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Abstract
We study the problem of testing, using only a single sample, between mean field distribu-

tions (like Curie-Weiss, Erdős-Rényi) and structured Gibbs distributions (like Ising model

on sparse graphs and Exponential Random Graphs). Our goal is to test without know-

ing the parameter values of the underlying models: only the structure of dependencies
is known. We develop a new approach that applies to both the Ising and Exponential

Random Graph settings based on a general and natural statistical test. The test can dis-

tinguish the hypotheses with high probability above a certain threshold in the (inverse)

temperature parameter, and is optimal in that below the threshold no test can distinguish

the hypotheses.

The thresholds do not correspond to the presence of long-range order in the models.

By aggregating information at a global scale, our testworks even at very high temperatures.

The proofs are based ondistributional approximation and sharp concentration of quadratic

forms, when restricted to Hamming spheres. The restriction to Hamming spheres is

necessary, since otherwise any scalar statistic is useless without explicit knowledge of the

temperature parameter. At the same time, this restriction changes the behavior of the

functions under consideration, making it hard to directly apply standard methods (i.e.,

Stein’s method) for concentration of weakly dependent variables. Instead, we carry out

an additional tensorization argument using a Markov chain that respects the symmetry of

the Hamming sphere.

1. Introduction

Hypothesis testing for network data has received a lot of attention in recent years. There are

two basic types of network data: first, the network or graph itself; and second, observations

from the nodes in a network, where the network describes interactions between the nodes.

A recent example of the first type is studied in the paper of Bubeck et al. (2016), which

gives an optimal single-sample test to distinguish between geometric random graphs and

Erdős-Rényi random graphs by counting the number triangles in the graph. Similarly,

Gao and Lafferty (2017) use distributional approximation for a specific statistic to distin-

guish between an Erdős-Rényi random graph and sample from the Stochastic Block model.

Another paper in this direction is that of Ghoshdastidar et al. (2017), who consider the

problem of deciding whether two given graphs are samples from the same graph model

or from two different models. Their method is based on existence of a statistic that con-

centrates at different values for the two different graph models. The problem of testing if
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a known graph (with atleast Ω(log n) vertices) is planted in an Erdős-Rényi random graph

with known edge parameter was studied by Javadi and Montanari (2015). They give sharp

single sample thresholds for the problem and the corresponding statistical test which can

achieve this threshold. As will be seen below, our result on testing graph models differs

in the fact that we consider the appearance of much smaller subgraphs and the subgraphs

are not ‘planted’ explicitly.

As far as data from nodes in a network, Martín del Campo et al. (2017) considers the

problem of tractably finding goodness-of-fit for Ising models. Daskalakis et al. (2016)

developed methods for testing whether samples are coming from a given known Ising

model. They assume full knowledge of all themodel parameters, anduse a test based on the

empirical correlations between nodes, requiring polynomially many independent samples.

In contrast, we focus on testing using a single sample anduse the special structure present in

the mean-field case to give a sharp threshold above which single sample testing is possible,

using ageneral frameworkapplicable to othermodels. Daskalakis et al. (2017) andGheissari

et al. (2017) show concentration for polynomials of Ising models at high temperature, and

improve the sample complexities obtained in Daskalakis et al. (2016) for testing whether

samples are from the product distribution (i.e., coordinates are independent) or from an

Ising model π guaranteed to have KL-divergence at least ε from the product distribution.

Analogously, Canonne et al. (2017) consider the problem of determining whether observed

samples from a distribution P agree with a known fully-specified Bayesian network Q,

using multiple samples; and also the problem of testing whether two unknown Bayes nets

are identical or not, usingmultiple samples. Finally, this latter paper considers also structure
testing, i.e., testing if samples are from a Bayes net with a certain structure. Our objectives

differ from these papers in that: 1) our test is based on a single sample; and 2) there

are no assumptions of separation in KL-divergence or total variation on the distributions

generating the sample. Instead, the guarantees are in terms of the naturalmodel parameter.

Mukherjee (2013) considers the problem of consistent parameter estimation of the two star

(wedge graph) ERGM considered in this paper. Their method assumes that the strength

of the ’wedge interaction’ β2 ∈ (0,∞) is fixed. Whereas, in our work, the sharp threshold

for distinguishing this graph from Erdős-Rényi graphs is shown to be β2 = Θ( 1√
n

), which

goes to 0 with n. It is unclear how their parameter estimation methods can be used in this

case to obtain the sharp threshold behavior.

1.1. Results

In this paper we prove an abstract result, Theorem 9, that provides a framework for es-

tablishing near-optimal hypothesis tests between data from a network with a given depen-

dency structure (like Ising model, Exponential Random Graph Model) and unstructured

data (like Curie-Weiss, Erdős-Rényi). We do not assume knowledge of model parameters,

which makes the problem more challenging, but also more applicable to many settings

where there is no way to learn them accurately based on one sample.

As the first of two applications developed in this paper, we consider the problem of

testing whether the network data comes from an Ising model over a known d-regular
graph with unknown inverse temperature β (also with possibly nonzero external field) or

alternatively from a permutation invariant distribution (which includes the Curie-Weiss
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model at unknown temperature). We motivate this problem by discussing an adversarial

data scenario in Section 1.2.

Theorem 1 (Informal version of Theorem 11) We can distinguish Ising models on d-regular
graphs from the Curie-Weiss model (complete graph) with high probability with one sample if the
inverse temperature β of the Ising model satisfies β

√
nd → ∞. Conversely, if β

√
nd → 0, then

there is no statistical test that can distinguish them with high probability, even using a constant
number of i.i.d. samples.

Remark 2 We interpret the result above as follows: whenever β
√
nd → ∞, an adversary cannot

come up with a Curie-Weiss sample at some temperature such that it can be confused for a sample
from the d regular Ising model. Conversely, whenever β

√
nd→ 0, the adversary can choose a Curie-

Weiss model at a specific temperature depending only on β such that the total variation distance
between these distributions converges to 0. The problem is formulated in the minimax sense.

