Abstract

We prove the hardness of weakly learning halfspaces in the presence of adversarial noise using polynomial threshold functions (PTFs). In particular, we prove that for any constants $d \in \mathbb{Z}^+$ and $\varepsilon > 0$, it is NP-hard to decide: given a set of $\{-1, 1\}$-labeled points in \mathbb{R}^n whether (YES Case) there exists a halfspace that classifies $(1 - \varepsilon)$-fraction of the points correctly, or (NO Case) any degree-d PTF classifies at most $(1/2 + \varepsilon)$-fraction of the points correctly. This strengthens to all constant degrees the previous NP-hardness of learning using degree-2 PTFs shown by Diakonikolas et al. (2011). The latter result had remained the only progress over the works of Feldman et al. (2006) and Guruswami et al. (2006) ruling out weakly proper learning adversarially noisy halfspaces.

Keywords: Learning, Halfspaces, PTFs, Hardness

1. Introduction

Given a distribution D over $\{-1, 1\}$-labeled points in \mathbb{R}^n, the accuracy of a classifier function $f : \mathbb{R}^n \to \{-1, 1\}$ is the probability that $f(x) = \ell$ for a random point-label pair (x, ℓ) sampled from D. A concept class C is said to be learnable by hypothesis class H if there is an efficient procedure which, given access to samples from any distribution D consistent with some $f \in C$, generates with high probability a classifier $h \in H$ of accuracy approaching that of f for D. When H can be taken as C itself, the latter is said to be properly learnable. The focus of this work is one of the simplest and most well-studied concept classes: the halfspace which maps $x \in \mathbb{R}^n$ to $\text{sign}(\langle v, x \rangle - c)$ for some $v \in \mathbb{R}^n$ and $c \in \mathbb{R}$. The study of halfspaces goes back several decades to the development of various algorithms in artificial intelligence and machine learning such as the Perceptron (Rosenblatt, 1962; Minsky and Papert, 1969) and SVM (Cortes and Vapnik, 1995). Since then, halfspace-based classification has found applications in many other areas, such as computer vision (Murphy, 1990) and data-mining (Rügert et al., 2004).

It is known that a halfspace can be properly learnt by using linear programming along with a polynomial number of samples to compute a separating hyperplane (Blumer et al., 1989). In noisy data however, it is not always possible to find a hyperplane separating the differently labeled points. Indeed, in the presence of (adversarial) noise, i.e. the agnostic setting, proper learning of a halfspace to optimal accuracy with no distributional assumptions was shown to be NP-hard by Johnson and Preparata (1978). Subsequent results showed the hardness of approximating the accuracy of prop-
erly learning a noisy halfspace to constant factors: $\frac{262}{261} - \epsilon$ by Amaldi and Kann (1998), $\frac{418}{415} - \epsilon$ by Ben-David et al. (2003), and $\frac{85}{84} - \epsilon$ by Bshouty and Burroughs (2006). These results were considerably strengthened independently by Feldman et al. (2009) and by Guruswami and Raghavendra (2009)\(^1\) who proved hardness of even *weakly* proper learning a noisy halfspace, i.e. to an accuracy beyond the random threshold of $1/2$. This implies an optimal $(2 - \epsilon)$-inapproximability in terms of the learning accuracy. Building upon these works Feldman et al. (2012) showed that the same hardness holds for learning noisy monomials (OR functions over the boolean hypercube) using halfspaces.

At this point, it is natural to ask whether the halfspace learning problem remains hard if the classifier is allowed to be from a larger class of functions, i.e., *non-proper* learning. In particular, consider the class of degree-d polynomial threshold functions (PTF) which are given by mapping $x \in \mathbb{R}^n$ to $\text{sign}(P(x))$ where P is a degree-d polynomial. They generalize halfspaces a.k.a. linear threshold functions (LTFs) which are degree-1 PTFs and are very common hypotheses in machine learning because they are output by kernelized models (e.g., perceptrons, SVM’s, kernel k-means, kernel PCA, etc.) when instantiated with the polynomial kernel. From a complexity viewpoint, PTFs were studied by Diakonikolas et al. (2011) who showed the hardness of weakly proper learning a noisy degree-d PTF for any constant $d \in \mathbb{Z}^+$, assuming Khot’s Unique Games Conjecture (UGC) (Khot, 2002). On the other hand, proving the hardness of weakly learning noisy halfspaces using degree-d PTFs has turned out to be quite challenging. Indeed, the only such result is by Diakonikolas et al. (2011) who showed the corresponding hardness of learning using a degree-2 PTF. With no further progress till now, the situation remained unsatisfactory.

In this work, we significantly advance our understanding by proving the hardness of weakly learning an ϵ-noisy halfspace by a degree-d PTF for any constant $d \in \mathbb{Z}^+$. Our main result is formally stated as follows.

Theorem 1 (This work) *For any constants $\delta > 0$, and $d \in \mathbb{Z}^+$, it is NP-hard to decide whether a given set of $\{-1, 1\}$-labeled points in \mathbb{R}^n satisfies:*

YES Case. There exists a halfspace that correctly classifies $(1 - \delta)$-fraction of the points, or

NO Case. Any degree-d PTF classifies at most $(1/2 + \delta)$-fraction of the points correctly.

The NO case can be strengthened to rule out any function of constantly many degree-d PTFs.

To place our results in context, we note that algorithmic results for learning noisy halfspaces are known under assumptions on the distribution of the noise or the pointset. In the presence of *random classification noise*, Blum et al. (1998) gave an efficient learning algorithm approaching optimal accuracy, which was improved by Cohen (1997) who showed that in this case the halfspace can in fact be properly learnt. For certain well behaved distributions, Kalai et al. (2005) showed that halfspaces can be learnt even in the presence of adversarial noise. Subsequent works by Klivans et al. (2009), and Awasthi et al. (2017) improved the noise tolerance and introduced new algorithmic techniques. Building upon them, Daniely (2015) recently obtained a PTAS for minimizing the hypothesis error with respect to the uniform distribution over a sphere. Several of these learning algorithms use halfspaces and low degree PTFs (or simple combinations thereof) as their hypotheses, and one could conceivably apply their techniques to the setting without any distributional assumptions. Our work provides evidence to the contrary.

1. The reduction of Guruswami and Raghavendra (2009) works even for the special case when the points are over the boolean hypercube.
1.1. Previous related work

Hypothesis-independent intractability results for learning for halfspaces are also known, but they make average-case or cryptographic hardness assumptions which seem considerably stronger than \(P \neq NP \). Specifically, for exactly learning noisy halfspaces, such results have been shown in the works of Feldman et al. (2009), Kalai et al. (2005), Klivans and Kothari (2014), and Daniely and Shalev-Shwartz (2016). In a recent interesting work, Daniely (2016) rules out weakly learning noisy halfspaces by *efficient algorithms* assuming the intractability of strongly refuting random \(K \)-XOR formulas. In particular, their reduction ensures that random instances of \(K \)-XOR map to random instances of learning halfspaces. Since the number of different hypotheses that an efficient algorithm can output can be upper bounded as a function of its running time, by a union bound argument, it follows that no hypothesis in the hypothesis class can give non-trivial guarantees under the random distribution. The hardness is based on a non-standard average-case assumption that for some particular clause density, the problem of distinguishing between nearly satisfiable \(K \)-XOR formulas and uniformly random ones is computationally hard. As a complexity theoretic hardness result, Theorem 1 has arguably broader consequences by showing that a polynomial time algorithm for weakly learning noisy halfspaces using constant degree PTFs yields polynomial time algorithms for all problems in \(NP \), rather than only for refuting random \(K \)-XOR formulas as implied by Daniely (2016)’s result (though the latter is applicable to learning algorithms with unrestricted hypotheses).

On the other hand, Applebaum et al. (2008) have shown that hypothesis-independent hardness results under standard complexity assumptions would imply a major leap in our current understanding of complexity theory and are unlikely to be obtained for the time being. Therefore, any study (such as ours) of the standard complexity-theoretic hardness of learning halfspaces would probably need to constrain the hypothesis.

A natural generalization of the learning halfspaces problem is that of learning intersections of two or more halfspaces. Observe that unlike the single halfspace, properly learning the intersection of two halfspaces without noise does not in general admit a separating hyperplane based solution. Indeed, this problem was shown to be NP-hard by Blum and Rivest (1993), later strengthened by Alekhnovich et al. (2008) to rule out intersections of constantly many halfspaces as hypotheses. The corresponding hardness of even weak learning was established by Khot and Saket (2011), while Klivans and Sherstov (2009) proved under a cryptographic hardness assumption the intractability of learning the intersection of \(n^\varepsilon \) halfspaces. Algorithms for learning intersections of constantly many halfspaces have been given in the works of Blum and Kannan (1997) and Vempala (1997) for the uniform distribution over the unit ball, Klivans et al. (2004) for the uniform distribution over the boolean hypercube, and by Arriaga and Vempala (2006) and Klivans and Servedio (2008) for instances with good margin, i.e. the points being well separated from the hyperplanes.

As was the case for learning a single noisy halfspace, there is no known NP-hardness for learning intersections of two halfspaces using (intersections of) degree-\(d \) PTFs. This cannot, however, be said of the finite field analog of learning halfspaces, i.e. the problem of learning noisy parities over \(\mathbb{F}[2] \). While Håstad’s seminal work Håstad (2001) itself rules out weakly proper learning a noisy parity over \(\mathbb{F}[2] \), later work of Gopalan et al. (2010) showed the hardness of learning an \(\varepsilon \)-noisy parity by a degree-\(d \) PTF to within \((1 - 1/2^d + \varepsilon) \)-accuracy – which, however, is not optimal for \(d > 1 \). Shortly thereafter, Khot (2009) observed that Viola’s pseudo-random generator Viola (2009) fooling degree-\(d \) PTFs can be combined with coding-theoretic inapproximability results to yield optimal lower bounds for all constant degrees \(d \). From the algorithmic perspective, one can learn an
\(\varepsilon\)-noisy parity over the uniform distribution in \(2^{O(n/\log n)}\)-time as shown by Feldman et al. (2009) and Blum et al. (2003). For general distributions, Kalai et al. (2008) gave a non-proper \(2^{O(n/\log n)}\)-time algorithm achieving an accuracy close to optimal.

Several of the inapproximability results mentioned above, e.g. those of Guruswami and Raghavendra (2009), Gopalan et al. (2010), Khot and Saket (2011), Feldman et al. (2012) and Diakonikolas et al. (2011), follow the probabilistically checkable proof (PCP) test based approach for their hardness reductions. While our result builds upon these methods, in the remainder of this section, we give an overview of our techniques and describe the key enhancements which allow us to overcome some of the technical limitations of previous hardness reductions.

1.2. Overview of Techniques

For hardness reductions, due to the uniform convergence results of Haussler (1992); Kearns et al. (1994), it is sufficient to take the optimization version of the learning halfspaces problem which consists of a set of coordinates and a finite set of labeled points, the latter replacing a random distribution. A typical reduction (including ours) given a hard instance of a constraint satisfaction problem (CSP) \(L\) over vertex set \(V\) and label set \([k]\), defines \(C := V \times [k]\) to be the set of coordinates over \(\mathbb{R}\). We let the formal variables \(Y_{(w,i)}\) be associated with the coordinate \((w, i) \in C\). The hypothesis \(H\) (the proof in PCP terminology) is defined over these variables. In our case, the proof will be a degree-\(d\) PTF. The PCP test chooses randomly a small set of vertices \(S\) of \(L\), and runs a dictatorship test on \(S\): it tests \(H\) on a set of labeled points \(P_S \subseteq \mathbb{R}^C\) generated by the dictatorship test. We desire the following two properties from the test:

- (completeness) if \(H\) “encodes” a good labeling for \(S\), then it is a good classifier for \(P_S\),
- (soundness) a good classifier \(H\) for \(P_S\) can be “decoded” into a good labeling for \(S\).

The soundness property is leveraged to show that if \(H\) classifies \(P_S\) for a significant fraction of the choices \(S\), it can be used to define a good global labeling for \(L\). The CSP of choice in the above template is usually the Label Cover or the Unique Games problem. While the NP-hardness of Label Cover is unconditional, its projective constraints seem to present technical roadblocks – also faced by Diakonikolas et al. (2011) – in analyzing learnability by degree-\(d\) \((d > 2)\) PTFs.

Our work overcomes these issues and gives a hardness reduction from Label Cover. The key ingredient to incorporate the Label Cover projective constraints is a folding over an appropriate subspace defined by them. This amounts to restricting the entire instance to the corresponding orthogonal subspace. Similar folding for analyzing linear forms has been used earlier in the works of Khot and Saket (2011), Feldman et al. (2012), and Guruswami et al. (2016). We are able to extend it over degree-\(d\) polynomials leveraging the linear-like structure decoded by an appropriate dictatorship test. This uses a smoothness property of the constraints (analogous to Khot and Saket (2011); Feldman et al. (2012); Guruswami et al. (2016)) of the Label Cover instance which is combined with the dictatorship test – along with folding – to yield the PCP test.

In the rest of this section, we informally describe our dictatorship test, the motivation behind its design and the key ingredients involved in its analysis. To begin, we present a simple preliminary dictatorship test \(\mathcal{P}_0\) over \(\mathbb{R}^k\) which works for linear thresholds. Of course, the NP-hardness of properly learning noisy halfspaces is already known (Feldman et al., 2009; Guruswami and Raghavendra, 2009), so this test does not yield anything new. Our purpose is illustrative and we include a sketch...
\(\mathcal{P}_0(\mathbb{R}^k, \eta, \varepsilon) \) tests halfspace sign \((f(Y))\).

1. Sample \(b \in \{ -1, 1 \} \) uniformly at random.
2. Choose a random “noise” subset \(\mathcal{I} \subseteq [k] \) by including each \(i \) independently with probability \(\varepsilon \).
3. For \(i \in [k] \setminus \mathcal{I} \), set \(y_i = b\eta \).
4. For \(i \in \mathcal{I} \), sample \(y_i \) i.i.d. at random from \(\mathcal{N}(0, 1) \).
5. Accept iff \(\text{sign}(f(y)) = b \).

Figure 1: Dictatorship Test \(\mathcal{P}_0 \)

of the arguments of its analysis. Taking \(\varepsilon > 0 \) as a small constant and \(\eta > 0 \) a small parameter (to be defined later), the description of \(\mathcal{P}_0 \) is given in Figure 1.

Observe that the linear threshold sign \((Y_i)\) for each \(i \in [k] \) correctly classifies \((y, b)\) with probability \((1 - \varepsilon)\). In other words, every dictator corresponds to a good solution.

1.2.1. Soundness Analysis of \(\mathcal{P}_0 \)

Suppose there exists a linear form \(f = \sum_{i \in [k]} \hat{f}_i Y_i \) (assuming for simplicity \(f \) has no constant term) such that sign \((f)\) passes \(\mathcal{P}_0 \) with probability \(1/2 + 2\xi \) for some \(\xi = \Omega(1) \). Using (by now) standard analytical arguments, we show that there exists \(i^* \in [k] \) such that

\[
\hat{f}_{i^*}^2 \geq \Omega(1) \cdot \sum_{i \in [k]} \hat{f}_i^2 > 0.
\]

In other words, every good solution \(f \) can be decoded into a dictator.

It is not particularly challenging to obtain (1). However, we sketch a systematic proof which shall be useful when analyzing a more complicated dictatorship test for PTFs.

Call a setting of \(\mathcal{I} \) good if \(\text{sign}(f) \) passes the test conditioned on \(\mathcal{I} \) with probability \(1/2 + \xi \). By averaging, it is easy to see that \(\Pr_{\mathcal{I}}[\mathcal{I} \text{ is good}] \geq \xi/2 \). Let us fix such a good \(\mathcal{I} \). Without loss of generality, we may assume that \(\mathcal{I} = \{ k^* + 1, \ldots, k \} \) and further that \(k^* \geq k/2 \) by the Chernoff bound. We now define \(\{ W_1, \ldots, W_{k^*} \} \) as a basis for \(\{ Y_i \mid i \in [k^*] \} \) where \(W_1 := (1/k^*) \sum_{i \in [k^*]} Y_i \), such that \(\{ W_1, \ldots, W_{k^*} \} \) is an orthogonal transformation of \(\{ Y_i \mid i \in [k^*] \} \) of the same \(1/\sqrt{k^*} \) norm. Thus, we may rewrite \(f \) as:

\[
f = \sum_{i \in [k]\setminus[k^*]} \hat{f}_i Y_i + \sum_{\ell \in [k^*]} \overline{f}_\ell W_\ell.
\]

The variables in the first sum in the RHS of the above are all i.i.d. \(\mathcal{N}(0, 1) \). Further, it can be seen that under the test distribution, \(W_1 = b\eta \), and \(\overline{f}_\ell = 0 (\ell = 2, \ldots, k^*) \). Therefore, we may assume that,

\[
\overline{f}_1^2 > 0.
\]
Since the sign of f must flip with that of b with probability $\Omega(\xi) = \Omega(1)$, one can apply Carbery-Wright’s Gaussian anti-concentration theorem to show that,

$$\sum_{i \in [k] \setminus [k^*]} \tilde{f}_i^2 \leq O(\eta^2) T_1^2,$$

(4)

since otherwise, contributions from the first sum of (2) will overwhelm the contribution of W_1 to f. Further, from the definition of $\{W_i\}_{i=1}^{k^*}$, we obtain

$$\sum_{i \in [k^*]} \tilde{f}_i^2 = \frac{1}{k^*} \sum_{\ell \in [k^*]} T_\ell^2 \geq T_1^2 / k^*.$$

(5)

Let us now revert to the notation with $\mathcal{I} = [k] \setminus [k^*]$. Using (5) along with (4), and taking $\eta = o(\varepsilon^3 / \sqrt{k})$ one can ensure that,

$$\sum_{i \in \mathcal{I}} \tilde{f}_i^2 \leq \frac{\varepsilon}{10} \sum_{i \in [k]} \tilde{f}_i^2,$$

(6)

and from (3) we obtain

$$\sum_{i \in [k]} \tilde{f}_i^2 > 0.$$

(7)

Note that (6) holds for every good \mathcal{I} which is at least $\xi/2$ fraction of the choices of \mathcal{I}. Randomizing over \mathcal{I}, an application of the Chernoff-Hoeffding bound shows that (6) holds only with substantially smaller probability unless there exists $i^* \in [k]$ such that:

$$\tilde{f}_{i^*}^2 \geq \frac{\varepsilon^3}{8} \sum_{i \in [k]} \tilde{f}_i^2.$$

(8)

The desired bound in (1) now easily follow from (7) and (8). The details are omitted.

