observe that∫ (k+1)h

kh
`h(t)dt =

∫ (k+1)h

kh
(1− `h(t))dt =

1

2
h, (66)

which in turn implies that∫ (k+1)h

0
Rh(t)dt =

k−1∑
j=0

∫ (j+1)h

jh
Rh(t)dt (67)

=

k−1∑
j=0

h
(
H(ρjh|π)−H(ρj+1

h |π) + δj+1
h

)
+

k−1∑
j=0

hδj+1
h (68)

≤ h
(
H(ρ0

h|π)−H(ρk+1
h |π) + ∆k+1

h

)
+ h∆k+1

h (69)

≤ h
(
H(ρ0

h|π) + 2∆n
h

)
. (70)

Let (γjr)mj=0 denote a trajectory corresponding to another time-step r, and define the quantities
γr(s), γ

r(s), `r(s),Hr(s) and Rr(s) analogously to those defined in terms of h. Define

W2
h,r(t, s) = (1− `r(s))W2

h(t, γr(s)) + `r(s)W2
h(t, γr(s)), (71)

and observe that this function is continuous in t and s.

Lemma 6 For any n,m ≥ 1, h, r > 0 and t ∈ [0,min{hn, rm}],

W2
h,r(t, t) ≤ W2

2 (ρ0
h, γ

0
r ) +

∫ t

0
Rh(t) +Rr(t)dt. (72)

Proof Let s ∈ [0, rm] and t ∈ [0, hn] \ {kh : k = 0, . . . , n}. By Lemma 4,

∂

∂t

1

2
W2
h,r(t, s) +Hh(t)−Hr(s) ≤

1

2
Rh(t). (73)

Similarly, for s ∈ [0, rm] \ {jr : j = 0, . . . ,m} and t ∈ [0, hn],

∂

∂s

1

2
W2
r,h(s, t) +Hr(s)−Hh(t) ≤ 1

2
Rr(s). (74)

Note the symmetry
W2
h,r(t, s) =W2

r,h(s, t), (75)

so that for s ∈ [0, rm] \ {jr : j = 0, . . . ,m} and t ∈ [0, hn] \ {kh : k = 0, . . . , n},

∂

∂t
W2
h,r(t, s) +

∂

∂s
W2
h,r(t, s) ≤ Rh(t) +Rr(s), (76)

16



LMC AND JKO SPLITTING

by adding the inequalities above. Setting s = t and letting t ∈ [0,min{hn, rm}] \ ({kh : k =
0, . . . , n} ∪ {jr : j = 0, . . . ,m}),

d

dt
W2
h,r(t, t) ≤ Rh(t) +Rr(t). (77)

Since t 7→ W2
h,r(t, t) is continuous and piecewise differentiable, the Fundamental Theorem of

Calculus implies that

W2
h,r(t, t) ≤ W2

h,r(0, 0) +

∫ t

0
Rh(t) +Rr(t)dt (78)

=W2
2 (ρ0

h, γ
0
r ) +

∫ t

0
Rh(t) +Rr(t)dt. (79)

Lemma 7 For any n,m ≥ 1, h, r > 0 and t ∈ [0,min{hn, rm}],

W2
2 (ρh(t), γr(t))

≤ 6
[
W2

2 (ρ0
h, γ

0
r ) + h

(
H(ρ0

h|π) + ∆n
h

)
+ r

(
H(γ0

r |π) + ∆m
r

)]
.

(80)

Proof Suppose j and k are such that t ∈ [kh, (k + 1)h) ∩ [jr, (j + 1)r). Then,

W2
2 (ρh(t), γr(t)) =W2

2 (ρk+1
h , γj+1

r )

= (1− `h(t))(1− `r(t))W2
2 (ρk+1

h , γj+1
r )

+ (1− `h(t))`r(t)W2
2 (ρk+1

h , γj+1
r )

+ `h(t)(1− `r(t))W2
2 (ρk+1

h , γj+1
r )

+ `h(t)`r(t)W2
2 (ρk+1

h , γj+1
r )

≤ 3(1− `h(t))(1− `r(t))
[
W2

2 (ρk+1
h , ρkh) +W2

2 (ρkh, γ
j
r) +W2

2 (γj+1
r , γjr)

]
+ 2(1− `h(t))`r(t)

[
W2

2 (ρk+1
h , ρkh) +W2

2 (ρkh, γ
j+1
r )

]
+ 2`h(t)(1− `r(t))

[
W2

2 (γj+1
r , γjr) +W2

2 (ρk+1
h , γjr)