The result works for every d-regular graph. Basak and Mukherjee (2017) showed that

certain properties of Ising models are well-approximated by the Curie-Weiss (mean-field)

model, including the limit of the log-partition function. It was shown in Bresler and

Nagaraj (2017) that pairwise correlations, and more generally kth-order moments, of the

Curie-Weiss model can be well approximated on average by expander graphs, yet the

result above holds even when the underlying graph is an expander. The test also works

deep inside the high temperature regime (β ≤ Θ(1
d)), when there is no global order, by

aggregating small dependencies from the entire network.

Our results also apply to certain random graph distributions, and in Section 7 we apply

our framework to compare G(n, pn) (the Erdős-Rényi model) and exponential random

graphs. Let ERGM(β1, β2) be the exponential random graph with respect to the single

edge E and the V -graph ( ) with inverse temperature parameters β = (β1, β2) ∈ R2
. The

parameter β1 controls edge density, while β2 encourages presence of V -subgraphs.

Theorem 3 (Informal version of Theorem 15) We can distinguish G(n, p) and ERGM(β)
with high probability with one sample if

√
nβ2 → ∞. Conversely, if

√
nβ2 → 0, then there is

no test which can distinguish them with high probability using a constant number of i.i.d. samples.

Remark 4 Specifically, we can distinguish between these models even with the same edge density,
as long as β2

√
n→∞. Whenever β2

√
n→ 0, we can choose p and β1 such that the total variation

distance between these distributions converges to 0.

In Bhamidi et al. (2011) it is shown that in the high-temperature regime β2 ≤ Θ(1), any finite
collection of k edges converges in distribution to independence. (InG(n, p) all edges are in-
dependent.) Our test aggregates global information todistinguish between themandworks

when the dependence parameter β2 is much smaller than the high-temperature threshold.

Bhamidi et al. (2011) and Eldan and Gross (2017) consider existence of unique solutions to

a certain fixed point equation to define the high temperature regime in ERGMs. We use an

entirely different method to identify the phases in our setup—where we choose parameters

of degree 2 polynomials of binomial random variables tominimize the variance—to choose

β1 as a function of β2 and p such that ERGM(β1, β2) converges in total variation distance to

G(n, p) whenever β2
√
n→ 0. This is illustrated in Appendix F.
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Outline. The next subsection motivates our results with an adversarial data detection

scenario. Section 2 introduces notation and defines the Ising and exponential random

graph models, formulates the statistical problem, and gives intuition for the test we use in

our applications. In Section 3 we state our abstract hypothesis testing result, which is based

on distributional approximation. In Section 4we apply our framework to prove Theorem 11

for the Ising model. In Section 5 we prove the required distributional approximation

for quadratic forms using Stein’s method and in Section 6 we prove sharp concentration

inequalities for quadratic forms over the Hamming sphere using a novel method.

1.2. Motivating example: detecting fraudulent data

Suppose that we have collected responses to a survey from a set of people, indicating

a binary preference for something (iPhone or Android, Democrat or Republican, etc.).

Moreover, we have access to the network structure G (e.g., induced Facebook subgraph)

and the data is modeled by a family of probability distributions {QG,λ : λ ∈ Λ} (e.g.,

Ising models on G) for some parameter set Λ. An adversary may attempt to counterfeit

the data generated by the network using instead a distribution P , possibly biased (e.g.,

to fix an election). We assume that the adversary may know the graph, but does not

know the labeling of the nodes. The adversary seeks to minimize the probability of the

tampering being detected, which amounts to minimizing Eπ infλ∈Λ dTV(P,QπG,λ), where

π is a uniformly random permutation encoding the adversary’s prior over the node labels.

The analysis of the quantity Eπ infλ∈Λ dTV(P,QπG,λ) is fairly involved and requires

convexity of the class of distributions. Our framework is able to handle testing against a

convex combination of distributions, but for this manuscript we instead relax this objective

to infλ∈Λ EπdTV(P,QG,λ).
For any permutation π, let the distribution πP be defined by πP (x) = P (π(x)). For

arbitrary λ ∈ Λ,

EπdTV(P,QπG,λ) = EπdTV(π−1P,QG,λ) =
1

n!

∑
π

dTV(π−1P,QG,λ)

≥ dTV

(∑
π

1
n!π
−1P,QG,λ

)
. (1)

In the first step, we have used the fact that πQG,λ
d
= QπG,λ (due to relabeling of vertices).

In the third step we have used Jensen’s inequality for the convex function dTV. Clearly, the
distribution P̂ := 1

n!

∑
π π
−1P is permutation invariant.

If there is a unique optimal distribution P0 for the adversary, we conclude that it must

be a permutation invariant distribution. Some of the key features of the problem above are:

There is only one sample available, the underlying network structure and model is known

and the adversary, who is agnostic to the network structure, comes up with permutation

invariant data to mimic the data from the network. The considerations above justify the

setup in Section 4, where the true network data is taken to be from an Ising model.
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2. Notation and Definitions

Epf denotes the expectation with respect to the probability measure p. For any two

probability measures µ and ν over R, we denote the Kolmogorov-Smirnoff distance as

dKS(µ, ν) := supx0∈R |µ({x : x ≤ x0}) − ν({x : x ≤ x0})| . Let Lip1(R) be the class of all

1-Lipschitz real-valued functions over R. For µ and ν probability measures over R, the
Wasserstein distance is defined as: dW(µ, ν) = supf∈Lip1(R) Eµf − Eνf . For any random

variable X , let L(X) be the probability law of X . Let Φ(x) denote the standard normal

cumulative distribution function.