The main idea of the above methodical analysis is a natural definition of the W variables using which we isolate the sign-perturbation $b\eta$ into a single variable W_1! Gaussian anti-concentration directly lower bounds the squared mass corresponding to W_1. Moreover, when transforming back to the squared mass of Y_i ($i \in [k] \setminus \mathcal{I}$), the presence of the heretofore ignored W_ℓ ($\ell > 1$) terms can only increase this quantity, as shown in (5). Lastly, the the “decoding list size” does not depend on the sign-perturbation parameter η which can be taken to be small enough to makes sure that this size is a constant depending only on the noise parameter ε and the marginal acceptance probability ξ of the test.

1.2.2. Enhancing the Dictatorship Test for degree-d PTFs

Our goal is a reduction proving the hardness of weakly learning noisy halfspaces using degree-d PTFs. One could hope to utilize the dictatorship test \mathcal{P}_0 itself for this purpose. Unfortunately, this presents problems even for $d = 5$. To see this consider the degree-5 polynomial,

$$f(Y) = Y_{i^*}^3 \left(\sum_{i \in [k] \setminus \{i^*\}} Y_i^2 \right),$$
PCP Test $\mathcal{P}_1([\mathbb{R}^k] \times [T], \eta, \varepsilon)$ tests degree-d PTF $\text{sign}(P(Y))$

1. Sample $\{\delta_j \mid j \in [T]\}$ from the joint Gaussian distribution where the marginals are $N(0, 1)$, $\mathbb{E}[\delta_j \delta_{j'}] = -1/(T - 1)$ for all $j \neq j'$, and $\sum_{j=1}^T \delta_j = 0$.

2. Sample $b \in \{-1, 1\}$ uniformly at random.

3. Sample $I \subseteq [k] \times [T]$ to be a random subset where each $(i, j) \in [k] \times [T]$ is added to I independently with probability ε.

4. For each $(i, j) \in ([k] \times [T]) \setminus I$, set $y_{ij} = (\sqrt{(T - 1)/T}) \delta_j + b \eta$.

5. Independently for each $(i, j) \in I$, sample $y_{ij} \sim N(0, 1)$.

6. Accept iff $\text{sign}(P(y)) = b$.

Figure 2: Dictatorship Test \mathcal{P}_1

for some distinguished $i^* \in [k]$. It is easy to see that $\text{sign}(f)$ passes the test with probability close to 1. However, the distinguished variable Y_{i^*} appears with a cubic power in f, whereas the folding approach works well only when Y_{i^*} occurs as a linear factor of some sub-polynomial. This is due to the inherently linear nature of the folding constraints. Consequently, when \mathcal{P}_0 is combined with a Label Cover instance the analysis becomes infeasible.

Our approach to overcome this bottleneck is for the PCP to test several independently and randomly chosen vertices. For this, the dictatorship test would be on the domain $[\mathbb{R}^k] \times [T]$ where T is chosen much larger than the degree d of the PTF to be tested. The space $[\mathbb{R}^k] \times [T]$ is thought of as real space spanned by T blocks of k dimensions each. In this case, if the test passes with probability $> 1/2$, then there is a way to decode a good label to at least one out of the T blocks. A key step in our analysis crucially leverages the choice of T to extract out a specific sub-polynomial which is linear in the variables of one of the T blocks. This is done via an application of the following lemma which is proved in Appendix F.

Lemma 2 Given a degree-d polynomial of the form $(Y_1 + \cdots + Y_T) \cdot S(Y_1, \ldots, Y_T)$, where $T > 2d$ and S is a degree-$(d - 1)$ polynomial, there exist at least $T/2$ indices $j \in [T]$ such that: for each such j, the sum of squares of the coefficients corresponding to the terms (in the monomial representation) linear in Y_j is at least c times the sum of squares of coefficients of S, where $c := c(T, d) > 0$.

In Figure 2, we give a formal description of the Dictatorship test \mathcal{P}_1 employed by our reduction. Its analysis builds upon that of \mathcal{P}_0 above, so we provide a short sketch. Let $T = 10d$ and $\varepsilon > 0$ be a constant, and $\eta > 0$ be parameter to be defined later. Consider the linear threshold given by,

$$
\text{sign} \left(\sum_{j=1}^T Y_{i,j} \right),
$$

for any $i_j \in [k]$ ($1 \leq j \leq T$). It is easy to see that this passes the test with probability at least $(1 - \varepsilon T)$. Thus, choosing a dictator for each block yields a good solution for the test.
For the soundness analysis, as in Section 1.2.1 we fix a good noise set \(\mathcal{I} \) conditioned on which the test accepts \(P \) with probability at least \(1/2 + \xi \), and \(\Pr[\mathcal{I}] \) is good \(\geq \xi/2 \). Further, without loss of generality, we assume that \(\mathcal{I} = \bigcup_{j=1}^{T} \{ (k_j + 1, \ldots, k) \times \{j\} \} \), where (by Chernoff bound) \(k_j \geq k/2 \) for \(1 \leq j \leq T \). For each \(j \), \(\{W_{i,j}, \ldots, W_{k_j,j}\} \) is defined to be an orthogonal transformation of \(\{Y_{i,j}, \ldots, Y_{k_j,j}\} \) of the same \(1/\sqrt{k_j} \) norm, where \(W_{i,j} = (1/k_j) \sum_{i=1}^{k_j} Y_{ij} \). It is easy to see that \(W_{i,j} = (\sqrt{(T-1)/T}) \delta_j + b\eta \), while \(W_{i,j} = 0 \) under the test distribution for \(\ell > 1 \).

Additionally, we also define \(\{U_1, \ldots, U_T\} \) to be an orthonormal transformation of \(\{W_{11}, \ldots, W_{1T}\} \) where \(U_1 = (1/\sqrt{T}) \sum_{j=1}^{T} W_{1j} \). Again, it can be observed that \(U_1 = (\sqrt{T})b\eta \) and \(U_2, \ldots, U_T \) are independent \(N(0, 1) \). Using this we write the polynomial \(P = P' + Q_0 + U_1Q_1 \), where \(P' \) consists of all the terms which have any \(W \) for it: \(\|Q_0\|_2^2 \leq O(\eta^2)\|Q_1\|_2^2 \). (9)

Let us write \(Q_1 = \sum_{H \in \mathcal{H}} H \cdot Q_{1,H}(U_1, \ldots, U_T) \), where the sum is over the set \(\mathcal{H} \) of normalized Hermite monomials\(^2\) over the independent \(N(0, 1) \) variables \(\bigcup_{j=1}^{T} \{Y_{ij}\} \). Moreover, let \(Q_{1,D}(U_1, \ldots, U_T) \) for \(0 \leq D \leq d-1 \geq \deg(Q_1) \), where \(\mathcal{H}_D \) is the subset of \(\mathcal{H} \) of degree exactly \(D \). Thus, \(\|Q_1\|_2^2 = \sum_{H \in \mathcal{H}} \|Q_{1,H}\|_2^2 \). Writing \(Q_{1,H} = Q_{1,H}(W_{11}, \ldots, W_{1T}) \) we also define \(\|Q_{1,H}\|_{\text{mon}}^2 \) as sum of squares of the coefficients in the standard monomial basis \(\mathcal{M} \) of \(\{W_{11}, \ldots, W_{1T}\} \). A straightforward calculation shows that:

\[
\|Q_{1,H}\|_2^2 \leq O(1)\|Q_{1,H}\|_{\text{mon}}^2,
\]

(10)

where the constants depending on \(T \) and \(d \) are absorbed in the \(O(1) \) notation. On the other hand, since \(Q_0 \) is independent of \(U_1 \), using similar definition of \(Q_{0,H} \), we can establish the reverse bound for it:

\[
\|Q_{0,H}\|_{\text{mon}}^2 \leq O(1)\|Q_{0,H}\|_2^2.
\]

(11)

The rest of the arguments significantly build upon those in Section 1.2.1. We present a semiformal description, omitting much of the technical details. For reasons made clear later, we first carefully select \(d^* \in \{0, \ldots, d-1\} \) to be the largest \(D \in \{0, \ldots, d-1\} \) such that \(\|Q_{1,D}\|_2^2 \geq \frac{1}{4}d^2\|Q_1\|_2^2 \) for a small enough constant depending on \(k, T, d, \) and \(\varepsilon \). It is easily observed that such a \(d^* \) must exist satisfying the properties: (i) \(\|Q_{1,D^*+1}\|_2^2 \leq \frac{1}{4}d^{d^*+1}\|Q_1\|_2^2 \), and (ii) \(\|Q_{1,d^*}\|_2^2 \geq \frac{1}{4}d^{d^*}\|Q_1\|_2^2 \).

Now we focus our attention on \(U_1Q_{1,d^*} \) writing it as

\[
U_1Q_{1,d^*} = \sum_{H \in \mathcal{H}_{d^*}} HU_1Q_{1,H}(W_{11}, \ldots, W_{1T}) = \sum_{H \in \mathcal{H}_{d^*}} \sum_{M \in \mathcal{M}} c_{H,M}HM. \quad (12)
\]

Let \(\mathcal{H}_{-d^*} \) be the subset of basis elements not containing any variable from the \(j \)’th block, i.e. \(\{Y_{ij}\}_{j < k} \) (resp. \(W_{1j} \)). Now with \(U_1 = (1/\sqrt{T}) \sum_{j=1}^{T} W_{1j} \), we

\(^2\) By Hermite monomials, we mean elements of the polynomial Hermite basis over the corresponding variables.
Consider now the sum \[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} c_{H,MW_{ij^*}}^2 \geq \Omega(1) \left(\sum_{H \in \mathcal{H}_d} \sum_{M \in \mathcal{M}} c_{H,M}^2 \right) \] \[\geq \Omega(1) \| Q_1^{(d^*)} \|_2^2 \geq \Omega(1) \rho^{d^*} \| Q_1 \|_2^2 \] (13) (14)

where the last two inequalities use (10) along with property (ii) above.

The next component of the analysis is to relate the bounds above with the coefficients of a suitable sub-polynomial of \(P \) which is linear in the variables \(Y_{ij^*}, 1 \leq i \leq k_{j^*} \). For this, let us first define \(\tilde{Q} \) to be exactly the sub-polynomial of \(P \) which does not contain any term with \(W_{ij} \) where \(i \neq 1 \) and \(j \neq j^* \). Rewriting the variables \(\{W_{ij^*} \mid i \in [k_{j^*}]\} \) in terms of \(\{Y_{ij^*} \mid i \in [k_{j^*}]\} \), we consider the sub-polynomial \(\tilde{Q}_{\text{lin}} \) of \(\tilde{Q} \) which is linear in the variables \(\{Y_{ij^*} \mid 1 \leq i \leq k\} \). Note that \(\left(\cup_{D=0}^{d-1} \mathcal{H}_{-j^*} \cdot D \right) \circ \mathcal{M}_{-j^*} \circ \{Y_{ij^*}\}_{i=1}^{k_{j^*}} \) is a basis in which \(\tilde{Q}_{\text{lin}} \) can be written with coefficients \(\tilde{c}_{H,M,i} \) corresponding to the basis element \(HMY_{ij^*} \). Using the orthogonal transformation between \(\{W_{ij^*}\}_{i \in [k_{j^*}]} \) and \(\{Y_{ij^*}\}_{i=1}^{k_{j^*}} \) we obtain

\[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k_{j^*}]} \tilde{c}_{H,M,i}^2 \geq \frac{1}{2k_{j^*}} \left(\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k_{j^*}]} c_{H,MW_{ij^*}}^2 \right), \] (15)

neglecting any contribution to the LHS of the above from \(Q_0 \) by our a small enough choice of \(\eta \ll \rho \) along with (9) and (11). The loss of \(k_{j^*} \) factor in (15) is compensated by the dependence of \(\rho \) on \(k \) as we shall see later. Combining (15) with (13)-(14) yields

\[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k_{j^*}]} \tilde{c}_{H,M,i}^2 \geq \Omega \left(\frac{1}{k_{j^*}} \right) \rho^{d^*} \| Q_1 \|_2^2. \] (16)

Consider now the sum

\[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{k_{j^*} < i \leq k} \tilde{c}_{H,M,i}^2. \]

Contribution to the above can be from \(Q_0 \) or from \(U_1 Q_1^{(d^*+1)} \) – the latter due to the presence of \(Y_{ij^*} (k_{j^*} < i \leq k) \) which increases the degree of \(H \in \mathcal{H}_{-j^*} \cdot d^* \) to \((d^*+1) \) in the representation of \(Q_1 \) over the basis \(\mathcal{H} \circ \mathcal{M} \). Property (i) from our careful selection of \(d^* \) is leveraged along with our small enough choice of \(\eta \) in (9) along with (11) to yield

\[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{k_{j^*} < i \leq k} \tilde{c}_{H,M,i}^2 \leq O(1) \rho^{d^*+1} \| Q_1 \|_2^2. \] (17)

Using a choice \(\rho \ll \varepsilon / k \) we can combine the above with (16) to obtain the following analog of (6):

\[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k]} \tilde{c}_{H,M,i}^2 \leq \frac{\varepsilon}{10} \sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k]} \tilde{c}_{H,M,i}^2, \] (18)

where \(\mathcal{I}_{j^*} := \mathcal{I} \cap ([k] \times \{j^*\}) \). Of course, since \(\| Q_1 \|_2 > 0 \), we also obtain

\[\sum_{H \in \mathcal{H}_{-j^*} \cdot d^*} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k]} \tilde{c}_{H,M,i}^2 > 0. \] (19)
The analysis above shows that for every good choice of \(I \) there exist \((d^*, j^*)\) satisfying (18)-(19). What remains is a probabilistic concentration argument. Since \(\Pr[I \text{ is good}] \geq \xi/2 \), by averaging we get that there exist \((d^*, j^*)\) and a fixing of \(I \setminus I_{j^*} \) such that with probability at least \(\xi/4Td \) over the choice \(I_{j^*} \), (18)-(19) hold. Since each \(i \) is added to \(I_{j^*} \) independently with probability \(\varepsilon \), an application of Chernoff-Hoeffding shows that the large deviation observed in (18) cannot occur with probability \(\xi/4Td \) (which is significant) unless the squared mass on the LHS of (19) is concentrated on a small number of \(i \in [k] \). This yields the desired decoding completing our sketch of the analysis. The formal proof appearing in this work – while following the approach given above – employs additional notation and definitions for handling a few technicalities and ease of presentation.

Combining \(\mathcal{P}_1 \) with Label Cover and Folding. We now describe how to combine our dictatorship test with Label Cover instances. Consider an instance of **smooth label cover** instance \(L = L(G(V, E), k, L, \{\pi_{e,u} : [k] \mapsto [L]\}_{e \in E, u \in e}) \) (see Section 2.1 for a formal definition). For every vertex \(v \in V \), we introduce a set of \(k \) variables \(Y_v = \{Y^e_i : i \in [k]\} \). The output instance of the reduction will take as input polynomials over variables \(Y = \cup_{v \in V} Y_v \) of degree at most \(d \). Then, the test \(\mathcal{P}_1 \) is executed on the \(T \) blocks of coordinates corresponding to \(T \) randomly chosen vertices of \(V \) (as used in Guruswami et al. (2016)). The resulting instance is then folded, i.e. the distribution on the point-label pairs is projected onto a subspace \(\mathcal{F} \) orthogonal to the span of all the linear constraints implied by the edges of the Label Cover. Formally, the subspace \(\mathcal{F} \) is constructed as follows. Consider an edge \(e = (u, v) \in E \) and let \(\pi_{e,u}, \pi_{e,v} : [k] \mapsto [L] \) be the corresponding projection functions. Then for every \(l \in [L] \), and for every monomial \(M \) disjoint from \(\{Y^e_i : i \in (\pi_{e,u})^{-1}(l)\} \cup \{Y^e_i : i \in (\pi_{e,v})^{-1}(l)\} \), we add the following linear homogeneous constraint on the coefficients of polynomial:

\[
C_{e,l,M} : \sum_{i \in (\pi_{e,u})^{-1}(l)} c_{Q,M,Y^u_i} = \sum_{i \in (\pi_{e,v})^{-1}(l)} c_{Q,M,Y^v_i} \tag{20}
\]

Let \(\mathcal{F} \) be the linear subspace resulting from the above set of constraints. We say that a polynomial \(Q \) is folded over \(\mathcal{F} \) if the coefficients satisfy all of the above constraints. In particular, these linear constraints ensure that any polynomial folded over \(\mathcal{F} \) has equal mass sum in the coordinates of the two pre-images of a label given by an edge’s projections.

Randomized Partial Decoding. Given a polynomial \(P \in \mathbb{R}[Y] \) folded over \(\mathcal{F} \) which passes the test with probability at least \(1/2 + \xi \), we give a decoding algorithm which recovers a good labeling for \(L \) from \(P \). Our decoding strategy will give us a randomized partial labeling, which can then be extended to a full labeling by assigning arbitrary labels to unlabeled vertices. Informally, the decoding algorithm proceeds by randomly guessing the following: (i) a degree-index pair \((d^*, j^*)\) \(\in \{0, 1, \ldots, d - 1\} \times [T] \), which is intended to satisfy (18)-(19) (ii) a set of noisy indices \(I_{j^*} \) (excluding the set of indices corresponding to \(j^* \)), which is intended to be a good set of noisy indices (iii) a set of vertices \(V_{j^*} = \{v_j : j \in [T] \setminus \{j^*\}\} \), such that the polynomial restricted to vertices \(V_{j^*} \) along with a random choice of vertex \(v_{j^*} \in V \) (to be fixed later) passes the test with probability at least \(1/2 + \xi/2 \).