]
+ `h(t)`r(t)W2

2 (ρk+1
h , γj+1

r )

≤ 3(1− `h(t))(1− `r(t))
[
W2

2 (ρk+1
h , ρkh) +W2

2 (ρkh, γ
j
r) +W2

2 (γj+1
r , γjr)

]
+ 3(1− `h(t))`r(t)

[
W2

2 (ρk+1
h , ρkh) +W2

2 (ρkh, γ
j+1
r )

]
+ 3`h(t)(1− `r(t))

[
W2

2 (γj+1
r , γjr) +W2

2 (ρk+1
h , γjr)

]
+ 3`h(t)`r(t)W2

2 (ρk+1
h , γj+1

r )

= 3W2
h,r(t, t) + 3(1− `h(t))W2

2 (ρk+1
h , ρkh) + 3(1− `r(t))W2

2 (γj+1
r , γjr).
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Now, by Lemmas 6 and 5,

W2
h,r(t, t) ≤ W2

2 (ρ0
h, γ

0
r ) +

∫ t

0
Rh(t) +Rr(t)dt (81)

≤ W2
2 (ρ0

h, γ
0
r ) + h

(
H(ρ0

h|π) + 2∆n
h

)
+ r

(
H(γ0

r |π) + 2∆m
r

)
. (82)

Lastly, we know by Lemma 3 that

W2
2 (ρk+1

h , ρkh) ≤ 2h
(
H(ρ0

h|π) + ∆n
h

)
, (83)

W2
2 (γj+1

r , γjr) ≤ 2r
(
H(γ0

r |π) + ∆m
r

)
. (84)

In conclusion, and without optimizing the constant, we get

W2
2 (ρh(t), γr(t))

≤ 6
[
W2

2 (ρ0
h, γ

0
r ) + h

(
H(ρ0

h|π) + ∆n
h

)
+ r

(
H(γ0

r |π) + ∆m
r

)]
.

(85)

Before giving its proof, we restate the main theorem of the paper:

Theorem 1 Let (ρhm(t))m≥1 be a sequence of discrete solutions generated from ρ0, such that
hm∆m

hm
→ 0 and hmm → T for some T > 0, as m → ∞. Then, ρhm(t) converges uniformly on

[0, T ] to ρ(t), the gradient flow of ρ 7→ H(ρ|π) started from ρ0, as m → ∞. Moreover, if h > 0
and n ≥ 1 are such that hn ≤ T , then for any t ∈ [0, hn],

W2(ρh(t), ρ(t)) ≤
√

6h
(
H(ρ0|π) + ∆n

h

)
. (86)

Proof Let the discrete solutions ρhn(t) and ρhm(t) be members of the sequence. From Lemma
7, we know that W2

2 (ρhm(t), ρhn(t)) → 0 as m,n → ∞, for any t ∈ [0, T ]. This implies that
(ρhm(t))m≥1 is a Cauchy sequence. Since (P2(Rd),W2) is complete, this means that the sequence
converges to a function ρ(t). Since the bound in Lemma 7 does not depend on t, this convergence
is uniform on [0, T ].

Since the convergence is uniform and ρhn(t) is left continuous, then so is the limit ρ(t). More-
over, since if t ∈ [kh, (k + 1)h) for some k = 0, . . . , n− 1,

W2
2 (ρhn(t), ρhn(t)) ≤ W2

2 (ρk+1
hn

, ρkhn) ≤ 2hn
(
H(ρ0|π) + ∆n

hn

)
→ 0 as n→∞. (87)

Hence, ρhn(t) converges to ρ(t) in the same manner as ρhn(t), meaning that the limit ρ(t) is right
continuous also. Combining these facts, it is clear that ρ(t) is continuous.

Similarly,

W2
2 (ρhn(t), ρhn1/2(t)) ≤ W2

2 (ρ
k+1/2
hn

, ρkhn) ≤ 2hn
(
H(ρ0|π) + ∆n

hn

)
→ 0 as n→∞, (88)

by the bound in (52). This implies that ρhn1/2(t) converges to ρ(t) in the same manner as ρhn(t) and

ρhn(t).
It remains to show that ρ(t) is the gradient flow of ρ 7→ H(ρ|π). Indeed, let f ∈ C∞c ((0,∞);R)

be non-negative and ν � µLeb. Note that limn→∞W2
hn

(t, ν) = W2
2 (ρ(t), ν) uniformly on [0, T ].
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Since t 7→ W2
hn