2.1. Ising Model

The interaction matrix J is a real-valued symmetric n×nmatrix with zeros on the diagonal

and the external field is a real number h. Define the Hamiltonian HJ,h : {−1, 1}n → R
by HJ,h(x) = 1

2x
ᵀJx + h (

∑
i xi). Construct the graph GJ = ([n], EJ) with (i, j) ∈ EJ iff

Jij 6= 0. An Ising model over graphGJ with interaction matrix J and external field h is the

probability measure π over {−1, 1}n such that π(x) ∝ exp (HJ(x)).
For any simple graph G = ([n], E) there is an associated symmetric n × n adjacency

matrix A(G) := (Aij), where Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise.

Let Kn be the complete graph on n nodes. The Curie-Weiss model at inverse tem-

perature βCW > 0 and external field hCW
is the Ising model with interaction matrix

βCW

n A(Kn), which corresponds to the distribution p(x) ∝ e
βCW

2
nm2+nhCWm

. Here m =
m(x) = 1

n

∑n
i=1 xi is called the magnetization. The Curie-Weiss model is an unstruc-

tured/mean field model. It is permutation invariant and assigns the same probability to

states with the same magnetizationm(x).
Wewill compare the abovemodel to the Isingmodel on a d-regular graphGd = ([n], Ed).

For a given inverse temperature βdreg
, we consider the Ising model with interaction matrix

βdregA(Gd) and external field hdreg
. We shall call this ‘d-regular Ising model’.

Remark 5 The Curie-Weiss model exhibits non-trivial behavior when βCW = Θ(1). It undergoes
a phase transition when βCW = 1, below which pairwise correlations areO( 1

n) and when βCW > 1
they are Θ(1). The pairwise correlations tend to 1 as βCW → ∞. As considered in Section 4,
βCW ≤ βmax for fixed βmax is a natural choice of Curie-Weiss models. The non-trivial regime
for the d-regular Ising model is βdreg

n = Θ(1
d). As shown in Section 4, our test works as long as

βdreg
n � 1√

nd
, which includes the regime of interest.

2.2. Exponential Random Graph Model

The Erdős-Rényi random graph model G(n, p) for p ∈ [0, 1] is the distribution of simple

graphs on n vertices such that each edge is included independently with probability p.
Consider fixed finite simple graphs {Hi}Ki=1, such thatH1 is the graph with two vertices

and a single edge. Let β ∈ R× (R+)
K−1

. Given a graph G over n vertices, define Ni(G) to
be the number of edge preserving isomorphisms from Hi into G (i.e, no. of subgraphs of

G (not necessarily induced), which are isomorphic to Hi). In particular N1(G) is twice the

number of edges in G. Let vi be the number of vertices in Hi. In the following definition

5



Comparing Structured and Unstructured Network Data

of Exponential Random GraphModel (ERGM), to allow non-trivial behavior we follow the

convention in Bhamidi et al. (2011) that Ni(G) are of the same order of magnitude.

We construct the Hamiltonian Hβ(G) =
∑K

i=1 βi
Ni(G)
nvi−2 . The exponential random graph

model ERGM(β) is the probability distribution ν(·) over the set of simple graphs on n

vertices such that ν(G) = e
Hβ(G)

Z(β) , where Z(β) is the normalizing factor. Note that when

βi = 0 for i ≥ 2, ERGM(β) is the same as G(n, e2β1

1+e2β1
). Roughly speaking, ERGM is like

G(n, p), but it favors the occurrence of certain subgraphs. Therefore, G(n, p) is the mean

field model and ERGM is the structured model. In this paper, we takeK = 2 and fixH2 to

be the wedge graph ( ) and denote the resulting model by ERGM(β1, β2).

2.3. Problem Formulation

We formulate our problem as a minimax hypothesis testing problem:

H0 : Data is from some mean field model Pγ with unknown γ ∈ Γ

H1 : Data is from a structured model Qλ with unknown parameters λ ∈ Λ.

A statistical testT is adecision functionDT : Ω→ {H0, H1}. Let p1(γ, T ) := P(DT (X̂) =
H1|X̂ ∼ Pγ) and p2(λ, T ) := P(DT (X̂) = H0|X̂ ∼ Qλ). We take the risk of the test T to be

worst case Bayesian probability of error:

R(T ) = sup
γ∈Γ

sup
λ∈Λ

max(p1(γ, T ), p2(λ, T )) .

We describe the philosophy behind theorems 11 and 15 below. We keep Γ fixed and

consider two different regimes for Λ:

1. Case 1: Λ is such that the interaction parameter β is large enough for every Qλ.

We explicitly construct a test T to for specific Pγ and Qλ such that p1(γ, T ) → 0 and

p2(λ, T )→ 0. We then extend this to the composite case by proving that the test does

not actually require the knowledge of the parameters γ and λ and hence R(T )→ 0.

2. Case 2: Λ is such that the interaction parameter β is small for every Qλ.

We show that in this case, for every sequence of tests {Tn}, lim infn→∞R(Tn) ≥ 1
2 ,

which is the same as random labeling w.p
1
2 . To prove this, we show that for

every λ ∈ Λ in this set, we can find γ ∈ Γ such that dTV(Pγ , Qλ) → 0 . Since
max(p1(γ, T ), p2(λ, T )) ≥ 1

2(1− dTV(Pγ , Qλ)), we conclude the result.

2.4. Intuition behind the Comparison Result

Let q(·) be the Ising model with interaction matrix βdregB (βdreg
unknown) and the Curie-

Weiss model p(·) (at an unknown temperature βCW
). The measure q(·) assigns higher

probability to stateswith higher value of xᵀBx, so a natural idea for distinguishing between

p and q would be to check if xᵀBx has a large value. However, the inverse temperature

parameters are unknown, which implies that we can have the same expected value for the

statistic under both hypotheses (for some choice of temperature parameters).
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Instead, we exploit the symmetry in the Curie-Weiss model. Let Ωn = {−1, 1}n and

recall the magnetization m(x) =
∑n
i=1 xi
n . Let Am0 = {x ∈ Ωn : m(x) = m0} for m0 ∈

{−1,−1 + 2
n , . . . , 1} =: Mn. We can partition Ωn as Ωn = ∪m0∈MnAm0 .