From the soundness analysis it follows that all of the intended conditions for (i)-(iii) hold with probability (including over the random choice of \(v_{j^*} \)) at least \(\Delta_0 = \xi \cdot \frac{1}{Td} \cdot \frac{\xi}{8Td} \). Fixing the choices in (i)-(iii), let \(V' \subseteq V \) be the set of vertices \(v_{j^*} = v \) for which the condition from (iii) holds. In expectation over the choices in (i)-(iii) we have \(|V'| \geq \Delta_0|V| \) which we fix for now. Furthermore,
our Chernoff-Hoeffding based argument mentioned earlier in this section shows that for all \(v \in V' \) there exists at least one label which contributes at least \(\epsilon^4 \)-fraction of the LHS of (19). For all \(v \in V' \), let \(\Gamma(v) \subset [k] \) denote the set of such labels, so that \(1 \leq |\Gamma(v)| \leq 1/\epsilon^4 \). For each \(v \in V' \), assign a label by sampling uniformly at random from \(\Gamma(v) \). The following observations imply that this randomized partial labeling is indeed a good one.

1. The induced subgraph on \(V' \) contains a significant fraction (\(\gtrsim \Delta_0^2/2 \)) of edges, which follows from the Expansion property of Smooth Label Cover.

2. Furthermore, using the smoothness property of Smooth Label Cover, it can be shown that for all but a small fraction of the above edges \((u, v)\), the projection functions \(\pi_{e,u}, \pi_{e,v} \) are bijections, when restricted to the sets \(\Gamma(u), \Gamma(v) \) respectively. For every such edge \((u, v)\) we will show that \(\pi_{e,u}(\Gamma(u)) \cap \pi_{e,v}(\Gamma(v)) \neq \phi \), which follows roughly using the following argument. From the folding constraints we have

\[
\sum_{i \in (\pi_{e,u})^{-1}(l)} \tilde{c}_{H,M,i,u} = \sum_{i \in (\pi_{e,v})^{-1}(l)} \tilde{c}_{H,M,i,v},
\]

(21)

which as discussed before, are intended to balance the sum of coefficients corresponding to the pre-images of any \(l \in [L] \). In particular, if \((\pi_{e,u})(\Gamma(u)) \cap (\pi_{e,v})(\Gamma(v)) = \phi \), it follows that for any \(l^* \in \pi_{e,u}(\Gamma(u)) \), we have \(l^* \notin \pi_{e,v}(\Gamma(v)) \). Since \(\pi_{e,u} \) restricted to the set \(\Gamma(u) \) is a bijection, the LHS in the above equation (instantiated with \(l = l^* \)) has exactly one large term, and other small terms, which overall leads to a large term. On the other hand, since \((\pi_{e,v})^{-1}(l^*) \cap \Gamma(v) = \phi \), by a stronger application of the smoothness property it can be deduced that all the terms in the RHS are small enough for it to be much smaller that the LHS in magnitude, contradicting (21). Thus, this edge is satisfied with probability at least \(1/(|\Gamma(u)||\Gamma(v)|) \approx \epsilon^8 \).

Putting all of the above arguments together, it follows that in expectation over the choices (i)-(iii), using the above partial labeling at least \(\Omega(\epsilon^8 \Delta_0^2) = \Omega(1) \)-fraction of edges will be satisfied.

1.3. Organization

Section 2 presents some preliminaries. Section 3 provides the hardness reduction (Theorem 5) from Label Cover. Due to space contraints, the rest of the proof appears in the appendix. Appendix B describes the hardness reduction of Theorem 5 in the form of a PCP test. Appendix B.1.1 gives the constraints implied by folding extended to polynomials. In Appendix C, we show the soundness of the reduction assuming a lemma (essentially restating (18)-(19)) about the structure of polynomials passing the test. The rest of the paper is devoted to proving this lemma. In Appendix D, we apply Gaussian anti-concentration to prove the analog of (9). In Appendix E, we prove the structural lemma using Lemma 2 as a key ingredient. Lemma 2 is proved in Appendix F. Appendices G-I provide some useful tools and proofs for our analysis.

2. Preliminaries

2.1. The Smooth Label Cover Problem

Definition 3 (Smooth Label Cover) A Smooth Label Cover instance \(\mathcal{L}(G(V,E), k, \{ \pi_{e,v} \} \in E, v \in E) \) consists of a regular connected graph with vertex set \(V \) and edge set \(E \), along with projection maps
\(\pi_{e,v} : [k] \to [L]\) for all \(e \in E, v \in e\). The goal is to find an assignment \(\sigma : V \to [k]\) such that
\(\forall e = (u, w) \in E, \pi_{e,u}(\sigma(u)) = \pi_{e,w}(\sigma(w))\). The optimum for a SMOOTH LABEL COVER instance is the maximum fraction of edges satisfied by an assignment.

The following Theorem from Guruswami et al. (2016) states the hardness of SMOOTH LABEL COVER problem:

Theorem 4 There exists a constant \(c_0 > 0\) such that for any constant integer parameters \(J, R \geq 1\), it is NP-hard to distinguish between the following cases for a SMOOTH LABEL COVER instance \(L(G(V, E), k, L, \{\pi_{e,v}\}_{e \in E, v \in e})\) with parameters \(k = 7^{(J+1)}R, L = 2^{R}7^{JR}\):

- **YES**: There is a labeling that satisfies every edge.
- **NO**: Every labeling satisfies less than \(2^{-c_0R}\)-fraction of edges.

Additionally, the instance \(L\) satisfies the following properties:

- **Smoothness**: For any \(v \in V\), and labels \(i, j \in [k], i \neq j\), \(\Pr_{e \sim v}[\pi_{e,v}(i) = \pi_{e,v}(j)] \leq 1/J\). In particular, for a subset \(S \subseteq [k]\), \(\Pr_{e \sim v}[|\pi_{e,v}(S)| = |S|] \leq |S|^2/(2J)\).
- The degree \(d_L\) of the graph \(G\) is a constant dependent only on \(J\) and \(R\).
- For any vertex \(v \in V\), edge \(e \in E\) incident on vertex \(v\), and \(j \in [L]\), we have \(|(\pi_{e,v})^{-1}(j)| \leq t_L := 4^R\).
- **Weak Expansion**: For any \(V' \subseteq V\), the number of edges induced in \(V'\) is at least \(\delta^2 |E|\) where \(\delta = |V'|/|V|\).

3. Hardness Reduction

The following reduction from SMOOTH LABEL COVER directly implies our main theorem.

Theorem 5 For any \(\xi > 0\) and \(d \in \mathbb{Z}^+\), there exists a choice of \(R\) and \(J\) in Theorem 4 and a polynomial-time reduction from the corresponding SMOOTH LABEL COVER instance \(L\) to a set of point-sign pairs \(\mathcal{Q} \subseteq \mathbb{R}^N \times \{-1, 1\}\) such that:

- **YES Case.** If \(L\) is a YES instance, then there exists a linear form \(L\) satisfying
 \[
 \Pr_{(x, s) \in \mathcal{Q}}[\text{sign}(L(x)) = s] \geq 1 - \xi.
 \]

- **NO Case.** If \(L\) is a NO instance, then for any degree-\(d\) polynomial \(P\)
 \[
 \Pr_{(x, s) \in \mathcal{Q}}[\text{sign}(P(x)) = s] \leq \frac{1}{2} + \xi.
 \]

The last sentence of Theorem 1 is justified in Appendix C.6.
References

Appendix A. Appendix Preliminaries

A.1. Hermite Bases for Multivariate Polynomials

For integer $d \geq 0$, the *Hermite polynomials* $H_d(x)$ are degree-d univariate polynomials such that $\mathbb{E}_{X \sim N(0,1)}[H_d(X)^2] = 1$ and $\mathbb{E}_{X \sim N(0,1)}[H_d(X)H_{d'}(X)] = 0$ for any $d \neq d'$. For example, $H_0(x) = 1$, $H_1(x) = x$, $H_2(x) = \frac{1}{\sqrt{2}}(x^2 - 1)$, and $H_3(x) = \frac{1}{\sqrt{6}}(x^3 - x)$.

For $d \in \mathbb{N}^n$, we define $H_d(x_1, \ldots, x_n) = \prod_{i \in [n]} H_{d_i}(x_i)$. For $D \geq 0$, let $\mathcal{H}_D = \{ H_d : d \in \mathbb{N}^n, \sum_{i \in [n]} d_i \leq D \}$ denote the *Hermite basis for degree-D polynomials*. The following is immediate.

Fact 6 The set \mathcal{H}_D forms an orthonormal basis for n-variate degree-D polynomials whose inputs are drawn from $N(0,1)^n$. In particular, for any $P : \mathbb{R}^n \to \mathbb{R}$ of degree $\leq D$, we can write:

$$P(x) = \sum_{d \in \mathbb{N}^n : \sum_{i \leq D} d_i} \hat{f}(d) \cdot H_d(x)$$

and moreover, $\mathbb{E}_x P(x) = \hat{f}(0)$ and $\mathbb{E}_x [P(x)^2] = \sum_d \hat{f}^2(d)$.

15
A.2. Concentration and Anti-Concentration

The magnitude of polynomials in our analysis is controlled using the following standard bound.

Chebyshev’s Inequality. For any random variable X and $t > 0$, $\Pr[|X| > t] \leq \mathbb{E}[X^2]/t^2$.

The above is used in conjunction with Carbery and Wright (2001)’s powerful anti-concentration bound for polynomials over independent Gaussian variables.

Theorem 7 (Carbery and Wright (2001)) Suppose $P : \mathbb{R}^k \to \mathbb{R}$ is a degree-d polynomial over independent $N(0, 1)$ random variables. Then,

$$\Pr[|P| \leq \varepsilon \|P\|_2] = O(d^{\varepsilon^2/d}).$$

In addition, we also use following Chernoff-Hoeffding bound.

Theorem 8 (Chernoff-Hoeffding) Let X_1, \ldots, X_n be independent random variables, each bounded as $a_i \leq X_i \leq b_i$ with $\Delta_i = b_i - a_i$ for $i = 1, \ldots, n$. Then, for any $t > 0$,

$$\Pr \left[\left| \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mathbb{E}[X_i] \right| > t \right] \leq 2 \cdot \exp \left(-\frac{2t^2}{\sum_{i=1}^{n} \Delta_i^2} \right).$$

Appendix B. Hardness Reduction contd.

B.1. The Basic PCP Test

We begin with a Basic PCP Test given an instance $L(G(V,E), k, L, \{\pi_e,v\}_{e \in E,v \in e})$ of SMOOTH LABEL COVER. For each vertex $v \in V$, there is a set of variables $\{Y^v_i\}_{i=1}^k$, and the set of all the variables \mathcal{Y} is a union over all vertices $v \in V$ of these variable sets. The test is described by the sampling procedure in Figure 3, and yields a distribution over point-sign pairs which is independent of the constraints in L. It uses some additional parameters set as follows: $T := 10d$, $\varepsilon := (\xi/32Td)$, $\eta := \left(\frac{\varepsilon}{20kdT} \right)^{1/3}$, where d is from the statement of Theorem 5.

B.1.1. Folding over Constraints of L

To ensure consistency across the edges of L, the points generated by the Basic PCP Test are folded over a specific subspace. The points generated by the Basic PCP Test reside in the space $\mathbb{R}^\mathcal{Y}$. Now, for a fixed $e = (u, w) \in E$ and $j \in [L]$, we define the vector $h^e_j \in \mathbb{R}^\mathcal{Y}$ as

$$h^e_j(Y^v_i) = \begin{cases} 1 & \text{if } v = u \text{ and } i \in (\pi_{e,u})^{-1}(j), \\ -1 & \text{if } v = w \text{ and } i \in (\pi_{e,w})^{-1}(j), \\ 0 & \text{otherwise}. \end{cases}$$

(22)

Let $\mathcal{H} \subseteq \mathbb{R}^\mathcal{Y}$ be the subspace formed by the linear span of the vectors $\{h^e_j\}_{e \in E,j \in [L]}$, and let \mathcal{F} be the orthogonal complement of \mathcal{H} in $\mathbb{R}^\mathcal{Y}$, i.e. $\mathbb{R}^\mathcal{Y} = \mathcal{H} \oplus \mathcal{F}$ and $\mathcal{H} \perp \mathcal{F}$. For each point-sign pair (y, b) generated by the Basic PCP Test, construct (\bar{y}, b) where \bar{y} is the projection of y onto the subspace \mathcal{F}, represented in some (fixed) orthogonal basis for \mathcal{F}.
The Basic PCP Test given instance L of Smooth Label Cover

1. For each $j \in [T]$, the test chooses T random vertices $v_1, v_2, \ldots, v_T \overset{u.a.r.}{\sim} V$. Let $Y_{ij} := Y_{i_j}^v$.

2. Sample $\{\delta_j \mid j \in [T]\}$ from the joint Gaussian distribution where the marginals are $N(0, 1)$, $E[\delta_j \delta_{j'}] = -1/(T - 1)$ for all $j \neq j'$, and $\sum_{j=1}^{T} \delta_j = 0$.

3. Sample $b \in \{-1, 1\}$ uniformly at random.

4. Sample $\{\delta_j \mid j \in [T]\}$ from the joint Gaussian distribution where the marginals are $N(0, 1)$, $E[\delta_j \delta_{j'}] = -1/(T - 1)$ for all $j \neq j'$, and $\sum_{j=1}^{T} \delta_j = 0$.

5. For each $(i, j) \in ([k] \times [T]) \setminus I$, set $Y_{ij} := \sqrt{(T-1)/T} \cdot \delta_j + b\eta$.

6. Independently for each $(i, j) \in I$, sample Y_{ij} from $N(0, 1)$.

7. Set the variables of all other vertices (except $\{v_j \mid j \in [T]\}$) to be 0. Let this setting of the variables be the point $y \in \mathbb{R}^Y$.

8. Output the point-sign pair (y, b).

Figure 3: Basic PCP Test

Conversely, for any vector $z \in F$, let z be its representation in \mathbb{R}^Y. It is easy to see that such a z satisfies: for every $e = (u, w) \in E$ and $j \in [L]$, $\langle z, h^u_j \rangle = 0$ which is equivalent to

$$
\text{Constraint } C_{e,j} : \sum_{i \in (\pi_{e,u})^{-1} (j)} z(Y_i^u) = \sum_{i \in (\pi_{e,w})^{-1} (j)} z(Y_i^w). \tag{23}
$$

For our purpose we shall extend the above constraint to polynomials as well. Consider a polynomial Q in \mathbb{R}^Y. For any monomial M over the variables Y, let c_Q,M be its coefficient in Q. Fix an edge $e = (u, w)$ and $j \in [L]$, and a monomial M such that M does not contain any variable from the set $\{Y_i^u \mid i \in (\pi_{e,u})^{-1} (j)\} \cup \{Y_i^w \mid i \in (\pi_{e,w})^{-1} (j)\}$. For such a choice of e, j, and M we say that $C_{e,j,M}$ is a valid constraint where:

$$
\text{Constraint } C_{e,j,M} : \sum_{i \in (\pi_{e,u})^{-1} (j)} c_Q,M \cdot Y_i^u = \sum_{i \in (\pi_{e,w})^{-1} (j)} c_Q,M \cdot Y_i^w. \tag{24}
$$

We have the following lemma.

Lemma 9 Let \overline{Q} be a polynomial that resides in F, i.e. is represented in an orthogonal basis for F, and let Q be its representation in \mathbb{R}^Y. Then, Q satisfies all valid constraints $C_{e,j,M}$.

3. A polynomial \overline{Q} being represented in an orthogonal basis for a subspace F means \overline{Q} can be written as a polynomial over the linear forms corresponding to an orthogonal basis for F.

17
Suppose there is a labeling \(\sigma \) and its associated set \(B \). Completeness Analysis

in polynomial time.

Test (as described in Figure 3), and constructs \((\pi^{(x)}, \mathcal{Y}) \). Let \(\mathcal{X} \) be the projection of \(\mathcal{Y} \) on to \(\mathcal{F} \), with probability at least \((1-\varepsilon F) \).

Building upon the discretized Basic PCP Test, the Final PCP Test yields the desired finite subset \(\mathcal{Q} \).

Appendix C.6, using techniques from Diakonikolas et al. (2011), we discretize the Basic PCP Test.

Remark 11 The Basic PCP Test generates a distribution over \(\mathbb{R}^{\mathcal{Y}} \times \{-1,1\} \) using various independently Gaussian random variables. Therefore, the support set of this distribution is not finite. In Appendix C.6, using techniques from Diakonikolas et al. (2011), we discretize the Basic PCP Test. Building upon the discretized Basic PCP Test, the Final PCP Test yields the desired finite subset \(\mathcal{Q} \) in polynomial time.

B.2. The Final PCP Test

Given a degree-\(d \) polynomial \(\overline{P}_{\text{global}} \) over the space \(\mathcal{F} \), the test samples \((y, b)\) from the Basic PCP Test (as described in Figure 3), and constructs \((\overline{y}, b)\) as described in Appendix B.1.1. The test accepts if \(\text{sign} (\overline{P}_{\text{global}}(\overline{y})) = b \).

Remark 11 The Basic PCP Test generates a distribution over \(\mathbb{R}^{\mathcal{Y}} \times \{-1,1\} \) using various independently Gaussian random variables. Therefore, the support set of this distribution is not finite. In Appendix C.6, using techniques from Diakonikolas et al. (2011), we discretize the Basic PCP Test. Building upon the discretized Basic PCP Test, the Final PCP Test yields the desired finite subset \(\mathcal{Q} \) in polynomial time.

Suppose there is an labeling \(\sigma : V \rightarrow [k] \) which satisfies all the edges of \(\mathcal{L} \). Define \(L^*(\mathcal{Y}) = \sum_{v \in V} Y^v_{\sigma(v)} \) to be a linear form. Note that \(L^*(y) := \langle r^*, y \rangle \) for some \(r^* \in \mathcal{F} \), and so \(L^* \) can be represented in an orthogonal basis for \(\mathcal{F} \). Thus, for any point \(y \in \mathbb{R}^{\mathcal{Y}} \), \(L^*(y) = L^*(\overline{y}) \) where \(\overline{y} \) is the projection of \(y \) on to \(\mathcal{F} \) as defined in Appendix B.1.1.

Now consider \((y, b)\) generated by the Basic PCP Test. By a union bound over the randomness of the test, with probability at least \((1-\varepsilon T)\): \((\sigma(v_j), j) \notin \mathcal{I} \) for each \(j \in [T] \). Given this, it is easy to see that \(L^*(y) = b \), and by the above reasoning \(L^*(\overline{y}) = b \). Thus, \(L^* \) satisfies the Final PCP Test with probability at least \((1-\varepsilon T)\). Our choice of \(\varepsilon \) yields the desired accuracy.