(t, ν) is continuous, so is the limit W2
2 (ρ(t), ν). Thus, t 7→ f ′(t)W2

2 (ρ(t), ν) is
continuous, i.e. integrable, on [0,T]. The continuity of f ′ implies that there exists an M > 0 such
that |f ′(t)| ≤M . In combination with the aforementioned uniform convergence, we know that

lim
n→∞

∫ T

0
f ′(t)W2

hn(t, ν)dt =

∫ T

0
f ′(t)W2

2 (ρ(t), ν)dt. (89)

By the same reasoning, and the fact that limn→∞W2
2 (ρhn1/2(t), ν) = W2

2 (ρ(t), ν) uniformly on
[0, T ], we have

lim
n→∞

∫ T

0
f(t)W2

2 (ρhn1/2(t), ν)dt =

∫ T

0
f(t)W2

2 (ρ(t), ν)dt. (90)

Now, since f and H(·|π) are non-negative, so is the function t 7→ f(t)Hh(t). Thus, by Fatou’s
lemma,

lim inf
n→∞

∫ T

0
f(t)Hhn(t)dt ≥

∫ T

0
lim inf
n→∞

f(t)Hhn(t)dt. (91)

By Lemma 2.8 of Clément and Maas (2011),∫ T

0
lim inf
n→∞

f(t)Hhn(t)dt ≥
∫ T

0
f(t)H(ρ(t)|π)dt. (92)

So, ∫ T

0

[
−f ′(t)1

2
W2

2 (ρ(t), ν) + f(t)
λ

2
W2

2 (ρ(t), ν) + f(t)H(ρ(t)|π)

]
dt (93)

≤ lim inf
n→∞

∫ T

0

[
−f ′(t)1

2
W2
hn(t, ν) + f(t)

λ

2
W2

2 (ρhn1/2(t), ν) + f(t)Hhn(t)

]
dt (94)

= lim inf
n→∞

∫ T

0

[
f(t)

d

dt

1

2
W2
hn(t, ν) + f(t)

λ

2
W2

2 (ρhn1/2(t), ν) + f(t)Hhn(t)

]
dt (95)

≤ lim inf
n→∞

∫ T

0
f(t)

[
1

2
Rhn(t) +H(ν|π)

]
dt (96)

=

∫ T

0
f(t)H(ν|π)dt+ lim inf

n→∞

∫ T

0
f(t)

1

2
Rhn(t)dt (97)

≤
∫ T

0
f(t)H(ν|π)dt+ sup

t∈[0,T ]
f(t) lim inf

n→∞

∫ T

0

1

2
Rhn(t)dt (98)

≤
∫ T

0
f(t)H(ν|π)dt+ sup

t∈[0,T ]
f(t) lim inf

n→∞

[
1

2
hn(H(ρ0|π) + 2∆n

hn)

]
(99)

=

∫ T

0
f(t)H(ν|π)dt, (100)

where (94) follows from (91) and (92), (95) follows by integration by parts, (96) follows by Lemma
4, (98) follows by f being non-negative and continuous, and Rhn(t) ≥ 0, (99) follows by Lemma
5, and (100) follows by the assumption. This concludes the proof that ρ(t) is indeed the gradient
flow.
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Now, fix h > 0 and n ≥ 1 such that hn ≤ T . Then, for any m ≥ 1,

W2
2 (ρh(t), ρhm(t)) ≤ 6

[
h (H(ρ0|π) + ∆n

h) + hm
(
H(ρ0|π) + ∆m

hm

)]
, (101)

for any t ∈ [0,min{hn, hmm}] by Lemma 7. Taking m→∞ yields the conclusion.

Appendix B. Rates forW2(ρ0, π) andH(ρ0|π)

In this section, we provide some heuristic support for the claim that one can often assume that
H(ρ0|π) = O(d) andW2(ρ0, π) = O(

√
d). These assumptions can also be shown to be hold for

more general settings than those we consider below.
Let ρ0(x) = Z−1

0 e−V0(x), and note that

W2
2 (ρ0, π) = inf

γ∈Γ(ρ0,π)

∫
Rd×Rd

‖x− y‖2dγ(x, y)

≤
∫
Rd

∫
Rd
‖x− y‖2dπ(x)dρ0(y)

=

∫
Rd
‖x− x̄‖2dπ(x) +

∫
Rd
‖y − ȳ‖2dρ0(y) + ‖x̄− ȳ‖2,

and where x̄ and ȳ are the means of π and ρ0 respectively. The third term on the last line safely
be assumed to be O(d). By Theorem 1 of Durmus and Moulines (2016a), the first term can be
bounded by d/λ under the λ-strong convexity assumption. Under similar assumptions on ρ0, or e.g.
assuming that V0(x) =