By symmetry, the Curie-Weiss model p(·) gives the uniform distribution over each set

Am0 irrespective of the inverse temperature and external field, which mitigates our initial

problem. The distribution q(·), given themagnetizationm0, assigns most of the probability

to states xwith large values of xᵀBx. We first prove a central limit theorem for g(x) := xᵀBx
when x is drawn uniformly from the set Am0 . Then we show that the event

g(x)− Ep[g(x)|x ∈ Am0 ]√
varp(g(x)|x ∈ Am0)

≥ T

has a small probability under p(·|x ∈ Am0) for large values of T , but has a large probability
under q(·) because it favors larger values of g(x). This gives us a distinguishing statistic for

large enough inverse temperature βdreg
.

Similarly, ERGM(β1, β2) favors the appearance of ‘V’ subgraphs ( ) when compared to

G(n, p), but the expected number of ‘V’ subgraphs can be made equal by increasing p. We

overcome this issue by exploiting the symmetry in G(n, p): it assigns the same probability

to all graphs with the same number of edges. So conditioned on the number of edges in

the sample graph, we check if the number of ‘V’ subgraphs are disproportionately large.

3. Abstract Result

We consider a sequence of probability spaces (Ωn,Fn, pn), n ∈ N. Consider a Fn measur-

able, real valued function gn such that Epn [eβngn ] < ∞ for all βn ∈ R and define measure

qn using Radon-Nikodym derivative as:

dqn
dpn

=
eβgn

Epn [eβngn ]

We try to compare the distributions pn and qn in the total variation sense. We shall use

the notation defined in the following discussion of the abstract result even when dealing

with specific examples. Consider the following conditions:

C1 For some finite index set Mn such that |Mn| = M(n) ∈ N, we can partition Ω =
∪m∈MnAm with disjoint sets Am such that pn(Am) > 0 ∀m ∈Mn.

C2 For a set Sn ⊂Mn, pn(∪m∈SnAm) ≥ 1− αn for some sequence αn → 0.

C3 Let p(m)
be the probability measure over Am defined by p(m)(A) := pn(A)

pn(Am) ∀ A ⊂ Am
and A ∈ Fn. Let Xm ∼ p(m)

and X ∼ pn. Let em(gn) := E[gn(Xm)] and σ2
m(gn) :=

var [gn(Xm)]. For allm,m′ ∈ Sn,

0 < c ≤ σ2
m(gn)

σ2
m′(gn)

≤ C

for some constants c, C independent of n. We let σn be any sequence such that

cσm(gn) ≤ σn ≤ Cσm(gn) for some absolute constants c and C for every m ∈ Sn.
Although gn can depend on βn, gn(x)− em(gn) does not depend on βn for x ∈ Am.
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C4 There is a sequence τn → 0 such that

sup
m∈Sn

dKS

(
L
(
g(Xm)−em(gn)

σm

)
,N (0, 1)

)
< τn .

C5 Let X ∼ pn. C3 holds, var(gn(X)) = O(σ2
n) and

logE
[
eβ(gn(X)−Egn(X))

]
≤ Cβ2σ2

n

1− |β|Dσn

for all |β| < 1
Dσn

for absolute constants C,D independent of n.

Remark 6 ConditionC4 can be relaxed to convergence to a fixed distribution with a strictly positive
tail. We use standard normal distribution because it is sufficient for the examples in this paper.

Remark 7 We note that the function gn can have βn as a parameter but, condition C3 requires that
gn(x) − em(x) does not depend on βn whenever x ∈ Am. Therefore, the conditional variances do
not depend on the value of βn. A trivial example is: gn(x) = l(x) + βnm(x). Other examples
satisfying these conditions are given in Sections 4 and 7.

We consider the following simple hypothesis testing problem for data X ∈ Ωn, and

then extend this test to the composite case in Sections 4 and 7.

H0 : X ∼ pn
H1 : X ∼ qn for some βn .

The value of βn may be unknown.

We define the following test:

Definition 8 (Canonical Test) Let T ≥ 0 and κ : Ω → R. Define the function m so that
m(x) = m0 iff x ∈ Am0 . Given a sampleX , we define the decision functionDcan(X) ∈ {H0, H1}:

1. ifm(X) /∈ Sn then Dcan(X) = H1

2. ifm(X) ∈ Sn and κ(X)−em(X)(κ)

σm(X)(κ) ≥ T then Dcan(X) = H1

3. otherwise Dcan(X) = H0

The statistical test with decision function Dcan is the canonical statistical test T can(T, κ).

Wenote that the canonical test depends only on the functionκ, the setSn and the conditional

measures p(m)
. A natural choice of κ is: κ = gn. We show the following result for this

choice of κ. Our metric of comparison will the following ‘probability of error’ for any test

T with decision function D:

perror = max(P[D(X) = H0|X ∼ H1],P[D(X) = H1|X ∼ H0]) .

Theorem 9 Assume w.l.o.g that βn > 0. We have the following results.
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1. Suppose that conditions C1,C2,C3, and C4, hold. Then

lim
n→∞

dTV(pn, qn) = 1 if βnσn →∞ (2)

If βnσn ≥ Ln for a known sequence Ln → ∞ (βn being possibly unknown), then the
canonical test T can(Tn, gn) can distinguish between pn and qn with high probability from a
single sample for Tn →∞ depending only on Ln and τn. The probability of type 1 and type
2 errors can be bounded above by a function of αn, Tn and Ln tending to 0.

2. Suppose that condition C5 holds. Then

lim
n→∞

dTV(pn, qn) = 0 if βnσn → 0 (3)

Wedefer the proof toAppendixA. The idea behind the first part of the proof is described

in Section 2.4. To understand the proof of the second part of the theorem, we take Ω to be a

finite space. Then, q(x) = p(x) e
βng(x)

Epeβng
. Condition C5 along with Jensen’s inequality implies

that whenever βnσn → 0,

eβnEpg ≤ Epeβng ≤ eβnEpge
Cβ2nσ

2
n

1−D|βn|σn = (1 + o(1))eβnEpg

Therefore, q(x) = (1− o(1))p(x)eβn(g(x)−Ep(g))
. We use Chebyshev inequality to show that

βn(g(x)− Ep(g)) is small most of the time i.e, q(x) = (1± o(1))p(x) with high probability.