Proof Suppose for a contradiction \(Q \) does not satisfy a valid constraint \(C_{e, j, M} \). Consider the vector \(r \) where,

\[
\begin{align*}
 r(Y^v_1) &= \begin{cases}
 c_{Q,M,Y_i^v} & \text{if } v = u, i \in (\pi_{e,u})^{-1}(j) \\
 c_{Q,M,Y_i^v} & \text{if } v = w, i \in (\pi_{e,w})^{-1}(j) \\
 0 & \text{otherwise.}
 \end{cases}
\end{align*}
\]

Since Equation (24) is not satisfied, it is easy to see that \(\langle r, h^v \rangle \neq 0 \), and thus \(r = r_0 + r_1 \) where \(r_0 \in \mathcal{F} \) and \(r_1 \in \mathcal{H} \). On the other hand, consider an orthogonal basis \(\mathcal{B} \) for \(\mathbb{R}^{\mathcal{Y}} \) that is an extension of \(\{r_1\} \), i.e. \(r_1 \) is an element of \(\mathcal{B} \). \(P \) can now be represented as:

\[
P \equiv r_1[\mathcal{Y}] \cdot P_1 + P_0,
\]

where \(P_1 \) is a polynomial represented in \(\mathcal{B} \), \(P_0 \) is represented in \(\mathcal{B} \setminus \{r_1\} \), and \(r_1[\mathcal{Y}] \) is the \(\mathcal{Y} \)-linear form \(\sum_{Y \in \mathcal{Y}} r_1(Y) \cdot Y \). Note that \(P_1 \) is not identically zero, in particular it contains the monomial \(M \). This implies that \(P \) cannot be represented over any basis for \(\mathcal{F} \), which is a contradiction.

Remark 10 Instead of monomials \(M \), the constraints in (24) analogously hold for elements \(B \) of a basis \(\mathcal{B} \) for polynomials over any set of variables not containing \(\{Y_i^v \mid i \in (\pi_{e,u})^{-1}(j)\} \cup \{Y_i^w \mid i \in (\pi_{e,w})^{-1}(j)\} \).
Appendix C. Soundness Analysis

Given the Smooth Label Cover instance \(L \), suppose that there is a degree-\(d \) polynomial (over \(\mathcal{F} \)) \(\overline{P}_{\text{global}} \) such that the Final PCP Test accepts with probability \(1/2 + \xi \). Our goal in the rest of this paper is to show that in this case there exists a labeling that satisfies at least \(2^{-c_0 R} \)-fraction of the edges of \(L \), for an appropriate choice of constants \(R \) and \(J \) in Theorem 4 and because of its NO Case we would be done.

Let \(P_{\text{global}} \) be the representation of \(\overline{P}_{\text{global}} \) in \(\mathbb{R}^Y \), so that \(\overline{P}_{\text{global}}(\overline{y}) = P_{\text{global}}(y) \) where \(\overline{y} \in \mathcal{F} \) is a point generated by the Final PCP Test from a point \(y \) generated by the Basic PCP Test as given in Appendix B.2. Therefore, \(P_{\text{global}}(y) = b \) with probability at least \(1/2 + \xi \) over the pairs \((y, b)\) output by the Basic PCP Test. Using this, we focus on analyzing the structure of \(P_{\text{global}} \).

To begin the analysis note that with probability at least \(2\xi \) over the choices of the verifier other than \(b \), \(P_{\text{global}} \) flips its sign on flipping \(b \). Call a choice of \(\{v_j \mid j \in [T]\} \) good if conditioned on this, the same holds with probability at least \(\xi \) over the rest of the choices (other than \(b \)) of the verifier. By averaging, with probability at least \(\xi \), the verifier makes a good choice. We now fix such a good choice \(\{v_j \mid j \in [T]\} \).

For convenience, we shall use \(P \) to denote the restriction of \(P_{\text{global}} \) to \(Y := \{Y_{ij} \mid i \in [k], j \in [T]\} \). Let \(D \) be the distribution on \((Y, b)\) generated by the steps of the verifier. Our analysis shall first show that in terms of this basis \(P \) must have a certain structure which will then be used to determine a good labeling for \(L \).

C.1. Basis Transformations

For the purpose of the analysis, we shall rewrite the variables \(Y \) in different bases. Before we do that, we shall isolate the noisy set \(I \) of the Basic PCP Test.

C.1.1. Choice of Set \(I \)

The distribution \(D \) involves choosing the set \(I \) in which each \((i, j)\) is added independently at random with probability \(\varepsilon \). Let us call a setting of \(I \) as nice if it satisfies:

1. For each \(j \), \(|\{i \mid (i, j) \in I\}| \leq k/2 \).
2. With probability \(\xi/2 \) over the rest of the choices of the verifier (except \(b \)), \(P \) flips its sign on flipping \(b \).

By our setting of \(\varepsilon \) and \(T \), for a large enough value of \(k \), and applying the Chernoff Bound, a union bound and an averaging argument, we have:

\[
\Pr_D[I \text{ is nice}] \geq \xi/4. \tag{25}
\]

Going forward, we shall fix a nice choice of \(I \). By relabeling, we may assume that there exist \(k/2 \leq k_j \leq k \) for \(j \in [T] \) such that

\[
I = \bigcup_{j=1}^{T} \{(i, j) \mid i = k_j + 1, \ldots, k\}. \tag{26}
\]

Based on this nice choice of \(I \), we now define new bases for the \(Y \) variables. Let \(D_I \) denote the distribution of the variables after fixing a nice \(I \).
C.1.2. Bases W and U

For each $j \in [T]$, we define $(W_{1j}, W_{2j}, \ldots, W_{k_jj})$ as a fixed orthogonal transformation of $(Y_{1j}, Y_{2j}, \ldots, Y_{k_jj})$ so that

$$W_{1j} = \frac{1}{k_j} \sum_{i=1}^{k_j} Y_{ij}, \quad \text{and} \quad W_{ij} = \sum_{\ell \in [k_j]} c_{i\ell} Y_{\ell j} \text{ for all } i \in [2, k_j]$$

(27)

where the vectors $\{c_i = [c_{i1}, c_{i2}, \ldots, c_{i k_j}]^T\}_{i=2}^{k_j}$ satisfy

- For all $i, i' \in [k_j] \setminus \{1\}$ we have $\langle c_i, c_{i'} \rangle = 0$
- Each vector c_i satisfies $\|c_i\|^2 = 1/k_j$ and $c_i \perp 1$ where 1 is the all ones vector in \mathbb{R}^{k_j}.

We shall also define the vector $c_1 = \frac{1}{k_j} \cdot 1$ where 1 $\in \mathbb{R}^{k_j}$ is the the vector of all ones. The above along with the distribution of $\{Y_{ij} \mid i = 1, \ldots, k_j\}_{j=1}^T$ in D_I directly implies the following.

Lemma 12 Under the distribution D_I:

(i) $W_{1j} = \sqrt{(T-1)/T} \cdot \delta_j + b\eta$

(ii) For $i \neq 1$, $W_{ij} = 0$.

Let U_1, \ldots, U_T be a fixed orthonormal transformation of (W_{11}, \ldots, W_{1T}), where

$$U_1 = \frac{1}{\sqrt{T}} \sum_{j=1}^T W_{1j}, \quad \text{and} \quad U_t = \sum_{j \in [T]} a_{t j} W_{1j} \text{ for all } t \in [2, T]$$

(28)

where vectors a_2, \ldots, a_T are orthonormal and each vector $a_t = [a_{t1}, a_{t2}, \ldots, a_{tT}]^T$ satisfies $\sum_{j \in T} a_{tj} = 0$ (i.e., they are orthogonal to the all ones vector).

Lemma 13 Under the distribution D_I,

(i) $U_1 = b\eta \sqrt{T}$

(ii) For each $1 < t \leq T$, $U_t \sim N(0, 1)$ i.i.d.

Proof Lemma 12 along with the definition of U_1 yields the first part. The second part follows from an application of Lemma 39.

Before we proceed, we briefly summarize the variables and their distribution under D_I.

- **Noisy Indices** For a fixed $j \in [T]$, $[k_j]$ is the set of non-noisy i's where $k_j \geq k/2$.
- **The Y-variables**. For each $(i, j) \in [k] \times [T] \setminus I$, $Y_{ij} = \sqrt{(T-1)/T} \cdot \delta_j + b\eta$. For $(i, j) \in I$, Y_{ij}'s are independent $N(0, 1)$ random variables.
- **The W-variables** For a fixed j, we define variables W_{1j}, \ldots, W_{k_jj} with $W_{1j} = \sqrt{(T-1)/T} \cdot \delta_j + b\eta$ and W_{2j}, \ldots, W_{k_jj} are 0.
- **U-variables** We define $U_1 = \frac{1}{\sqrt{T}} \sum_{j \in [T]} W_{1j}$ which is $b\eta \sqrt{T}$ and is independent of the variables U_2, \ldots, U_T where each U_t is i.i.d. $N(0, 1)$ for $t > 1$.

20
C.2. A Hybrid Basis Relative to \(j^* \) and \(d^* \)

Recall that we have fixed a nice \(\mathcal{I} \). In this section, we define a basis for polynomials using a fixed choice of \(j^* \in [T] \) and \(d^* \in [d] \). For convenience let \([T-j^*] := [T] \setminus \{j^*\} \).

Definition 14 Let \(\mathcal{H}_{j^*} \) be the Hermite basis for all polynomials over the independent Gaussian variables \(\{Y_{ij} \mid i \in [k] \setminus [k_j], j \in [T-j^*]\} \). In particular, \(\mathbb{E}[H^2] = \mathbb{E}[G^2] = 1 \) and \(\mathbb{E}[HG] = 0 \) for each \(H, G \in \mathcal{H}_{j^*} \), \(H \neq G \). Let \(\mathcal{H}_{j^*} \) be the set of basis elements of \(\mathcal{H}_{j^*} \) of degree exactly \(d^* \).

Definition 15 Let \(\mathcal{M}_{j^*} \) be the standard monomial basis for polynomials over the variables \(\{W_{ij} \mid j \in [T-j^*]\} \). In particular, each element of \(\mathcal{M}_{j^*} \) is of the form \(\prod_{j \in [T-j^*]} W_{ij}^{d_j} \) for some non-negative integers \(a_j \) \((j \in [T-j^*]) \).

Definition 16 Let \(\mathcal{B}_{j^*} := \mathcal{H}_{j^*} \circ \mathcal{M}_{j^*} \) be the combined basis for polynomials over the variables of \(\mathcal{H}_{j^*} \) and \(\mathcal{M}_{j^*} \), where each element of \(\mathcal{B}_{j^*} \) is of the form \(HM \) for some \(H \in \mathcal{H}_{j^*} \) and \(M \in \mathcal{M}_{j^*} \), and \(\deg(B) = \deg(H) + \deg(M) \). For convenience we also define the subset \(\mathcal{B}_{j^*,d^*} := \mathcal{B}_{j^*} \circ \mathcal{M}_{j^*} \), i.e. each element of \(\mathcal{B}_{j^*,d^*} \) is of the form \(HM \) where \(H \in \mathcal{H}_{j^*} \) and \(M \in \mathcal{M}_{j^*} \).

Lastly, let \(\mathcal{S}_{j^*} := \{\{i,j^*\} \mid i \in [k]\} \). For an element \(S \in \mathcal{S}_{j^*} \), let \(S(i,j^*) \) denote the number of occurrences of \((i,j^*) \) in \(S \). Using this, we define \(Y_S := \prod_{(i,j^*) \in \mathcal{S}_{j^*}} Y_{ij^*}^{S(i,j^*)} \).

Writing the polynomial \(P \) in the basis given by products of \(\mathcal{B}_{j^*} \), \(\{W_{ij} \mid j \in [T-j^*], i \in [k_j \setminus \{1\}] \} \) and \(\{Y_{ij^*} : i \in [k]\} \), the polynomial \(P \) can be represented as:

\[
P = P_{\text{omit}} + \sum_{S \in \mathcal{S}_{j^*}, B \in \mathcal{B}_{j^*}} c_{S,B} Y_S B, \tag{29}
\]

where \(c_{S,B} \) are constants and\(^4\) \(P_{\text{omit}} \) is the sub-polynomial of \(P \) consisting of all monomials containing a variable from \(\{W_{ij} : j \in [T-j^*], i \in [k_j] \setminus \{1\}\} \). Of course, since \(P \) is of degree at most \(d \), the only terms that occur in the above sum satisfy \(\deg(B) + |S| \leq d \).

For a fixed \(0 \leq d^* \leq d-1 \), we will be interested in capturing the the mass of \(P \) linear in \(Y_{ij^*} \) and the subset \(\mathcal{B}_{j^*,d^*} \). Abusing notation to let \(c_{(i,j^*),B} = c_{(S,B)} \) where \(S = \{(i,j^*)\} \) is the singleton multiset, define

\[
c_{i,j^*,d^*} = \sqrt{\sum_{B \in \mathcal{B}_{j^*,d^*}} c_{(i,j^*),B}^2}, \tag{30}
\]

for each \((i,j^*) \in R_{j^*} \) and \(0 \leq d^* \leq d-1 \).

C.3. Main Structural Lemma

We are now ready to describe the structure that \(P \) must exhibit in order to pass the Basic PCP test. Let us first define a *distinguished pair* \((j^*,d^*)\) for a fixed setting of \(\mathcal{I} \).

4. The reason for treating \(P_{\text{omit}} \) separately is that it vanishes under the distribution \(D_{\mathcal{I}} \).
Definition 17 A pair \((j^*, d^*) \in [T] \times \{0, \ldots, d - 1\}\) is said to be distinguished for \(\mathcal{I}\) if,
\[
\sum_{(i, j^*) \in \mathcal{I}} c_{i, j^*, d^*}^2 \leq \frac{\varepsilon^4}{4} \cdot \left(\sum_{(i, j^*) \in ([k] \times \{j^*\}) \setminus \mathcal{I}} c_{i, j^*, d^*}^2 \right),
\] (31)

and,
\[
\sum_{(i, j^*) \in ([k] \times \{j^*\}) \setminus \mathcal{I}} c_{i, j^*, d^*}^2 > 0.
\] (32)

Here, \(\varepsilon\) is the noise parameter used in the PCP test.

The main lemma that we prove is the following.

Lemma 18 (Main Structural Lemma) For every nice choice of \(\mathcal{I}\), there exists \(j^* \in [T]\) and \(d^* \in \{0, 1, \ldots, d - 1\}\) such that \((j^*, d^*)\) is distinguished for \(\mathcal{I}\).

The proof of the above lemma is given in Appendix E building upon analysis in Appendix D. Both Appendices D and E assume a setting of nice \(\mathcal{I}\).

Using (25) and a simple averaging, the above lemma implies that there exists \((j^*, d^*)\) such that:
\[
\Pr_{\mathcal{I}} [(j^*, d^*) \text{ is distinguished for } \mathcal{I}] \geq \frac{\xi}{4Td}.
\] (33)

C.4. Implications of the Structural Lemma

We now fix \((j^*, d^*)\) satisfying (33). Let us consider the random choice of \(\mathcal{I}\) as first picking \(\mathcal{I}_{-j^*} := \mathcal{I} \cap ([k] \times ([T] \setminus \{j^*\}))\), and then picking \(\mathcal{I}_{j^*} := \mathcal{I} \cap ([k] \times \{j^*\})\). Note that the choice of \(\mathcal{I}_{j^*}\) is independent of \(\mathcal{I}_{-j^*}\). Call a choice of \(\mathcal{I}_{-j^*}\) as shared-heavy if
\[
\Pr_{\mathcal{I}_{j^*}} [(j^*, d^*) \text{ is distinguished for } \mathcal{I}_{j^*} \cup \mathcal{I}_{-j^*}] \geq \frac{\xi}{8Td}.
\] (34)

From (33) and an averaging argument we have:
\[
\Pr_{\mathcal{I}_{-j^*}} [\mathcal{I}_{-j^*} \text{ is shared-heavy}] \geq \frac{\xi}{8Td}.
\] (35)

Let us fix a shared-heavy \(\mathcal{I}_{-j^*}\). Note that with this fixing, the bases given in Appendix C.2 are well defined, and in particular \(P\) can be represented as in (29). Since there is at least one choice of \(\mathcal{I}_{j^*}\) such that \((j^*, d^*)\) is distinguished for \(\mathcal{I}_{j^*} \cup \mathcal{I}_{-j^*}\), using (32) this implies
\[
\sum_{i \in [k]} c_{i, j^*, d^*}^2 > 0.
\] (36)

Further we have the following lemma. (This is where we are finally randomizing over \(\mathcal{I}_{j^*}\).)

Lemma 19 There exists \(i^* \in [k]\) such that,
\[
c_{i^*, j^*, d^*}^2 \geq \nu^2 \left(\sum_{i \in [k]} c_{i, j^*, d^*}^2 \right),
\]
for \(\nu = \varepsilon^2 / 2\).
Proof Assume that there is no such i^* as in the lemma. Over the choice of I_{j^*}, consider the random variable $\sum_{(i,j^*) \in I_{j^*}} c_{i,j^*,d^*}^2$. The contribution from each i to this sum is independently 0 with probability $(1 - \varepsilon)$ and c_{i,j^*,d^*}^2 with probability ε. Thus,

$$
\mathbb{E}_{I_{j^*}} \left[\sum_{(i,j^*) \in I_{j^*}} c_{i,j^*,d^*}^2 \right] = \varepsilon \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right).
$$

Now,

$$
\Pr \left[\sum_{(i,j^*) \in I} c_{i,j^*,d^*}^2 \leq \left(\frac{\varepsilon}{2} \right) \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right) \right] \\
\leq \Pr \left[\sum_{(i,j^*) \in I_{j^*}} c_{i,j^*,d^*}^2 \leq \left(\frac{\varepsilon}{2} \right) \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right) \right] \\
\leq \Pr \left[\sum_{(i,j^*) \in I_{j^*}} c_{i,j^*,d^*}^2 - \mathbb{E} \left[\sum_{(i,j^*) \in I_{j^*}} c_{i,j^*,d^*}^2 \right] \geq \left(\frac{\varepsilon}{2} \right) \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right) \right] \\
\leq 2 \cdot \exp \left(-\frac{2\varepsilon^2}{2} \cdot \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right)^2 \right) \\
\leq 2 \cdot \exp \left(-\frac{2\varepsilon^2}{2} \cdot \frac{\left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right)^2}{\max_{i \in [k]} c_{i,j^*,d^*}^2} \right) \leq 2 \cdot \exp \left(-\frac{\varepsilon^2}{2\nu^2} \right) \leq \varepsilon,
$$

for $\nu^2 = \varepsilon^4/4 \leq \varepsilon^2/(2 \log(2/\varepsilon))$. Here, step 1 follows from the Chernoff-Hoeffding inequality (Theorem 8). Since our choice of $\varepsilon < \xi/(8Td')$, this yields a contradiction to our choice of I_{j^*}, (31), and (34).