∑d
i=1 V

i
0 (xi), one can also defend imposing a bound of O(d) for second

term.
Secondly, one can easily support the assumptionH(ρ0|π) = O(d) if both V0(x) =

∑d
i=1 V

i
0 (xi)

and V (x) =
∑d

i=1 V
i(xi). A less restrictive condition is to assume that 0 ≤ V (x) − V0(x) ≤

a‖x‖2 + b for some a ≥ 0 and b ∈ R not dependent on d. The first inequality is analogous to saying
that ρ0 has heavier tails than π, whereas the second inequality constrains exactly how much heavier
these tails can be. Under this assumption, and using the proof of Lemma 3 of Dalalyan (2014), we
can write

H(ρ0|π) =

∫
Rd

log
(ρ0

π

)
dρ0

=

∫
Rd

[V (x)− V0(x)] dρ0 + log

(∫
Rd
eV0(x)−V (x)dρ0

)
≤
∫
Rd

(
a‖x‖2 + b

)
dρ0,

by noting that eV0(x)−V (x) ≤ 1 by the assumption. One can then proceed as in the last paragraph.

B.1. Gaussian initial distribution

Let x? denote the minimum of V , and let V0(x) = α
2 ‖x− µ‖

2 + V (x?) with α < M(d), so that ρ0

is a Gaussian distribution. We focus on bounding H(ρ0|π), as bounding the Wasserstein distance
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can be done as in the previous section. Then, using strong convexity, (34) and (35),

V (x) ≤ V (x?) + L(d)‖x− x?‖+∇f(x?)>(x− x?) +
M(d)

2
‖x− x?‖2,

V (x) ≥ V (x?)− L(d)‖x− x?‖+∇f(x?)>(x− x?) +
λ

2
‖x− x?‖2,

so that∫
Rd

[V (x)− V0(x)] dρ0

=

∫
Rd

[
M(d)

2
‖x− x?‖2 − α

2
‖x− µ‖2 + L(d)‖x− x?‖+∇f(x?)>(x− x?)

]
dρ0

≤ M(d)

2
‖µ− x?‖2 +

M(d)d

2α
− αd

2α
+∇f(x?)>(µ− x?) + L(d)

(∫
Rd
‖x− x?‖2dρ0

)1/2

≤ M(d)

2
‖µ− x?‖2 +

(M(d)− α)d

2α
+∇f(x?)>(µ− x?) + L(d)

(
‖µ− x?‖2 +

d

α

)1/2

,

and

log

∫
Rd
eV0(x)−V (x)dρ0 ≤ log

(
1

Z1/α

∫
Rd
e−

λ
2
‖x−x?‖2+L(d)‖x−x?‖−∇f(x?)>(x−x?)dx

)
≤ log

(
1

Z1/α

∫
Rd
e−

λ
2
‖x−x?‖2+(L(d)+‖∇f(x?)‖)‖x−x?‖dx

)
= log

(
1

Z1/α

∫
Rd
e−

λ
2
‖x−x?‖2+c‖x−x?‖dx

)
,

where c = L(d) + ‖∇f(x?)‖ and Z1/α =
∫
Rd e

−α
2
‖x−µ‖2dx. Furthermore,

log

(
1

Z1/α

∫
Rd
e−

λ
2
‖x‖2+c‖x‖dx

)
≤ log

(
1

Z1/α

∫
Rd
e−

λ
4
‖x‖2+ c2

λ dx

)
= log

(
Z2/α

Z1/α
e
c2

λ

)
=
d

2
log(2) +

(L(d) + ‖∇f(x?)‖)2

λ

≤ d

2
log(2) +

(L(d) +M(d)‖x? − xf‖)2

λ
,

where xf is the minimum of f . Hence,

H(ρ0|π) ≤ M(d)

2
‖µ− x?‖2 +

(M(d)− α)d

2α
+ ‖x? − xf‖‖µ− x?‖+ L(d)

(
‖µ− x?‖2 +

d

α

)1/2

+
d

2
log(2) +

(L(d) +M(d)‖x? − xf‖)2

λ
.

Take α = λ and µ such that ‖µ− x?‖2 = O(d), and make the safe assumption that ‖x? − xf‖2 =
O(d). If M(d) = O(1) and L(d) =

√
d like in Section 4.2, we getH(ρ0|π) = O(d).
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