This proves that the total variation distance converges to zero.

4. Testing Ising Model Structure

We intend to test between the following hypotheses for data X̂ ∈ {−1, 1}n:

H0 : Thedata is generated by aCurie-Weissmodel at anunknown inverse temperature

0 ≤ βCW(n) ≤ βmax and external field |hCW| ≤ hmax <∞

H1 : The data is generated by an Ising model on a known d-regular graph at an

unknown inverse temperature 0 ≤ βdreg
n < ∞ and arbitrary external field hdreg ∈ R

such that (βdreg
n , hdreg) ∈ ΛIsing

Wewill apply Theorem 9 to prove Theorem 11. We use the notation from the conditions

of Theorem 9. Let x ∈ Ω := {−1, 1}n. We take pn to be Curie-Weiss model at inverse

temperature βCW ≤ βmax and external field hCW
such that |hCW| ≤ hmax < ∞ i.e, pn(x) ∝

e
n
2
βCWm2+nhCWm(x)

, wherem := m(x) = 1
n

∑
i xi.

Let G be any known d-regular graph over n vertices with adjacency matrix A and

d = o(n). We take q to be the Ising model with interaction matrix βdreg
n A and external field

hdreg
such that βdreg

n > 0 and hdreg ∈ R. That is, qn(x) ∝ e
β
dreg
n
2

xᵀAx+nhdregm(x) .

We take gn(x) = 1
2x

ᵀAx− n
2
βCW

βdreg
n

m2 + nd

2(n−1)βdreg
n

+ n(hdreg−hCW)

βdreg
n

m(x). Therefore,

qn(x) =
pn(x)eβ

dreg
n gn(x)

Epn [eβ
dreg
n g(x)]
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Let Mn and Am0 for m0 ∈ Mn be as defined in Section 2.4. Clearly, Am0 = {x : |{i :
xi = 1}| = 1+m0

2 n}. Magnetization concentration of Curie-Weiss model is well studied (c.f.

Ellis (2007)). The magnetization for the Curie Weiss model concentrates at the roots of the

equationm∗ = tanh (βCWm∗ + hCW). Since βCW ≤ βmax <∞ and |hCW| < hmax <∞ one

has for some ε > 0 and constants B,C(βmax, hmax) > 0 depending only on βmax and hmax,

pn (m(x) ∈ [−1 + ε, 1− ε]) ≥ 1−Be−C(βmax,hmax)n =: 1− αn .

Therefore, we let Sn = Mn ∩ [−1 + ε, 1− ε].

Remark 10 Consider the canonical test forH0 andH1 given in Definition 8. Let a sample X̂ with
magnetization m̂ = m(X̂) be given. By definition of Sn, we can determine whether m(X̂) ∈ Sn
without using (βdreg

n , hdreg) and (βCW, hCW). Clearly, p(m̂) is the uniform measure over Am̂
irrespective of the value of βCW and hCW. Let Xm̂ ∼ p(m̂). A calculation shows that

1

2
X̂ᵀAX̂ − E

[
1

2
Xᵀ
m̂AXm̂

]
= g(X̂)− em̂(g)

Therefore, σ2
m := var(g(Xm)) = var

(
1
2X

ᵀ
mAXm

)
.We observe that neither of the quantities above

depend on the values of the unknown parameters and hence the same is true for whether or not
g(X̂)−em̂(g)

σm̂(g) ≥ T . Letting κIsing(X̂) := X̂ᵀAX̂ , we have that T can(Tn, gn) = T can(Tn, κIsing).

By Theorem 12, σm = Θ(
√
nd) uniformly for allm ∈ Sn and

sup
m∈Sn

dKS

(
L
(
g(Xm)−em(g)

σm

)
,N (0, 1)

)
< C(ε)

4

√
d

n
=: τn

Theorem 11 Let d = o(n) and Ln be any positive sequence diverging to infinity.

1. IfΛIsing = {(βdreg
n , hdreg) : βdreg

n ≥ Ln√
nd
, |hdreg| ≤ hmax}, the canonical testT can(Tn, κIsing),

which depends only on βmax, hmax and Ln can distinguish H0 and H1 with high probability
for some choice of Tn(βmax, hmax, Ln)→∞.

2. If ΛIsing = {(βdreg
n , hdreg) : βdreg

n = 1
Ln
√
nd
, |hdreg| ≤ hmax}, there is no statistical test which

can distinguish H0 and H1 with high probability using constant number of i.i.d. samples.

We defer the proof to Appendix D. The idea is to use Remark 10 to conclude T can(Tn, gn) =
T can(Tn, κIsing)(X̂) and then use Theorem 9 to conclude the result.

Wenote from the proof that above the threshold, the distribution pn need not necessarily

be the Curie-Weiss model. It can be any family of permutation invariant probability

distribution such that pn(m(x) ∈ [δ, 1 − δ]) → 1 for some δ > 0 and our proof for the

success of our statistical test goes through.

10
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5. A Central Limit Theorem for Quadratic Forms over Hamming Sphere

In order to apply Theorem 9 to problems of interest, we would like to prove a central

limit theoremwith Berry-Esseen type bounds for quadratic forms over Hamming Spheres.

Consider S = {(x1, ..., xn) ∈ {−1, 1}n : |{i : xi = 1}| = sn}. That is, S is the Hamming

sphere of radius sn for a fixed s ∈ (0, 1). Let X ∼ unif(S). Given an adjacency matrix A,
we intend to prove a central limit theorem for the quadratic form A(X) = 1

2X
ᵀAX . The

problem of limiting distributions has been well studied for quadratic forms of i.i.d random

variables (see Hall (1984), Rotar et al. (1979), de Jong (1987), Götze and Tikhomirov (2002)).