C.5. Decoding a Labeling for L

In Figure 4 we define a randomized (partial) labeling σ for the vertices V of L. To analyze σ, we first define the following random subsets of vertices and edges, where the randomness is over the choices made in the above procedure of labeling.

Vertex subset $V_0 \subseteq V$: Consists of all $v \in V$ such that:

- Setting $v_j = v$, the choice of $\{v_j \mid j \in [T]\}$ is good,
- The choice of (j^*, d^*) satisfies (33) and,
- The choice of I_{-j^*} is shared-heavy.
Randomized Partial Labeling \(\sigma \)

1. Choose \(j^* \in [T] \) and \(d^* \in \{0, \ldots, d - 1\} \) independently and u.a.r.
2. Choose \(v_j \in V \) independently and u.a.r. for each \(j \in [T] \setminus \{j^*\} \).
3. Choose the random subset \(T_{-j^*} \) of \([k] \times ([T] \setminus \{j^*\}) \) by independently adding each element with probability \(\varepsilon \).
4. For each \(v \in V \),

 5. Set \(v_{j^*} = v \).
6. Letting \(P \) be the restriction of \(P_{\text{global}} \) to

 \[Y = \{Y_{ij} \mid i \in [k], j \in [T]\} \],

 define the set:

 \[
 \Gamma_0(v) := \left\{ i' \in [k] \mid c_{i',j^*,d^*}^2 > \frac{\nu^2}{4} \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right) \right\}, \tag{37}
 \]

 where \(\nu = \varepsilon^2/4 \) (as in Lemma 19).
7. If \(\Gamma_0(v) \) is non-empty, assign \(v \) a label chosen uniformly at random from \(\Gamma_0(v) \).

Figure 4: Randomized Partial Labeling

Over the randomness of the labeling procedure and a random choice of \(v \), the above happens with probability at least:

\[
\Delta_0 := \xi \cdot \frac{1}{Td} \cdot \frac{\xi}{8Td}. \tag{38}
\]

Thus,

\[\mathbb{E} [|V_0|] \geq \Delta_0 |V|. \]

Moreover, by the weak expansion property in Theorem 4,

\[
\mathbb{E} [|E(V_0)|] \geq \mathbb{E} \left[\left(\frac{|V_0|}{|V|} \right)^2 \cdot (|E|/2) \right] \geq \left(\mathbb{E} \left[\frac{|V_0|}{|V|} \right] \right)^2 \cdot (|E|/2) \geq \left(\Delta_0^2 / 2 \right) |E|. \tag{39}
\]

Edge Set \(E' \subseteq E(V_0) \): Let us first define for each \(v \in V \)

\[
\Gamma_1(v) := \left\{ i' \in [k] \mid c_{i',j^*,d^*}^2 > \frac{\nu^2}{100 \cdot 42R} \left(\sum_{i \in [k]} c_{i,j^*,d^*}^2 \right) \right\}, \tag{40}
\]

when \(v_{j^*} \) is set to \(v \) in Step 4a of Figure 4. Here, \(R \) is the parameter (to be set) from Theorem 4. From (37) and (40), we have \(\Gamma_0(v) \subseteq \Gamma_1(v) \) along with

\[
|\Gamma_0(v)| \leq 4/\nu^2, \quad \text{and} \quad |\Gamma_1(v)| \leq (100 \cdot 42R)/\nu^2. \tag{41}
\]

The set \(E' \) is defined as:

\[
E' := \{ e = (u, w) \in E(V_0) \mid |\pi_{e,u}(\Gamma_1(u))| = |\Gamma_1(u)| \quad \text{and} \quad |\pi_{e,w}(\Gamma_1(w))| = |\Gamma_1(w)| \}. \tag{42}
\]
Since the graph G of the instance L is regular, using second bound in (41) along with the smoothness property of Theorem 4, the fraction of edges $e = (u, w) \in E$ that do not satisfy
\[
\left(|\pi_{e,u}(\Gamma_1(u))| = |\Gamma_1(u)| \text{ and } |\pi_{e,w}(\Gamma_1(w))| = |\Gamma_1(w)| \right)
\]
is at most,
\[
\Delta_1 := \left(\frac{10^4 \cdot 4^4 R}{\nu^4 J} \right).
\]
Thus,
\[
\mathbb{E}[|E'|] \geq \left(\frac{\Delta_0^2}{2} - \Delta_1 \right) |E|.
\]
(43)
The following lemma gives the desired property of edges in E'.

Lemma 20 For every edge $e = (u, w) \in E'$,
\[
\pi_{e,u}(\Gamma_0(u)) \cap \pi_{e,w}(\Gamma_0(w)) \neq \emptyset.
\]
(44)

Proof Suppose for a contradiction that (44) does not hold for an edge $e = (u, w) \in E'$, i.e.
\[
\pi_{e,u}(\Gamma_0(u)) \cap \pi_{e,w}(\Gamma_0(w)) = \emptyset.
\]
(45)
Let us now define for $v \in \{u, w\}$, and $i \in [k]$, vector $C_{v,i} \in \mathbb{R}^{2B_j^*,d^*}$ where for any $B \in \mathcal{B}_{-j^*,d^*}$
\[
C_{v,i}(B) = c(i,j^*),B \quad \text{when } v_j^* \text{ is set to } v.
\]
(46)
Without loss of generality, we may assume that
\[
\sum_{i \in [k]} \|C_{u,i}\|^2 \geq \sum_{i \in [k]} \|C_{w,i}\|^2.
\]
(47)
Since $u \in V_0$, (36) and Lemma 19 imply that there exists $i_u \in [k]$ such that
\[
\|C_{u,i_u}\| \geq \nu \left(\sum_{i \in [k]} \|C_{u,i}\|^2 \right)^{\frac{1}{2}} > 0.
\]
(48)
This implies that $i_u \in \Gamma_0(u)$. Now, let $\ell^* := \pi_{e,u}(i_u)$. Since P is a restriction of P_{global} which is a representation of the folded polynomial $\overline{P}_{\text{global}}$, Lemma 9 along with Remark 10 (applied to elements B of \mathcal{B}_{-j^*,d^*}) implies
\[
\sum_{i \in \pi_{e,u}^{-1}(\ell^*)} C_{u,i} = \sum_{i \in \pi_{e,w}^{-1}(\ell^*)} C_{w,i}.
\]
(49)
On the other hand, since $e \in E'$, (42) along with our supposition (45) and the construction of $\{\Gamma_r(v) \mid r \in \{0, 1\}, \ v \in \{u, w\}\}$ implies that
- For all $i \in \pi_{e,u}^{-1}(\ell^*) \setminus \{i_u\}$
\[
\|C_{u,i}\| \leq \frac{\nu}{10 \cdot 4^R} \left(\sum_{i \in [k]} \|C_{u,i}\|^2 \right)^{\frac{1}{2}}.
\]
(50)
• For all $i \in \pi_{e,u}^{-1}(\ell^*)$
 \[
 \| C_{w,i} \|_2 \leq \frac{\nu}{2} \left(\sum_{i \in [k]} \| C_{w,i} \|_2 \right)^{\frac{1}{2}}.
 \]
 \(51\)

• There exists at most one $i' \in [k]$ such that,
 \[
 \| C_{w,i} \|_2 > \frac{\nu}{10 \cdot 4^R} \left(\sum_{i \in [k]} \| C_{w,i} \|_2 \right)^{\frac{1}{2}}.
 \]
 \(52\)

The above implications along with (49) and (47) yields
 \[
 \| C_{u,i} \|_2 \leq \sum_{i \in \pi_{e,u}^{-1}(\ell^*)} \| C_{u,i} \|_2 + \sum_{i \in \pi_{e,u}^{-1}(\ell^*)} \| C_{w,i} \|_2
 \]
 \[
 \leq \frac{\nu |\pi_{e,u}^{-1}(\ell^*)|}{10 \cdot 4^R} \left(\sum_{i \in [k]} \| C_{u,i} \|_2 \right)^{\frac{1}{2}} + \left(\frac{\nu}{2} + \frac{\nu |\pi_{e,u}^{-1}(\ell^*)|}{10 \cdot 4^R} \right) \left(\sum_{i \in [k]} \| C_{w,i} \|_2 \right)^{\frac{1}{2}}
 \]
 \[
 \leq \frac{\nu}{10} \left(\sum_{i \in [k]} \| C_{u,i} \|_2 \right)^{\frac{1}{2}} + \left(\frac{\nu}{2} + \frac{\nu}{10} \right) \left(\sum_{i \in [k]} \| C_{w,i} \|_2 \right)^{\frac{1}{2}}
 \]
 \[
 \leq \frac{7\nu}{10} \left(\sum_{i \in [k]} \| C_{u,i} \|_2 \right)^{\frac{1}{2}},
 \]
 \(53\)

where we used the property (from Theorem 4) that $|\pi_{e,u}^{-1}(\ell^*)|, |\pi_{e,w}^{-1}(\ell^*)| \leq 4^R$. Clearly, (53) is a contradiction to (48) which completes the proof of the lemma.

Note that the set E' is determined by Step 3 of the randomized labeling procedure. Lemma 20 implies that in the subsequent steps of the procedure, each edge $e = (u, w) \in E'$ is satisfied with probability at least
 \[
 \frac{1}{|\Gamma_0(u)| |\Gamma_0(w)|} \geq \frac{\nu^4}{16},
 \]
using the first bound in (41). The above along with (43) lower bounds the expected fraction of edges σ satisfies by
 \[
 \Delta_2 := \left(\frac{\Delta_2 - \Delta_1}{2} \right) \left(\frac{\nu^4}{16} \right).
 \]
Choosing R to be large enough and $J \gg 4^R$ we can ensure that $\Delta_2 > 2^{-c_{\nu}R}$ which yields a contradiction to the soundness of Theorem 4, completing the NO case analysis.
C.6. Loose Ends

Discretization of the Basic PCP Test Distribution. Let \mathcal{H}_N be the distribution of $\left(\sum_{i=1}^{N} B_i\right) / \sqrt{N}$ where each B_i is an independent $\{-1,1\}$-valued balanced Bernoulli random variable. The following theorem was proved in Diakonikolas et al. (2011).

Theorem 21 Fix any constant $D \geq 1$, and let $f(x_1,\ldots,x_m)$ be any degree-D polynomial over \mathbb{R}^m. Let $(y,z) \in \mathbb{R}^m \times \mathbb{R}^m$ be generated by sampling each (y_i,z_i) from $(N(0,1), \mathcal{H}_N)$ where $N = m^{24D^2}$. Then,

$$\Pr[\text{sign}(f(y)) \neq \text{sign}(f(z))] \leq O(1/m).$$

In our Basic PCP Test distribution (for a fixed choice of the vertices of the SMOOTH LABEL COVER instance) we have $m = \Theta(kT)$ Gaussian random variables. Choosing $D = d$ and $N = m^{24D^2}$, we can completely discretize the test distribution using $\exp((kT)^{O(d^2)})$ points. Note that this also incorporates the possible $2^{O(kT)}$ choices of the noise set \mathcal{I}. From the above theorem, this discretization results in an at most $O(1/kT)$ loss in the acceptance probability of the test. This discretization is done for all possible choices by the test of the vertices of the instance.

Ruling out functions of constantly many degree-d PTFs. Analogous to the argument in Khot and Saket (2011), consider any function \widetilde{h} of K degree-d PTFs (over \mathcal{F}) that passes the Final PCP test with probability $1/2 + \xi$. Let h be the function \widetilde{h} with the PTFs represented over \mathbb{R}^3. By averaging, h flips its sign with respect to flipping b for at least ξ fraction of the rest of the choices made by the Basic PCP Test. Again by averaging, there must be a degree-d PTF $\text{sign}(P'_{\text{global}})$ satisfying the same for at least ξ/K fraction of the choices. The entire analysis can then be repeated using P'_{global}.

Appendix D. Relative bounds for mass in P

Let Z denote the set of variables $\{Y_{ij} : j \in [T], k_j < i \leq k\}$. As shown in Appendix C, the Z variables are all i.i.d. $N(0,1)$ under the test distribution. We begin by expressing P as

$$P(\mathbf{Z}, \{U_i\}_{i\in[T]}, \{W_{ij}\}_{i\neq 1}) = P_{\text{omit}}(\mathbf{Z}, \{U_i\}_{i\in[T]}, \{W_{ij}\}_{i\in[2,k_j], j\in[T]}) + Q_0(\mathbf{Z}, U_2,\ldots,U_T) + U_1Q_1(\mathbf{Z}, U_1,\ldots,U_T)$$

(54)

where P_{omit} consists of all the terms that contain some $\{W_{ij} : i \in [2,k_j], j \in [T]\}$ as a factor, and Q_0 is the part in the remaining polynomial independent of U_1. From the nice setting of \mathcal{I}, we have that with probability at least $\xi/2$ over the rest of the choices of the verifier, P flips its sign on flipping b. Since P_{omit} evaluates to zero under the test distribution and Q_0 is independent of b_I by construction, we obtain that Q_1 is not identically zero. For the time being, our analysis ignores P_{omit}. Extending Definitions 14 and 15, let \mathcal{M} be the Hermite basis over all the Z variables, and \mathcal{N} be the monomial basis over the variables $\{W_{1j} : j \in [T]\}$. Using these we define two norms to quantify the relevant mass of polynomials. For convenience, let U denote the variables U_1,\ldots,U_T, \mathbf{U} denote the set $U \setminus \{U_1\}$, and \mathbf{W} denote the set of variables W_{11},\ldots,W_{1T}.

Definition 22 (|| \cdot ||-norm) Given a polynomial Q over the variables defined in the PCP test, define its $|| \cdot ||$-norm as

$$\|Q\|_2 = \sqrt{\mathbb{E}_{x \sim \mathcal{D}_x} [Q(x)]^2}.$$
Our goal in this section is to prove the following lemma lower bounding \(\|Q_1\|_2 \).

Using the definitions given above, we have \(\|Q_1\|_2 \geqslant 1 \). In particular, \(\|\cdot\|_{\text{mon},1} \) is the absolute sum of the coefficients, and \(\|\cdot\|_{\text{mon},2} \) is the squared sum of the coefficients in \(Q_1 \).

As pointed out above, \(Q_1 \) is not identically zero and therefore by definition it satisfies,

\[
\|Q_1\|_2 > 0
\]

Our goal in this section is to prove the following lemma lower bounding \(\|Q_1\|_2 \) relative to \(\|Q_0\|_2 \).

Lemma 24 Using the definitions given above,

\[
\|Q_0\|_2 \leq \left(\frac{8\eta \sqrt{T}}{(\xi/4d)^d \sqrt{\xi}} \right) \|Q_1\|_2
\]

Proof From Lemma 13, we know that \(U_1 = b\eta \sqrt{T} \) under the distribution \(D_T \). Since \(Q_1 \) is dependent on \(U_1 \), its distribution can be dependent on \(b \). Let \(Q_1^+ := Q_1 |_{b=1} \), and and \(Q_1^- := Q_1 |_{b=-1} \). Thus,

\[
\|Q_1\|_2^2 = \mathbb{E}_{b,Z,U} [Q_1^2] = \frac{1}{2} \mathbb{E}_{Z,U} [Q_1^2 | b = 1] + \frac{1}{2} \mathbb{E}_{Z,U} [Q_1^2 | b = -1]
\]

\[
= \frac{1}{2} \|Q_1^+\|_2^2 + \frac{1}{2} \|Q_1^-\|_2^2.
\]

Using the above along with Chebyshev’s inequality (see Section A.2) we obtain for any \(a > 0 \)

\[
\Pr_{Z,U} \left[|Q_1^+|, |Q_1^-| \leq a\|Q_1\|_2 \right] \geq 1 - \Pr_{Z,U} \left[|Q_1^+| \geq a\|Q_1\|_2 \right] - \Pr_{Z,U} \left[|Q_1^-| \geq a\|Q_1\|_2 \right]
\]

\[
\geq 1 - \left(\frac{\|Q_1^+\|_2^2 + \|Q_1^-\|_2^2}{a^2\|Q_1\|_2^2} \right) = 1 - 2/a^2,
\]

where the last step follows from (57). On the other hand note that \(Q_0 \) is a polynomial over standard Gaussian variables and is independent of \(b \). Applying the bound of Carbery-Wright (Theorem 7) we obtain the following,

\[
\Pr_{Z} \left[|Q_0| \leq (\xi/4d)^d \|Q_0\|_2 \right] \leq \frac{\xi}{4}
\]

Setting \(a = 4/\sqrt{T} \) in (58) and using the above we obtain that with probability at least \(1 - \xi/4 - \xi/8 = 1 - 3\xi/8 \) over the choice of the variables \(Z \) and \(U_2, \ldots, U_T \)

\[
(\eta \sqrt{T}) |Q_1^+|, (\eta \sqrt{T}) |Q_1^-| \leq (4\eta \sqrt{T/\xi}) \|Q_1\|_2, \quad \text{and}, \quad |Q_0| > (\xi/4d)^d \|Q_0\|_2.
\]

When \(\eta \sqrt{T} (|Q_1^+| + |Q_1^-|) < |Q_0| \) then flipping \(b \) does not change the sign of \(P \). Since the sign of \(P \) must flip with \(b \) with probability at least \(\xi/2 \) over the choice of \(Z \) and \(U_2, \ldots, U_T \), the above is a contradiction unless,

\[
\|Q_0\|_2 \leq \left(\frac{8\eta \sqrt{T}}{(\xi/4d)^d \sqrt{\xi}} \right) \|Q_1\|_2,
\]

which completes the proof of the lemma. □
Appendix E. Proof of Main Structural Lemma 18

As in the previous section, we have \(\mathbf{U} \) denote the variables \(U_1, \ldots, U_T, \tilde{U} \) denote the set \(\mathbf{U} \setminus \{U_1\} \), and \(\mathbf{W} \) denote the set of variables \(W_{11}, \ldots, W_{1T} \). Similarly, we use \(\mathbf{Y} = \{Y_{ij} : i \in [k], j \in [T]\} \) to denote the set of all the \(\mathbf{Y} \) variables. We use \(\mathbf{Z} \) to denote the set of variables \(\{Y_{ij} : j \in [T], k_j < i \leq k \} \). The \(\mathbf{Z} \) variables are all \(N(0,1) \) under the test distribution. For a particular \(j^* \in [T] \), let \(\mathbf{Z}_{j^*} = \mathbf{Z} \cap \{Y_{ij} : i \in [k]\} \), and let \(\mathbf{Z}_{-j^*} = \mathbf{Z} \setminus \mathbf{Z}_{j^*} \). Also, for given \(j^* \in [T] \), define \(\mathbf{Y}_{j^*} = \mathbf{Y} \cap \{Y_{ij} : i \in [k]\} \) and \(\mathbf{Y}_{-j^*} = \mathbf{Y} \setminus \mathbf{Y}_{j^*} \). Finally, for given \(j^* \in [T] \), we define \(\mathbf{W}_{j^*} \) and \(\mathbf{W}_{-j^*} \) similarly.