These methods use the independence of the entries of the random vector, which does not

hold here. We use Stein’s method to prove the following result:

Theorem 12 Let d = o(n) and A be the adjacency matrix of a d regular graph. Let 0 < δ < s <

1− δ < 1 and σ2
s := var(A(X)) and L = A(X)−EA(X)

σs
. Then,

1. σ2
s = 8nds2(1− s)2(1 +O( dn))

2. dKS(L(L),N (0, 1)) ≤ C 4

√
d
n

C depends only on δ and the bound O
(
d
n

)
holds uniformly for all s ∈ (δ, 1− δ).

A pair of random variables (T, T ′) is called exchangeable if (T, T ′)
d
= (T ′, T ).

Definition 13 We call a real valued exchangeable pair (T, T ′) an a-Stein pair with respect to the
sigma algebra F if T is F measurable and E(T ′|F) = (1− a)T + aE(T )

We prove Theorem 12 using the following CLT (Theorem 3.7 in Ross et al. (2011)).

Theorem 14 Let (W,W ′) be an a-Stein pair with respect to the sigma algebra F such thatW has
0 mean and unit variance. Let N have the standard normal distribution. Then,

dW(W,N) ≤
√

var (E [(W ′ −W )2|F ])√
2πa

+
E
(
|W −W ′|3

)
3a

Consider the set S(x) = {i ∈ [n] : xi = 1}. Let χS be the n dimensional column vector

such that χS(i) = 1 if i ∈ S and χS(i) = 0 if i ∈ Sc. We shall henceforth use S(x), χS(x)
and x interchangeably. Define d(A,B) to be the number of edges of G with one vertex in

A and the other in B. When A = {j}, we denote d(A,B) be djB . We can easily show that

1
2x

ᵀAx = nd
2 − 2d(S(X), S(X)c). It is sufficient to prove the CLT for d(S(X), S(X)c) when

X ∼ unif(S). We continue with the proofs of the theorems in Appendix B.

6. Concentration of Quadratic Forms over Hamming Sphere

Let S be the uniform random set of constant size and T (S) = d(S, Sc) be the size of the

edge-cut, just like in Section 5. Here, we relax the constraint on the size of S so that

0 ≤ |S| ≤ n. To lower bound the total variation distance, we need Condition C5. To prove

this condition, for the examples considered in this paper, we need sub-exponential bounds

of the form:

11
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logE exp (βT − βET ) ≤ Cβ2nd

1−D
√
nd|β|

(4)

In the case of centered independent randomvariables, i.e, when yi = Ber(s)−s, Hanson-

Wright inequality for quadratic forms gives a sub-exponential concentration inequality

like (4), but it is not clear how to extend this to case when the space is restricted to the

Hamming sphere (and therefore has weak dependencies).

To deal with this, tensorization of roughly the following form is normally proved:

logE exp (βT − βET ) ≤ Cβ2
∑n

i=1 E∆2
i (T ), where∆i(f(x)) := f(x+

i )−f(x−i ) is the discrete
derivative. Here we run into a second problem: since our random set S has constant

size almost surely, we cannot remove a single element and the discrete derivative ∆if(x)
cannot be defined within our space. We use the exchangeable pair used in Section 5 and

Appendix B to prove a well defined tensorization similar to the one above.

Using our method, based on Burkhölder-Davis-Gundy type inequalities proved in

Chatterjee (2007), we show that

logE exp γ(T − ET ) ≤ 32ndγ2(1 + o(1))

1− 16ndγ2(1 + o(1))
(5)

We defer the full proof to Appendix C.

7. Comparing ERGM to Erdős-Rényi Model

Here, we compare G(n, pn) to ERGM(β1, β2). Fix δ > 0. Consider the following hypothesis

testing problem given a single sample of a random simple graph G over n vertices:

H0 : G is drawn from the distribution G(n, p) for some p ∈ (δ, 1− δ)
H1 : G is drawn from ERGM(β1, β2) for β1 ∈ R and β2 ∈ R+

for unknown β1 and β2

such that (β1, β2) ∈ ΛERGM

Given a sample graph X , we let V (X) be the number of wedge graphs ( ) in X .

Theorem 15 Let Ln be any positive sequence diverging to infinity.

1. If ΛERGM = {(β1, β2) : β2 ≥ Ln 1√
n
, β1 ∈ R} then the canonical statistical test T can(Tn, V ),

which depends only on δ and Ln, can distinguish H0 and H1 with high probability for some
choice of Tn(δ, Ln)→∞.

2. If ΛERGM = {(β1, β2) : 0 ≤ β2 = 1
Ln
√
n
, β1 ∈ R}, then there is no statistical test which can

distinguish H0 and H1 with high probability using constant number of i.i.d. samples.

We proceed in a way similar to Section 4 by proving each of the conditions (C1) - (C5). We

defer the proof to Appendix E.
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Appendix A. Proof of Main Abstract Theorem 9

We first consider the case when σnβn → ∞. Given a sample from pn or qn, we prove that

the statistical test T can(Tn, gn) succeeds with high probability for some choice of Tn. Let

Dcan
be the decision function associated with the test T can(Tn, gn).

Consider the type 1 error rate:

P (Dcan(X) = H1|X ∼ H0) = pn (m(X) /∈ Sn) +
∑
m∈Sn

pn

(
g(X)− em(g)

σm
≥ T

∣∣∣∣m(X) = m

)
pn (Am)

≤ αn +
∑
m∈Sn

[
1− Φ(T ) + dKS

(
L
(
g(Xm)−em(g)

σm

)
,N (0, 1)

)]
p (Am)

≤ αn + 1− Φ(T ) + τn (6)

Now consider the type 2 error rate:

P (Dcan(X) = H0|X ∼ H1) = qn

(
g(X)− em(X)(g)

σm(X)
< T,m(X) ∈ Sn

)
=
∑
m∈Sn

qn

(
g(X)− em(g)

σm
< T

∣∣∣∣m(X) = m

)
qn (Am)

=
∑
m∈Sn

qn
(
g(X)−em(g)

σm
<T
∣∣∣X∈Am)

qn
(
g(X)−em(g)

σm
<2T

∣∣∣X∈Am)+qn
(
g(X)−em(g)

σm
≥2T

∣∣∣X∈Am)qn (Am)

≤
∑
m∈Sn

qn
(
g(X)−em(g)

σm
<T
∣∣∣X∈Am)

qn
(
g(X)−em(g)

σm
≥2T

∣∣∣X∈Am)qn (Am)

=
∑
m∈Sn

∫
g<em+Tσm

eβngdp(m)∫
g≥em+2Tσm

eβngdp(m) qn (Am)

≤
∑
m∈Sn

e(βnem+Tβnσm)

p(m)({g≥em+2Tσm})e(βnem+2Tβnσm) q (Am)

≤
∑
m∈Sn

e−Tβnσm
1−Φ(2T )−τn q (Am)

≤ e−cTβnσn
1−Φ(2T )−τn (7)

We use the fact that for positive x and y, max(x, y) ≤ x+y, equation (6) and (7), to conclude

that for every T > 0 such that 1− Φ(2T ) > τn the error rate perror

perror ≤ αn + 1−Φ(T ) + τn +
e−cTβnσn

1− Φ(2T )− τn
≤ αn + 1−Φ(T ) + τn +

e−cTLn

1− Φ(2T )− τn
(8)

For n large enough, τn + e−cLn < 1
2 . For such n, we can pick T = Tn > 0 such that

1− Φ(2Tn) = τn + e−cLn

Clearly, Tn →∞, therefore, 1− Φ(Tn)→ 0 and

e−cTnLn

1− Φ(2Tn)− τn
= e−c(Tn−1)Ln → 0

15
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Using the equations above in equation (8), we conclude that:

perror ≤ αn + 1− Φ(Tn) + τn + e−c(Tn−1)Ln → 0

Therefore, the decision function Dcan(X) has a vanishing error rate for the choice of

T = Tn made above. Let Acan = {x ∈ Ω : Dcan(x) = H0}

dTV(pn, qn) = sup
A∈Fn

pn(A)− qn(A)

≥ pn(Acan)− qn(Acan)

= 1− pn ((Acan)c)− qn(Acan)

= 1− P(Dcan(X) = H1|X ∼ H0)− P(Dcan(X) = H0|X ∼ H1)

≥ 1− 2 max(P(Dcan(X) = H1|X ∼ H0),P(Dcan(X) = H0|X ∼ H1))

= 1− 2perror (9)

Using Equation (9) we conclude that whenever σnβn →∞,

dTV(pn, qn)→ 1

We now consider the case βnσn → 0. Consider the set Agn = {x ∈ Ω : eβngn

Epneβngn
< 1}.

It can be easily shown that Agn ∈ F\ and dTV(pn, qn) = pn(Agn) − qn(Agn). Let Zgn :=

Epneβngn . Since, βnσn → 0, the following inequalities hold when βnσn is small enough and

any T > 0

dTV(pn, qn) = pn(Agn)− qn(Agn)

=

∫
1Agn

(
1− eβngn

Epeβngn

)
dpn

=

∫
1Agn

(
1− e−|βngn−logZgn |

)
dpn

≤
∫ (

1− e−|βngn−logZgn |
)
dpn

≤
∫ (

1− e−|βngn−βnEpn [gn]|e−| logZgn−βnEpn [g]|
)
dpn

≤
∫ (

1− e−
Aβ2nσ

2
n

1−B|βn|σn e−|βn(gn−Epn [gn])|
)
dpn

≤ pn (|gn − Epn [gn]| ≥ T ) + 1− exp

(
− Aβ2

nσ
2
n

1−Bβnσn

)
e−βnT

≤ σ2
n

T 2
+ 1− exp

(
− Aβ2

nσ
2
n

1−Bβnσn

)
e−βnT (10)

Where we have used the Chebyshev bound in the last step and the subexponentiality

of gn. The coefficients (A,B) are consistent with coefficients (C,D) in condition C5. Let

γn → 0 be any positive sequence such that
βnσn
γn
→ 0. Let T = γn

βn
. Using this choice of T in

Equation (10), we conclude that:

dTV(pn, qn) ≤ β2
nσ

2
n

γ2
n

+ 1− exp

(
− Aβ2

nσ
2
n

1−Bβnσn

)
exp (−γn)→ 0.
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Appendix B. Proof of Central Limit Theorem

We use the quantities as defined in Section 5.

For the sake of clarity, we denote the random variable S(X) by just S. Clearly, |S| =
sn =: l. Define T (S) := d(S, Sc). Recall that our objective is to prove a CLT for T (S).
We define the following exchangable pair (S, S′) : Draw K and J ∈ {1, ..., n} uniformly at

random and independent of each other and independent of S. Define χS′ to be the vector

obtained by exchanging entries at indicesK and J of χS .
A calculation using the fact that G is d-regular shows that

T (S′) =


T (S) if χS(J) = χS(K)

T (S) + 2(dJ,S − dK,S + dJ,K) if J ∈ S andK ∈ Sc

T (S) + 2(dK,S − dJ,S + dJ,K) ifK ∈ S and J ∈ Sc
(11)

WeapplyTheorem14 to the centeredandnormalizedversionof theSteinpair (T (S), T ′(S))
to prove Theorem 12.

Lemma 16 (T (S), T (S′)) is a λ-Stein pair with respect to F(S), where λ = 4n−1
n2 . Further,

E[T (S)] = l(n−l)d
n−1

Proof Clearly,

E[T (S′)|S] = T (S) + 4
n2

∑
j∈S

∑
k∈Sc

dj,S − dk,S + dj,k (12)

= T (S) +
4

n2

∑
j∈S

(d− dj,Sc)(n− l)−
∑
k∈Sc

ldk,S +
∑
j∈S

k ∈ Scdj,k (13)

=

(
1− 4

n− 1

n2

)
T (S) + 4

l(n− l)d
n2

(14)

Using the fact that ET (S) = ET (S′), we conclude the result.