Recall the definitions of the bases in Definitions 14, 15 and 16. Extending these as in the previous section, let \(\mathcal{H} \) be the Hermite basis for polynomials in the variables \(\mathbf{Z} \) and \(\mathcal{M} \) the monomial basis for polynomials in the variables \(\mathbf{W} \). For any \(D \in [d] \), we also define \(\mathcal{H}_D \) to be the set of all Hermite monomials of degree exactly \(D \).

For convenience of measuring the monomial mass, we use Definition 23 to define two different norms as follows:

Definition 25 (\(\| \cdot \|_{\mathcal{B}} \)-Norm) For a polynomial \(L(\mathbf{Z}, \mathbf{W}) = \sum_{H \in \mathcal{H}} H(\mathbf{Z}) \cdot L_H(\mathbf{W}) \), let

\[
\|L(\mathbf{Z}, \mathbf{W})\|_{\mathcal{B}}^2 = \sum_{H \in \mathcal{H}} \|L_H(\mathbf{W})\|_{\text{mon},2}^2 \tag{60}
\]

Definition 26 (\(\| \cdot \|_{\mathcal{B}_{j^*},d^*,J} \)-Norm) Suppose \(j^* \in [T], d^* \in [d-1] \) and \(J \subseteq [k] \) are given. Then, for any polynomial \(M(\mathbf{Z}_{-j^*}, \mathbf{Y}_{j^*}, \mathbf{W}_{-j^*}) \) of the form

\[
M(\mathbf{Z}_{-j^*}, \mathbf{Y}_{j^*}, \mathbf{W}_{-j^*}) = \sum_{H \in \mathcal{H}_{-j^*}} \sum_{S \in \mathcal{S}_{j^*}} H(\mathbf{Z}_{-j^*}) \cdot Y_S \cdot M_{H,S}(\mathbf{W}_{-j^*}),
\]

we define:

\[
\left\| M(\mathbf{Z}_{-j^*}, \mathbf{Y}_{j^*}, \mathbf{W}_{-j^*}) \right\|_{\mathcal{B}_{-j^*},d^*,J}^2 = \sum_{H \in \mathcal{H}_{-j^*}} \sum_{S \in \mathcal{S}_{j^*}} \|M_{H,\{i,j^*\}}(\mathbf{W}_{-j^*})\|_{\text{mon},2}^2 \tag{61}
\]

Finally, for \(j^* \in [T] \), we shall find it convenient to define the sets \(\mathcal{A}_{1,j^*} = \{i : (i,j^*) \in I\} \), and \(\mathcal{A}_{0,j^*} = [k] \setminus \mathcal{A}_{1,j^*} \).

E.1. An intermediate Lemma

We start by writing the polynomial \(P \) in the variables \(\mathbf{Z}, \{W_{ij} : j \in [T], 1 < i \leq k_j\}, \mathbf{U} \):

\[
P = P_{\text{omit}} + P_{\text{rel}} = P_{\text{omit}} + \overline{Q}_0(\mathbf{Z}, \mathbf{U} \setminus \{U_1\}) + U_1 \cdot \overline{Q}_1(\mathbf{Z}, \mathbf{U})
\]

where \(P_{\text{omit}} \) contains all monomials depending on \(\{W_{ij} : j \in [T], 1 < i \leq k_j\} \).

Let \(Q_0(\mathbf{Z}, \mathbf{W}) \) and \(Q_1(\mathbf{Z}, \mathbf{W}) \) be \(\overline{Q}_0 \) and \(\overline{Q}_1 \) respectively after a change of variables from \(\mathbf{U} \) to \(\mathbf{W} \). For \(a = 0, 1 \), we write \(Q_a(\mathbf{Z}, \mathbf{W}) \) in the \(\mathcal{H} \circ \mathcal{M} \) basis: \(Q_a(\mathbf{Z}, \mathbf{W}) = \sum_{H \in \mathcal{H}} H(\mathbf{Z}) \cdot Q_{a,H}(\mathbf{W}). \)

For a fixed \(d^* \in \{0\} \cup [d-1] \), we let

\[
Q_{a,d^*}(\mathbf{Z}, \mathbf{W}) = \sum_{H \in \mathcal{H}_{d^*}} H(\mathbf{Z}) \cdot Q_{a,H}(\mathbf{W}).
\]

5. Note that although we call it so, \(\| \cdot \|_{\mathcal{B}_{-j^*},d^*,J} \) is not an actual norm, as it may vanish even for non-zero polynomials.
For a fixed \(j^* \in [T] \), we define \(P_{\text{omit},j^*} \) as the sub-polynomial of \(P \) containing all the monomials containing at least one variable from \(\{W_{ij} : j \neq j^*, i \neq 1\} \), and let \(P_{\text{rel},j^*} \) be the rest of the polynomial.

We shall prove Lemma 18 using the following intermediate result:

Lemma 27 There exists choice of \(d^* \in \{0,1,\ldots,d-1\} \) and \(j^* \in [T] \) such that the following properties hold simultaneously:

1. \(\|Q_0\|^2_{\mathcal{B}} \leq \rho^{2d}\|Q_1\|^2_{\mathcal{B}} \)
2. \(\|Q_1^{(d^*+1)}\|^2_{\mathcal{B}} \leq \frac{1}{4}\rho^{d^*+1}\|Q_1\|^2_{\mathcal{B}} \)
3. \(\|\tilde{Q}\|^2_{\mathcal{B},j^*,d^*,A^{j^*}_{1}} \geq \frac{1}{8kT^4}(20dT)^{-4d}\rho^{d^*}\|Q_1\|^2_{\mathcal{B}} \)

where \(\rho = (20dkT^3/e^4)^{-6d}[(kT)^{-1} \text{ and } \tilde{Q}(Z_{-j^*}, Y_{j^*}, W_{-j^*}) \text{ is the polynomial obtained by rewriting the } W_{j^*} \text{ variables in } P_{\text{rel},j^*} \text{ in terms of the } Y_{j^*} \text{ variables.} \)

Using this, we give a proof of Lemma 18.

Proof [Proof of Lemma 18] Let \(d^* \) and \(j^* \) be as given in Lemma 27. Let \(\tilde{Q}(Z_{-j^*}, Y_{j^*}, W_{-j^*}) \) be as in the Lemma 27. We can express \(\tilde{Q} \) as:

\[
\tilde{Q}(Z_{-j^*}, W_{-j^*}, Y_{j^*}) = \sum_{D=0}^{d-1} \sum_{H \in \mathcal{H}_{-j^*}D} \sum_{S \in S_{j^*}} HY_S \tilde{Q}_{H,S}(W_{-j^*})
\]

where \(\mathcal{H}_{-j^*}D \) is the set of Hermite monomials which are of degree \(D \) and do not contain \(Z_{j^*} \) variables. By construction we have

\[
\sum_{(i,j^*) \in \mathcal{I}} c^2_{i,j^*,d^*} = \|\tilde{Q}\|^2_{\mathcal{B},j^*,d^*,A^{j^*}_{1}}
\]

(63)

Consider a term that contributes to the RHS of (63) (as defined in 26). Since the additional \(Y_{ij^*} \) (for \((i,j^*) \in \mathcal{I} \)) variable adds to the degree of \(H \), the corresponding term appears in the \(\mathcal{B} \)-representation of \(P_{\text{rel}} \) as \(HM \) where the degree of \(H \) is of degree \(d^* + 1 \). Therefore it must be a part of \(Q_1^{(d^*+1)} \) or \(Q_0^{(d^*+1)} \). Hence,

\[
\|\tilde{Q}\|^2_{\mathcal{B},j^*,d^*,A^{j^*}_{1}} \leq \|U_1 Q_1^{(d^*+1)}\|^2_{\mathcal{B}} + \|Q_0\|^2_{\mathcal{B}} \leq T\|Q_1^{(d^*+1)}\|^2_{\mathcal{B}} + \rho^{3d}\|Q_1\|^2_{\mathcal{B}} \leq 2T\rho^{d^*+1}\|Q_1\|^2_{\mathcal{B}}
\]

(64)

where the upper bound on the first term in step 1 follows from

\[
\|U_1(W)Q_1^{(d^*+1)}(W)\|^2_{\mathcal{B}} = \sum_{H \in \mathcal{H}_{d^*+1}} \|U_1(W)Q_H(W)\|^2_{\text{mon,2}}
\]

\[
\leq \sum_{H \in \mathcal{H}_{d^*+1}} \|U_1(W)\|^2_{\text{mon,1}} \|Q_H(W)\|^2_{\text{mon,2}} \text{ (Claim 42)}
\]

\[
= T\|Q_1^{(d^*+1)}\|^2_{\mathcal{B}}
\]
and the upper bound on the second term in step 1 follows from Lemma 27 (part 1). The last inequality uses Part 2 of Lemma 27. On the other hand we have,

\[\sum_{(i,j^*) \in \mathcal{I}(k \times \{j^*\})} c_{i,j^*,d^*}^2 = \| \tilde{Q}_{\mathcal{B}} \|_{2,d^*,\mathcal{A}_0^*}^2 \] (65)

From Lemma 27 (part 3) and the choice of \(\rho \) in Lemma 27 we have

\[\| \tilde{Q}_{\mathcal{B}} \|_{2,d^*,\mathcal{A}_0^*}^2 \geq \frac{1}{8kT^2}(20dT)^{-4d} Eco d^* \| Q_1 \|_{\mathcal{B}}^2 \geq \frac{16T}{e^4} \rho d^*+1 \| Q_1 \|_{\mathcal{B}}^2 \] (66)

Combining (64),(65) and (66), we get an upper bound on LHS of (63) which gives us

\[\sum_{(i,j^*) \in \mathcal{I}} c_{i,j^*,d^*}^2 \leq \frac{\epsilon}{8}(\sum_{(i,j^*) \in \mathcal{I}(k \times \{j^*\})} c_{i,j^*,d^*}^2) \] (67)

thus implying inequality (31). Furthermore, from (55), we know that \(\| Q_1 \|_{\mathcal{B}}^2 > 0 \), which along with Lemma 41(part 1) implies that \(\| Q_1 \|_{\mathcal{B}}^2 > 0 \). Therefore, combining (66) and (65), we get that the LHS of (65) is strictly positive, thus implying (32). Hence, the choice of \((d^*,j^*)\) satisfy (31) and (32).

E.2. Proof of Lemma 27

E.2.1. Upper bounding \(\| Q_0 \|_{\mathcal{B}} \) in terms \(\| Q_1 \|_{\mathcal{B}} \)

In this section, we show that \(\| Q_0 \|_{\mathcal{B}} \) is small compared terms \(\| Q_1 \|_{\mathcal{B}} \) due to our choice of \(\eta \).

Lemma 28 Let \(\rho \) be chosen as in Lemma 27. Then \(\| Q_0 \|_{\mathcal{B}} \leq \rho^{2d}\| Q_1 \|_{\mathcal{B}}^2 \)

Proof We express \(Q_0 \) as

\[Q_0(Z, W) = \sum_{H \in \mathcal{H}} HQ_{0,H}(W) \]

where \(H \in \mathcal{H} \) are the Hermite monomials. Then by definition of \(\| \cdot \|_{\mathcal{B}}^2 \) we have,

\[\| Q_0(Z, W) \|_{\mathcal{B}}^2 = \sum_{H \in \mathcal{H}} \| Q_{0,H}(W) \|_{\text{mon},2}^2 \]

\[\leq 1 (10dT)^{14d} \sum_{H \in \mathcal{H}} \| Q_{0,H}(\tilde{U}) \|_{\mathcal{B}}^2 \]

\[= (10dT)^{14d}\| Q_0(\tilde{U}) \|_{\mathcal{B}}^2 \]

\[< \frac{\rho^{2d}}{4} \| Q_1 \|_{\mathcal{B}}^2 \]

where step 1 follows from Lemma 41 (part 2), and step 2 follows from Claim 24 and our choice of \(\eta \) in Section 3. Furthermore, we can relate the \(\| Q_1 \|_{\mathcal{B}}^2 \) to \(\| Q_1 \|_{\mathcal{B}}^2 \) as follows

\[\| Q_1 \|_{\mathcal{B}}^2 = \sum_{H \in \mathcal{H}} \| Q_{1,H}(W) \|_{\text{mon},2}^2 \leq (20dT)^{-10d} \sum_{H \in \mathcal{H}} \| Q_{1,H}(U) \|_{\mathcal{B}}^2 = (20dT)^{-10d}\| Q_1 \|_{\mathcal{B}}^2 \]

where step 1 follows from Lemma 41 (part 1). Combining the bounds, we get \(\| Q_0 \|_{\mathcal{B}}^2 \leq \rho^{2d}\| Q_1 \|_{\mathcal{B}}^2 \).
E.2.2. Finding a heavy $d^* \in \{0, 1, \ldots, d - 1\}$

We begin by finding a $d^* \in \{0\} \cup [d - 1]$ such that Q_1 restricted to Hermite monomials in \mathcal{H}_{d^*} has large mass compared to those from \mathcal{H}_{d^*+1}.

Lemma 29 There exists $d^* \in \{0\} \cup [d - 1]$ such that

1. $\|Q_1^{(d^*+1)}\|_{\mathcal{B}}^2 \leq \frac{1}{4} \rho^{d^*+1} \|Q_1\|_{\mathcal{B}}^2$

2. $\|Q_1^{(d^*)}\|_{\mathcal{B}}^2 \geq \frac{1}{4} \rho^{d^*} \|Q_1\|_{\mathcal{B}}^2$

Proof We claim that there exists $D \in \{0\} \cup [d - 1]$ such that $\|Q_1^{(D)}\|_{\mathcal{B}}^2 \geq \frac{1}{4} \rho^D \|Q_1\|_{\mathcal{B}}^2$. If not, then for all $D \in \{0\} \cup [d - 1]$ we have $\|Q_1^{(D)}\|_{\mathcal{B}}^2 < \frac{1}{4} \rho^D \|Q_1\|_{\mathcal{B}}^2$. Then,

$$\|Q_1\|_{\mathcal{B}}^2 = \sum_{D=0}^{d-1} \|Q_1^{(D)}\|_{\mathcal{B}}^2 \leq \sum_{D=0}^{d-1} \frac{\rho^D}{4} \|Q_1\|_{\mathcal{B}}^2 < \frac{1}{2} \|Q_1\|_{\mathcal{B}}^2$$

which is a contradiction.

Now we set d^* to be the largest such $D \in \{0\} \cup [d - 1]$ such that $\|Q_1^{(D)}\|_{\mathcal{B}}^2 \geq \frac{1}{4} \rho^D \|Q_1\|_{\mathcal{B}}^2$. If $d^* < d - 1$, then by construction we know that $\|Q_1^{(d^*+1)}\|_{\mathcal{B}}^2 < \frac{1}{4} \rho^{d^*+1} \|Q_1\|_{\mathcal{B}}^2$. On the other hand if $d^* = d - 1$, then by construction $Q_1^{(d^*+1)}$ is identically 0 (since Q_1 is of degree at most $d - 1$) and hence the claim is vacuously true. $lacksquare$

E.2.3. Locating a good $j^* \in [T]$

Let $d^* \in \{0\} \cup [d - 1]$ be as in Lemma 29. Now, we shall find a good $j^* \in [T]$ in the sub-polynomial $U_1Q_1^{(d^*)}$ which contains a sub-polynomial linear in W_{1j^*} with significant $\|\cdot\|_{\mathcal{B}}$-mass.

Lemma 30 Let the polynomial $U_1Q_1^{(d^*)}(\mathbf{Z}, \mathbf{W})$ be expressed in the basis \mathcal{B} as

$$U_1Q_1^{(d^*)}(\mathbf{Z}, \mathbf{W}) = \sum_{H \in \mathcal{H}_{d^*}} \sum_{M \in \mathcal{M}} c_{H,M} H M$$

Then there exists $j^* \in [T]$ such that

$$\sum_{H \in \mathcal{H}_{d^*}} \sum_{M \in \mathcal{M}, j^*} c_{H,M}^2 \geq \frac{1}{T^2} (20dT)^{-d} \left(\sum_{H \in \mathcal{H}_{d^*}} \sum_{M \in \mathcal{M}} c_{H,M}^2 \right)$$

Proof Consider the following representation of $U_1Q_1^{(d^*)}$:

$$U_1Q_1^{(d^*)}(\mathbf{Z}, \mathbf{W}) = \sum_{H \in \mathcal{H}_{d^*}} H U_1Q_{1,H}(\mathbf{W})$$

Using the fact that $U_1 = (1/\sqrt{T}) \sum_{j=1}^T W_{1j}$ and $T = 10d$, the following lemma is directly implied by Lemma 33.
Lemma 31 Fix $H \in \mathcal{H}_d$. Let $U_1 Q_{1,H}(W)$ (as defined in (69)) be expressed in the basis \mathcal{B} as

$$U_1 Q_{1,H}(W) = \sum_{M \in \mathcal{M}} c_{H,M} M$$

Then there exists at least $T/2$ choices of $j^* \in [T]$ such that

$$\sum_{M \in \mathcal{M}} c^2_{H,MW_{1j^*}} \geq \frac{1}{T} (20dT)^{-4d} \sum_{M \in \mathcal{M}} c^2_{H,M}$$

(70)

For a fixed Hermite monomial $H \in \mathcal{H}_d$, we call a $j^* \in [T]$ to be good for H if the following conditions hold:

1. The Hermite monomial H does not contain Z_{j^*}-variables.
2. The index j^* satisfies (70) with respect to H

Now for a fixed Hermite monomial $H \in \mathcal{H}_d$, out of T values of j, at most $d - 1$ can appear in H. Furthermore, Lemma 31 guarantees that for at least $T/2$-values of $j \in [T]$, (70) is satisfied. Since $T = 10d$, for each Hermite monomial H there exists at least some $j^*(H)$ which is good for H. Therefore by averaging over all $H \in \mathcal{H}_d$, there exists $j^* \in [T]$ such that

$$\sum_{H \in \mathcal{H}, j \neq j^*} \sum_{M \in \mathcal{M}} c^2_{H,MW_{1j^*}} \geq \frac{1}{T} \sum_{H \in \mathcal{H}} \sum_{M \in \mathcal{M}} c^2_{H,MW_{1j^*}(H)} \geq \frac{1}{T^2} (20dT)^{-4d} \left(\sum_{H \in \mathcal{H}_d} \sum_{M \in \mathcal{M}} c^2_{H,M} \right)$$

E.2.4. Substituting W_{j^*} with Y_{j^*}-Variables

For the $j^* \in [T]$ chosen in the previous section, P_{rel,j^*} can be rewritten by expanding W_{j^*} in the Y_{j^*}-variables as $\tilde{Q}(Z_{j^*}, Y_{j^*}, W_{j^*})$ which can be expressed in the basis \mathcal{B}_{j^*} as follows:

$$\tilde{Q}(Z_{j^*}, W_{j^*}, Y_{j^*}) = \sum_{D=0}^{d-1} \sum_{H \in \mathcal{H}_{j^*}} \sum_{M \in \mathcal{M}_{j^*}} \sum_{S \in \delta_{j^*}} \tilde{c}_{H,M,S} HMY_S$$

(71)

where $\mathcal{H}_{j^*}, \mathcal{M}_{j^*}$ and δ_{j^*} are as defined in Appendix C.2. Now we show that the squared sum of coefficients in the above expression, restricted to factors to terms of the form HMY_{ij^*} capture a significant fraction of mass.

Claim 32 Let $\tilde{Q}(Z_{j^*}, W_{j^*}, Y_{j^*})$ be as in (71). Then,

$$\sum_{H \in \mathcal{H}, j \neq j^*} \sum_{M \in \mathcal{M}} \sum_{i \in [k_{j^*}]} c^2_{H,M,(ij^*)} \geq \frac{1}{2k_{j^*}} \left(\sum_{H \in \mathcal{H}, j \neq j^*} \sum_{M \in \mathcal{M}} c^2_{H,MW_{1j^*}} \right)$$

(72)
Proof Consider the polynomial P_{lin} defined as follows:

$$P_{\text{lin}}(Z, W) = \sum_{H \in \mathcal{H}_{-j^*}^{d^*}} \sum_{M \in \mathcal{M}_{-j^*}} \sum_{i \in [k^*_j]} \alpha_{H,M,i} H M W_{ij^*}$$ \hspace{1cm} (73)

which is the sub-polynomial in P consisting of monomials containing exactly one W_{j^*}-variable. Note that terms on the RHS of (73) for $i > 1$ are contained in P_{omit}.

Fix a $HM \in \mathcal{H}_{-j^*}^{d^*} \circ \mathcal{M}_{-j^*}$ and $i \in [k^*_j]$. Under the linear transformation $W_{j^*} \mapsto Y_{j^*}$ we have

$$\tilde{c}_{H,M,(ij^*)} = \sum_{l \in [k^*_j]} \alpha_{H,M,l} c_{l,i}$$ \hspace{1cm} (74)

where the $c_{1,l}, \ldots, c_{T,l}$ are the l^{th} coordinates of vectors c_1, \ldots, c_T (as in Appendix C). Recall that $\langle c_i, c_{i'} \rangle = 0$ for all $i \neq i'$. Therefore

$$\sum_{i \in [k^*_j]} c_{2H,M,Y_{ij^*}}^2 = \left\| \sum_{l \in [k^*_j]} \alpha_{H,M,l} c_l \right\|^2 \hspace{1cm} (75)$$

$$= \sum_{l \in [k^*_j]} \left\| \alpha_{H,M,l} c_l \right\|^2 \hspace{1cm} (76)$$

$$\geq \alpha_{2H,M,1}^2 \left\| c_1 \right\|^2 \hspace{1cm} (77)$$

To finish the proof, we note that for $i = 1$ the RHS of (73) has contribution either from terms in $U_1 Q_1^{(d^*)}$ or Q_0. Summing over all pairs $HM \in \mathcal{H}_{-j^*}$ and using the triangle inequality we obtain

$$\sqrt{\sum_{H \in \mathcal{H}_{-j^*}^{d^*}} \sum_{M \in \mathcal{M}_{-j^*}} \alpha_{2H,M,1}^2} \geq \sqrt{\sum_{H \in \mathcal{H}_{-j^*}^{d^*}} \sum_{M \in \mathcal{M}_{-j^*}} c_{2H,M,W_{1j^*}}^2} - \left\| Q_0 \right\|_{\mathcal{B}} \hspace{1cm} (78)$$

$$\geq \frac{1}{\sqrt{2}} \sqrt{\sum_{H \in \mathcal{H}_{-j^*}^{d^*}} \sum_{M \in \mathcal{M}_{-j^*}} c_{2H,M,W_{1j^*}}^2} \hspace{1cm} (79)$$

where we upper bound $\left\| Q_0 \right\|_{\mathcal{B}}$ as follows:

$$\left\| Q_0 \right\|_{\mathcal{B}}^2 \leq \frac{1}{\rho^{2d}} \left\| Q_1 \right\|^2_{\mathcal{B}} \leq \rho^d \left\| Q_1^{(d^*)} \right\|_{\mathcal{B}}^2 = \rho^d \sum_{H \in \mathcal{H}_{d^*}} \sum_{M \in \mathcal{M}} c_{2H,M}^2 \hspace{1cm} (80)$$

$$\leq \frac{1}{16} \sum_{H \in \mathcal{H}_{-j^*}^{d^*}} \sum_{M \in \mathcal{M}_{-j^*}} c_{2H,M,W_{1j^*}}^2 \hspace{1cm} (81)$$

where inequality 1 follows from Lemma 28, inequality 2 follows from Lemma 29 and the last inequality follows from Lemma 30 and our choice of ρ. \hspace{1cm} \blacksquare
E.2.5. Completing the proof of Lemma 27

Part 1 follows from Lemma 28 and Part 2 follows directly from Lemma 29. For Part 3, observe that the LHS of Part 3 (in Lemma 27) is equal to the LHS of (72), which can be lower bounded using Claim 32, Lemma 30 and Lemma 29 as follows

\[
\frac{1}{2k_j^*} \left(\sum_{H \in \mathcal{H}_{j^*d^*}} \sum_{M \in \mathcal{M}_{j^*}} c_H^2 M \right) \geq \frac{1}{2k_j^* T^2} (20dT)^{-4d} \left(\sum_{H \in \mathcal{H}_{d^*}} \sum_{M \in \mathcal{M}} c_H^2 M \right)
\]

which completes the proof.

Appendix F. A Linear Mass Bound for Low Degree Polynomials

In this section we study the structure of polynomials over the variable set \{W_1, \ldots, W_T\}. For a polynomial \(P(W_1, \ldots, W_T)\), dropping the subscript we use \(\|P\|\) to denote the \(\ell_2\)-norm of the coefficients of \(P\) in the monomial basis. Let \(U := \sum_{j=1}^T W_j\). Define \(Q(W_1, \ldots, W_T) = U \cdot S(W_1, \ldots, W_T)\), a polynomial of degree \(d + 1\). For any \(j \in [T]\), write:

\[
S(W_1, \ldots, W_T) = \sum_{\ell=0}^d W_j^\ell \cdot S_{j,\ell}(W_{\neq j})
\]

\[
Q(W_1, \ldots, W_T) = \sum_{\ell=1}^{d+1} W_j^\ell \cdot Q_{j,\ell}(W_{\neq j})
\]

where \(W_{\neq \sigma} = \{W_i\}_{i \in \sigma}\) for any list \(\sigma\) of indices. The main result of this section is the following lemma showing that for many \(j \in [T]\), the \(W_j\)-linear sub-polynomial \(Q_{j,1}\) has significant mass:

Lemma 33 For polynomials \(S\) and \(Q\) as above, if \(T > 2d\), there are at least \(T/2\) choices of \(j \in [T]\) such that \(\|Q_{j,1}\| \geq (20dT)^{-3d} \|S\|\).

The rest of this section is devoted to proving Lemma 33.

F.1. The Variable Removal Lemma

The key ingredient that is needed to prove this is the following lemma that will be iteratively applied while reducing the number of variables and the degree at each iteration:

Lemma 34 (Variable Removal) Let \(d \geq 1\). For variables \(X, Y, Z\), suppose there are polynomials \(S_1, S_2\) of degree \(d - 1\), polynomials \(R_1, R_2\) of degree \(d - 2\), and error polynomials \(\Delta^X, \Delta^Y\) of degree \(d\) satisfying:

\[
(aX - Y - Z)S_1(Y, Z) + \Delta^X(X, Y, Z) + X^2R_1(X, Y, Z) = (aY - X - Z)S_2(X, Z) + \Delta^Y(X, Y, Z) + Y^2R_2(X, Y, Z).
\]

35
Then,

\[S_1(Y, Z) = (a + 1)Y - Z \]

where \(\Delta \) is such that \(\| \Delta \| \leq 20a \max(\| \Delta^X \|, \| \Delta^Y \|) \). Furthermore, we have \(\deg(C(Z)) \leq d - 2 \), \(\deg(A_1(Y, Z)) \leq d - 3 \), and \(\deg(\Delta(Y, Z)) \leq d - 1 \).

Proof We write the polynomials \(S_1 \) and \(S_2 \) in the following way\(^6 \):

\[S_1(Y, Z) = Y^2 \cdot A_1(Y, Z) + Y \cdot B_1(Z) + Z \cdot C_1(Z) + D_1 \]
\[S_2(X, Z) = X^2 \cdot A_2(X, Z) + X \cdot B_2(Z) + Z \cdot C_2(Z) + D_2 \]

Note that \(C_1(Z) \) and \(A_1(Y, Z) \) can be of degree at most \(d - 2 \) and \(d - 3 \) respectively. Additionally, we write the error polynomials as:

\[\Delta^X = X \cdot \Delta^X_X + Z \cdot \Delta^X_Z + Z^2 \cdot \Delta^X_{Z^2}(Z) + YZ \cdot \Delta^X_{YZ}(Z) + \Delta^X(X, Y, Z) \]
\[\Delta^Y = X \cdot \Delta^Y_X + Z \cdot \Delta^Y_Z + Z^2 \cdot \Delta^Y_{Z^2}(Z) + YZ \cdot \Delta^Y_{YZ}(Z) + \Delta^Y(X, Y, Z) \]

To be clear, the functions without any arguments, such as \(\Delta^X_X \) or \(\Delta^Y_Z \), are constants. The above decomposition is unique. Now we match coefficients in (87).

1. Matching terms of the form \(X^0Y^0Z^2 \), we get \(-C_1(Z) + \Delta^X_{Z^2} = -C_2(Z) + \Delta^Y_{Z^2} \Rightarrow C_2(Z) = C_1(Z) + \Delta^Y_{Z^2} - \Delta^X_{Z^2} \)

2. Matching terms of the form \(X^1Y^0Z^0 \), we get \(aD_1 + \Delta^X_X = \Delta^X_X \Rightarrow D_2 = -aD_1 + \Delta^X_X - \Delta^X_X \)

3. Matching terms of the form \(X^0Y^0Z^1 \), we get \(-D_1 + \Delta^X_Z = -D_2 + \Delta^Y_Z \). Substituting \(D_2 \) from above:

\[-D_1 = -D_2 + \Delta^X_Z - \Delta^X_Z = aD_1 - (\Delta^X_X - \Delta^X_X) + (\Delta^Y_Z - \Delta^X_X) \]

which on rearranging gives us \(D_1 = -\frac{1}{a+1} \left[\Delta^X_Z - \Delta^X_Z - \Delta^X_X + \Delta^X_X \right] \)

4. Matching \(X^0Y^1Z^1 \) we get \(-B_1(Z) - C_1(Z) + \Delta^X_{YZ} = aC_2(Z) + \Delta^Y_{YZ} \). Substituting \(C_2(Z) \) from above,

\[-B_1(Z) = aC_2(Z) + C_1(Z) + \Delta^Y_{YZ} - \Delta^X_{YZ} \]
\[= a \left(C_1(Z) + \Delta^X_{Z^2} - \Delta^X_{Z^2} \right) + C_1(Z) + \Delta^Y_{YZ} - \Delta^X_{YZ} \]
\[= (a + 1)C_1(Z) + a(\Delta^X_{Z^2} - \Delta^X_{Z^2}) + \Delta^Y_{YZ} - \Delta^X_{YZ} \]

Finally by substituting \(B_1(Z) \) and \(D_1 \) in the expression for \(S_1(Y, Z) \) and collecting the error terms, we get

\[S_1(Y, Z) = Y^2A_1(Y, Z) - Y \left[(a + 1)C_1(Z) + a(\Delta^X_{Z^2} - \Delta^X_{Z^2}) + \Delta^Y_{YZ} - \Delta^X_{YZ} \right] + ZC_1(Z) + D_1 \]

\(^6 \) If \(d \leq 2 \), then some of the polynomials below are automatically 0.
\[Y^2 A_1(Y, Z) - C_1(Z) [(a + 1)Y - Z] - Y [a(\Delta^Y_{Z} - \Delta^X_{Z}) + \Delta^Y_{YZ} - \Delta^X_{YZ}] \]

\[- \frac{1}{a + 1} \left[\Delta^Y_{Z} - \Delta^X_{Z} - (\Delta^X_{Y} - \Delta^X_{Y}) \right] \]

\[= Y^2 A_1(Y, Z) - C_1(Z) [(a + 1)Y - Z] + \Delta(Y, Z) \]

We obtain the lemma setting \(C(Z) = -C_1(Z) \) and \(\Delta(Y, Z) = -Y [a(\Delta^Y_{Z} - \Delta^X_{Z}) + \Delta^Y_{YZ} - \Delta^X_{YZ}] \).

The upper bound on \(\|\Delta\| \) follows by triangle inequality.

F.2. Proof of Lemma 33

Fix \(j \in [T] \). Comparing the coefficients of the sub-polynomial that are degree 1 in \(W_j \) in the expansion of \(Q \) (see (86)) and \(US \) (see (85)), we get

\[Q_{j, 1}(W_{\neq j}) = S_{j, 0} + S_{j, 1}(W_{\neq j}) \sum W_{\neq j} \] \hspace{1cm} (88)

where \(\sum W_{\neq \sigma} \) is the sum of all variables in \(W_{\neq \sigma} \) for any list \(\sigma \) of indices. Denote \(Q_{j, 1}(W_{\neq j}) \) as \(\Delta^{(1)}_j \).

The proof is by contradiction i.e., we assume that more than \(T/2 \) of the \(\Delta^{(1)}_j \) polynomials have small mass. We show first that there exist many \(j \)'s such that the sub-polynomial of \(S \) not divisible by \(W_j^2 \) retains significant mass. This is achieved using Lemma 35. Next, we apply Lemmas 34 and 35 as well as the degree bound on \(S \) to obtain a contradiction.

F.2.1. Finding a non-quadratic sub-polynomial with significant mass

Lemma 35 Given a polynomial \(P \) on variables \(W_1, \ldots, W_T \) of degree \(d \) such that \(\|P\| = 1 \), let \(P = W_j^2 P_j(W_1, \ldots, W_T) + R_j(W_1, \ldots, W_T) \) for every \(j \in [T] \) where \(R_j(\cdot) \) is the sub-polynomial which does not contain a \(W_j^2 \) factor. Then, if \(T > d \), there exists \(j \in [T] \) such that \(\|R_j\| > 4^{-2^d} \|P\| \).

Proof Without loss of generality, assume \(\|P\| = 1 \) by rescaling. Suppose that for all \(j \in [d] \), \(\|R_j\| \leq \eta := 4^{-2^d} \). We show that this violates the degree bound on \(P \) using the following claim.

Claim 36 For every \(j \in [d] \), if polynomials \(H_j \) and \(L_j \) are defined such that \(P = W_1^2 \cdots W_j^2 \cdot H_j + L_j \) and \(L_j \) is not divisible by \(W_1^2 \cdots W_j^2 \), then \(\|L_j\| \leq 4 \cdot \eta^{1/2^{d-1}} \).

This claim proves the lemma because it shows \(\|L_d\| \leq 4 \cdot \eta^{1/2^{d-1}} < 1/2 \), so \(\|H_d\| > 0 \) (since they contribute disjoint monomials to \(P \)), and therefore \(P \) contains a monomial of degree \(2d \), a contradiction.

Proof [Proof of Claim 36] The proof is by induction on \(j \). The base case \(j = 1 \) is clear, since \(L_1 = R_1 \).

For the inductive step, suppose the claim is true for \(j - 1 \). Then, we have that \(W_j^2 P_j + R_j = P = W_1^2 \cdots W_{j-1}^2 H_{j-1} + L_{j-1} \) with \(\|L_{j-1}\| \leq 4\eta^{1/2^{d-2}} \). Write \(H_{j-1} = W_j^2 H_j' + L_j' \) where \(L_j' \) is not divisible by \(W_j^2 \). Now, \(P = W_1^2 \cdots W_{j-1}^2 H_j' + W_1^2 \cdots W_{j-1}^2 L_j' + L_{j-1} \).
By looking at the terms divisible by W_j^2, we have that $\|W_j^2 P_j\| = \|P_j\| \leq \|H_j'\| + \|L_{j-1}\|$. Since $\|P_j\| \geq 1 - \eta$ and $\|L_{j-1}\| \leq 4\eta^{1/2j-2}$, we get that $\|H_j'\| \geq 1 - 8\eta^{1/2j-2}$.

Let $H_j = H_j'$ and $L_j = W_1^2 \cdots W_{j-1}^2 L_{j-1}' + L_{j-1}$. Then,

\[\|L_j\|^2 = 1 - \|H_j\|^2 = 1 - \|H_j'\|^2 \leq 1 - (1 - 8\eta^{1/2j-2})^2 \leq 16\eta^{1/2j-2} \]

\[\]

\[\]

\section*{F.2.2. Iterative Expansion of S}

We are now ready to prove Lemma 33. For contradiction, suppose that $\max_{j \in [T/2]} \|\Delta_j^{(1)}\| \leq C_{\max} := (20dT)^{-3d}$. By rescaling, we can assume $\|S\| = 1$. We expand the polynomial S iteratively using Lemma 34. At each step, we shall use Lemma 35 to find a W_j variable such that S contains a sub-polynomial of significant mass which is not divisible by W_j^2.

As a first step, using (88) and the definition of $\Delta_j^{(1)}$, for every $j \in [T/2]$, we can write:

\[S(W) = \left(W_j - \sum W_{j \neq j}\right) \cdot S_j^{(1)}(W_{j \neq j}) + W_j^2 \cdot R_j^{(1)}(W) + \Delta_j^{(1)}(W) \tag{89} \]

where $S_j^{(1)}$, $R_j^{(1)}$ and $\Delta_j^{(1)}$ are polynomials of degrees at most $d - 1$, $d - 2$ and d respectively and $\|\Delta_j^{(1)}\| \leq C_{\max}$. Because $T/2 > d$, using Lemma 35 and re-indexing, we can assume that the sub-polynomial of S not divisible by W_1^2 has ℓ_2-norm at least $\eta := 4^{-2d}$.

Now, applying the variable reduction lemma (Lemma 34) for every $j \in [2, T/2]$, with $a = 1$, $X = W_1$, $Y = W_j$, and $Z = \sum W_{j' \neq j}$, we obtain that there exist polynomials $S_j^{(2)}$, $R_j^{(2)}$ and $\Delta_j^{(2)}$ of degrees $d - 2$, $d - 3$ and $d - 1$ respectively such that

\[S_1^{(1)}(W_{\neq 1}) = \left(2W_j - \sum W_{\neq 1,j}\right) \cdot S_j^{(2)}(W_{\neq 1,j}) + W_j^2 \cdot R_j^{(2)}(W_{\neq 1}) + \Delta_j^{(2)}(W_{\neq 1}) \]

and $\|\Delta_j^{(2)}\| \leq 20C_{\max}$. Again, by Lemma 35 and re-indexing, we can ensure that the sub-polynomial of $S_1^{(1)}$ not divisible by W_2^2 has ℓ_2-norm at least $\eta\|S_1^{(1)}\|$.

Applying the variable reduction lemma again with $a = 2$, we obtain polynomials $S_j^{(3)}$, $R_j^{(3)}$ and $\Delta_j^{(3)}$ of degrees $d - 3$, $d - 4$, and $d - 2$ respectively such that for any $j \in [3, T/2]$:

\[S_2^{(2)}(W_{\neq 1,2}) = \left(3W_j - \sum W_{\neq 1,2,j}\right) \cdot S_j^{(3)}(W_{\neq 1,2,j}) + W_j^2 \cdot R_j^{(3)}(W_{\neq 1,2}) + \Delta_j^{(3)}(W_{\neq 1,2}) \]

and $\|\Delta_j^{(3)}\| \leq 20^2 \cdot 2 \cdot C_{\max}$. Continuing this way, we get that for every $1 \leq \ell < j \leq T/2$, there exist polynomials $S_j^{(\ell)}$, $R_j^{(\ell)}$ and $\Delta_j^{(\ell)}$ of degrees $d - \ell$, $d - \ell - 1$, and $d - \ell + 1$ such that:

\[S_{\ell-1}^{(\ell-1)}(W_{\neq [\ell-1]}) = \left(\ell W_j - \sum W_{\neq [\ell-1]\cup\{j\}}\right) \cdot S_j^{(\ell)}(W_{\neq [\ell-1]\cup\{j\}}) + W_j^2 \cdot R_j^{(\ell)}(W_{\neq [\ell-1]}) + \Delta_j^{(\ell)}(W_{\neq [\ell-1]}) \tag{90} \]

and $\|\Delta_j^{(\ell)}\| \leq (20\ell)^{\ell-1}C_{\max}$. Here, $S_0^{(0)} = S$. Moreover, using Lemma 35, we can assume that the sub-polynomial of $S_{\ell-1}^{(\ell-1)}$ not divisible by W_ℓ^2 has ℓ_2-mass at least $\eta\|S_{\ell-1}^{(\ell-1)}\|$.
For \(\ell = d \), we obtain a linear polynomial \(S^{(d-1)}_{d-1}(w \neq 1, \ldots, d-1) \) such that for every \(j \in [d, T/2] \), there exists constant \(S^{(d)}_j \) and linear polynomial \(\Delta^{(d)}_j \) such that:

\[
S^{(d-1)}_{d-1}(w \neq 1, \ldots, d-1) = (dW_j - \sum W_{w \neq 1, \ldots, d-1,j}) \cdot S^{(d)}_j + \Delta^{(d)}_j(W \neq 1, \ldots, d-1)
\]

Note that \(R^{(d)}_j = 0 \) because \(S^{(d-1)}_{d-1} \) is not divisible by \(W^2_j \) being a linear polynomial.

Applying Lemma 34 one final time, we get that \(|S^{(d)}_d| \leq (40d)^d C_{\max} \). On the other hand, we have the following claim:

Claim 37 For any \(0 \leq \ell \leq T/2 \), \(\|S^{(\ell)}_\ell\| \geq \left(\frac{n}{\ell} \right)^\ell - 2(20\ell)^\ell C_{\max} \).

Proof The proof is by induction. For \(\ell = 0 \), the claim is true because \(\|S^{(0)}_0\| = \|S\| = 1 \). For the induction, note that by our choice of the index \(\ell \) above, the sub-polynomial of \(S^{(\ell-1)}_{\ell-1} \) not divisible by \(W^{2}_\ell \) has \(\ell_2 \)-mass at least \(\eta \|S^{(\ell-1)}_{\ell-1}\| \). Moreover, from (90) and triangle inequality this mass is at most

\[
\| (W_\ell - \sum W_{w \neq \ell})S^{(\ell)}_\ell \| + \| \Delta^{(\ell)}_\ell \|
\]

So:

\[
\| (W_\ell - \sum W_{w \neq \ell})S^{(\ell)}_\ell \| \geq \eta \|S^{(\ell-1)}_{\ell-1}\| - \| \Delta^{(\ell)}_\ell \|
\]

\[
\geq \eta \|S^{(\ell-1)}_{\ell-1}\| - (20\ell)^{\ell-1} C_{\max}
\]

\[
\geq \eta \ell/T^{\ell-1} - 2\eta(20\ell)^{\ell-1} C_{\max}/T - (20\ell)^{\ell-1} C_{\max}
\]

\[
\geq \eta \ell/T^{\ell-1} - 2(20\ell)^\ell C_{\max}
\]

The claim follows by observing \(\| (W_\ell - \sum W_{w \neq \ell})S^{(\ell)}_\ell \| \leq T \cdot \|S^{(\ell)}_\ell\| \).

Therefore, \(|S^{(d)}_d| \geq (\eta/T)^d - 2(20d)^d C_{\max}/T \). But by our choice of \(\eta \) and \(C_{\max} \), \((\eta/T)^d - 2(20d)^d C_{\max}/T > (40d)^d C_{\max} \), since \(C_{\max}((40d)^d + 2(20d)^d)/T < C_{\max}(80d)^d < (1/4T)^{2d} = (\eta/T)^d \). This is a contradiction.

Appendix G. Useful Tools and Results

Fact 38 There exists a distribution of random variables \(g_1, \ldots, g_R \) such that each \(g_i \) is marginally \(N(0, 1) \), \(E[g_i g_j] = -1/(R-1) \) for all \(i \neq j \), and \(\sum_{i=1}^R g_i = 0 \).

Lemma 39 Let \(g = (g_1 \ldots g_R)^T \) where \(\{g_i\}_{i=1}^R \) are as given in Fact 38, and suppose \(x = (x_1, \ldots, x_R)^T, y = (y_1, \ldots, y_R)^T \in \mathbb{R}^R \) are orthogonal unit vectors such that \(\langle 1, x \rangle = 0 \) and \(\langle 1, y \rangle = 0 \). Define, \(f := \langle x, g \rangle \) and \(h := \langle y, g \rangle \). Then, \(f \) and \(g \) are independent \(N(0, R/(R-1)) \) random variables.

Proof We have,

\[
E[f^2] = E \left[\left(\sum_{i=1}^R x_i g_i \right)^2 \right]
\]

39
\[\sum_{i=1}^{R} x_i^2 \mathbb{E}[g_i^2] + \sum_{i,j \in [R], \ i \neq j} x_i x_j \mathbb{E}[g_i g_j] \]
\[= \sum_{i=1}^{R} x_i^2 - \left(\frac{1}{R-1} \right) \sum_{i,j \in [R], \ i \neq j} x_i x_j \]
\[= \left(1 + \frac{1}{R-1} \right) \sum_{i=1}^{R} x_i^2 - \left(\frac{1}{R-1} \right) \left(\sum_{i=1}^{R} x_i \right)^2 \]
\[= \frac{R}{R-1}. \] (91)

The same holds for \(\mathbb{E}[h^2] \). For the second part of the lemma observe that,

\[\mathbb{E}[fh] = \sum_{i=1}^{R} x_i y_i \mathbb{E}[g_i^2] + \sum_{j \in [R], \ j \neq i} \mathbb{E}[g_i g_j] x_i y_j \]
\[= \sum_{i=1}^{R} x_i y_i - \left(\frac{1}{R-1} \right) \sum_{j \in [R], \ j \neq i} x_i y_j \]
\[= \left(1 + \frac{1}{R-1} \right) \langle x, y \rangle - \left(\frac{1}{R-1} \right) \langle x, 1 \rangle \langle y, 1 \rangle = 0. \] (92)

Fact 40 (Fact 3.4 in Diakonikolas et al. (2011)) Let \(P : \mathbb{R}^\ell \to \mathbb{R} \) be a degree-\(d \) polynomial over independent standard normal variables which has at least one coefficient of magnitude at least \(\alpha \).

Then, \(\|P\|_2 \equiv \sqrt{\mathbb{E}[|P(x)|^2]} \) is at least \(\frac{\alpha}{d^{\frac{\ell}{(\ell-d)}}} \).

Appendix H. Comparing monomial and \(\ell_2 \)-masses

In this section, we relate the monomial mass of the polynomials with their \(\ell_2 \)-mass under the distribution \(D \).

Lemma 41 Let \(Q(U_1, \ldots, U_T) \) be a polynomial of degree \(d \geq 1 \). Let \(\bar{Q}(W_{1,1}, \ldots, W_{1,T}) \) be the polynomial obtained from \(Q(U_1, \ldots, U_T) \) by the orthonormal transformation. With \(\eta \) and \(T = 10d \) chosen as in Section 3, the following bounds hold:

1. \(\|Q(U_1, \ldots, U_T)\|_2 \leq (20dT)^5d \|\bar{Q}(W_{1,1}, \ldots, W_{1,T})\|_{\text{mon,2}} \)

2. If \(Q \) depends only on variables \(U_2, \ldots, U_T \) then \(\|\bar{Q}(W_{1,1}, \ldots, W_{1,T})\|_{\text{mon,2}} \leq (10dT)^7d \|Q(U_2, \ldots, U_T)\|_2 \)
Proof For ease of notation, we shall denote variables W_{11}, \ldots, W_{1T} by W_1, \ldots, W_T. Let $\delta_{T,d}$ be the set of all multi-sets on $[T]$ of size at most d. Using the fact that $\binom{T}{d} \leq \left(\frac{Te}{d} \right)^d \leq (eT)^d$ we have $|\delta_{T,d}| \leq (10T)^{2d}$

Proof of Part 1.: For the first direction let $Q(U_1, \ldots, U_T) = \sum_{S \in \delta_{T,d}} c_S U_S$, where the monomial U_S is defined as $U_S = \prod_{i \in S} W_i^{S(i)}$. Therefore,

$$\|Q\|^2_2 = \mathbb{E}_{\mathcal{D}_X} \left[\left(\sum_{S \in \delta_{T,d}} c_S U_S \right)^2 \right]$$

$$\leq \mathbb{E}_{\mathcal{D}_X} \left[\sum_{S \in \delta_{T,d}} c_S^2 \left(\sum_{S \in \delta_{T,d}} U_S^2 \right) \right]$$

$$= \|Q(U_1, \ldots, U_T)\|_{\text{mon},2}^2 \left(\mathbb{E}_{\mathcal{D}_X} \left[\sum_{S \in \delta_{T,d}} U_S^2 \right] \right)$$

For the first term, we claim that

$$\|Q(U_1, \ldots, U_T)\|_{\text{mon},2} \leq \|Q(U_1, \ldots, U_T)\|_{\text{mon},1} \leq (10T)^{3d}\|Q(U_1, \ldots, U_T)\|_{\text{mon},1} \leq (10T)^{4d}\|Q(U_1, \ldots, U_T)\|_{\text{mon},2}$$

where the first inequality follows the fact that ℓ_2-norm is upper bounded by the ℓ_1-norm, and the third inequality follows from Cauchy-Schwarz and $|\delta_{T,d}| \leq (10T)^{2d}$. The middle inequality can be argued as follows. Consider $U_S = \prod_{i \in S} U_i^{S(i)}$. Then it can be expressed as in terms of W_1, \ldots, W_T as

$$\prod_{i \in S} \left(\sum_{l \in [T]} a_{i,l} W_l \right)^{S(i)}$$

By construction, the linear transformation $\{U_1, \ldots, U_T\} \mapsto \{W_1, \ldots, W_T\}$ is orthonormal (See Appendix C.1.2). Therefore each coefficient satisfies $|a_{i,l}| \leq 1$. Furthermore, there can be at most T^d distinct terms in the expansion of U_S. Therefore, the total contribution to the coefficient of a fixed monomial from U_S can be at most $|c_S|T^d$. Repeating the argument across all $S \in \delta_{T,d}$ completes the argument.

For upper bounding the expectation term in (95), fix a $S \in \delta_{T,d}$. Then,

$$\mathbb{E}_{\mathcal{D}_X} [U_S^2] = \mathbb{E}_{\mathcal{D}_X} \left[\prod_{i \in S} U_i^{2S(i)} \right]$$

$$= \prod_{i \in S} \mathbb{E}_{\mathcal{D}_X} [U_i^{2S(i)}]$$

(Since U_1, \ldots, U_T are independent)

$$\leq \prod_{i \in S \setminus \{1\}} \mathbb{E}_{\mathcal{D}_X} [U_i^{2S(i)}]$$

(Since $\eta \sqrt{T} < 1$)
\[\frac{1}{2} \leq \prod_{i \in S \setminus \{1\}} (2S(i))! \leq (2|S|)! \]

where step 1 follows from the well known fact that for \(g \sim N(0, 1) \), \(\mathbb{E}[g^k] \leq k! \) for all \(k \in \mathbb{Z}_+ \).

Therefore, plugging in the upper bounds in (95) we get

\[\|Q(U_1, \ldots, U_T)\|_{\text{mon}, 2}^2 \leq (10T)^{10d}(2d)^{(2d)}\|\tilde{Q}(W_1, \ldots, W_T)\|_{\text{mon}, 2}^2 \]

Proof of Part 2: For the second direction, we observe that

\[\|\tilde{Q}(W_1, \ldots, W_T)\|_{\text{mon}, 2} \leq \|\tilde{Q}(W_1, \ldots, W_T)\|_{\text{mon}, 1} \] (96)

\[\leq (10T)^{3d}\|Q(U_2, \ldots, U_T)\|_{\text{mon}, 1} \] (97)

\[\leq (10dT)^d\|Q(U_2, \ldots, U_T)\|_2 \] (98)

where inequality 1 again can be argued similarly to the previous direction (using the fact that \(\{W_1, \ldots, W_T\} \mapsto \{U_1, \ldots, U_T\} \) is again an orthonormal linear transformation).

For step 2, we write \(Q(U_2, \ldots, U_T) \) in the monomial basis of \(U \) i.e., \(Q(U_2, \ldots, U_T) = \sum_S c_S U_S \) and see that

\[\left\| \sum_S c_S U_S \right\|_{\text{mon}, 1} = \sum_{S \in \delta_{T-1,d}} |c_S| \leq \sum_{S \in \delta_{T-1,d}} (6Td)^2\|Q(U_2, \ldots, U_T)\|_2 \leq (10dT)^4\|Q(U_2, \ldots, U_T)\|_2 \] (99)

with step 1 following from Fact 40, and the last inequality uses the upper bound on \(|\delta_{T,d}| \).

Appendix I. Comparison inequalities between Norms

Claim 42 Given polynomials \(P_1(W), P_2(W) \) over variables \(W = (W_{11}, \ldots, W_{1T}) \), we have

\[\|P_1(W)P_2(W)\|_{\text{mon}, 2} \leq \|P_1(W)\|_{\text{mon}, 1}\|P_2(W)\|_{\text{mon}, 2}. \]

Proof Let \(P_1(W) = \sum_{W_S \in \mathcal{M}} c_S W_S \). Then,

\[\|P_1(W)P_2(W)\|_{\text{mon}, 2} = \left\| \sum_{W_S \in \mathcal{M}} c_S W_SP_2(W) \right\|_{\text{mon}, 2} \]

\[\leq \sum_{W_S \in \mathcal{M}} |c_S|\|W_SP_2(W)\|_{\text{mon}, 2} \]

\[= \|P_1(W)\|_{\text{mon}, 1}\|P_2(W)\|_{\text{mon}, 2} \]