We shall henceforth shorten T (S′) to T ′ and define λ := 4n−1
n2 . We list some elementary

results about various moments.

Lemma 17 For a d-regular graph, when n− d− 2 > l > d+ 2, if l = θ(n)

1. E
∑

j∈S
∑

k∈Sc d
2
j,S = l(n− l)

(
d2 (l−1)(l−2)

(n−1)(n−2) + d (l−1)(n−l)
(n−1)(n−2)

)
2. E

∑
j∈S

∑
k∈Sc d

2
k,S = l(n− l)

(
d2 (l)(l−1)

(n−1)(n−2) + d (l)(n−l−1)
(n−1)(n−2)

)
3. E

∑
j∈S

∑
k∈Sc dj,Sdk,S = d2l(n− l) (l)(l−1)

(n−1)2
− var(T )

4. E
∑

j∈S
∑

k∈Sc dk,Sdj,k = O(nd2)

5. E
∑

j∈S
∑

k∈Sc dj,Sdj,k = O(nd2)
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6. E
∑

j∈S
∑

k∈Sc d
2
j,k = O(nd)

Proof

1.

E
∑
j∈S

∑
k∈Sc

d2
j,S =

l(n− l)
n

n∑
j=1

E(d2
j,S |j ∈ S)

Denoting the neighborhood of j by N(j),

E(d2
j,S |j ∈ S) =

∑
a,b∈N(j)

P(a ∈ S, b ∈ S|j ∈ S)

A simple computation of the probability gives the result.

2. proof similar to the previous part.

3.

E
∑
j∈S

∑
k∈Sc

dj,Sdk,S = E [(ld− T (S))T (S)]

Using the fact that E [T (S)] = d l(n−l)n−1 we arrive at the result.

4. The result follows from the fact that∑
j∈S

∑
k∈Sc

dj,kdk,S =
∑
k∈Sc

d2
k,S

5. ∑
j∈S

∑
k∈Sc

dj,kdj,S =
∑
j∈S

dj,Sdj,Sc = O(nd2)

6. We note that since G is a d-regular graph, d2
j,k = dj,k. Therefore,

E
∑
j∈S

∑
k∈Sc

d2
j,k = Ed(S, Sc)

Lemma 18

var(T ) =
1

2λ
E
[
(T − T ′)2

]
. (15)

If l = θ(n), then,

var(T ) = 2dn
l2(n− l)2

n4
+O(d2)

Denoting l = sn and s ∈ (0, 1),

σ2 := var(T ) = 2ds2(1− s)2(1 +O(
d

n
))

. The O( dn) holds uniformly for all s ∈ [δ, 1− δ] when 0 < δ < 1− δ < 1
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Proof Equation 15 follows from the fact that (T, T ′) forms a λ-Stein pair.

var(T ) =
n2

8(n− 1)
E
[
E
[
(T − T ′)2|S

]]
=

n2

8(n− 1)

E
8

n2

∑
j∈S

∑
k∈Sc

(dj,s + dj,k − dk,S)2


=

1

n− 1
E
∑
j∈S

∑
k∈Sc

(d2
j,s + d2

k,S − 2dj,Sdk,S + d2
j,k + 2dj,kdj,S − 2dj,kdk,S)

We use Lemma 17 to compute this expectation.

Lemma 19 Let γ(s) =
∑r

i=0 ais
i be any polynomial such that 0 ≤ γ(s) ≤ α ∀ s ∈ [s1, s2] such

that s1 < s2, then |ai| ≤ Cα for some constant C depending only on r, s1 and s2

Proof Choose distinct xi ∈ [s1, s2] for i ∈ {0, 1, .., r}. Let a = [a0 a1 .. ar]
ᵀ
and b =

[γ(x0) γ(x1) ... γ(xr)]
ᵀ
. Consider the Vandermonde matrix with entries Vi,j = xji for i, j ∈

{0, 1, ..., r}. V is invertible since xi are distinct and V a = b. Therefore, a = V −1b. Therefore
‖a‖∞ ≤ ‖V −1‖∞‖b‖∞. Since ‖b‖∞ ≤ α, we obtain the result by setting C = ‖V −1‖∞.

Definition 20 (function type) Let R be a subset of vertices of a given graph G. We define the
following classification of functions f(R)

1. We call f to be of type 1 of index r ∈ N if f(R) = (dj,R − dk,R + dj,k)
r
1j∈R1k∈Rc ,

2. We call f to be of type 2 of index r ∈ N if

f(R) = (dj1,R − dk1,R + dj1,k1)r1 (dj2,R − dk2,R + dj2,k2)r2 1j1∈S1k1∈Rc1j2∈S1k2∈Sc

such that r1, r2 ∈ N and r = r1 + r2.

Since the coordinates of the random set S are dependent (because |S| = l), it is hard to

boundmoments of functions of S. Therefore, we draw a random set S̃ such that each vertex

is included independently with probability p = l
n . As we shall see, S is locally similar to S̃

and hence we can use the known tools for bounding moments of functions of independent

variables to bound the moments of f(S).

Lemma 21 Let f be a function of type 1 or type 2 with G being a d-regular graph. Then, the
following are true. Let τ by the ‘type’ of the function f .

1. f(R) =
∑r+2τ

h=0 gh(R) ∀R ⊂ V

2. If each vertex is included in the set S̃ independently with probability p = l
n , then,

Ef
(
S̃
)

=

r+2τ∑
h=0

ahp
h

for some constants ah ∈ Z.

19



Comparing Structured and Unstructured Network Data

3. If the set S is chosen uniformly at random from all vertex subsets of size l, then Ef(S) =∑r+2τ
h=0 ah

∏h−1
i=0

l−i
n−i

Where gh(S) is a function of the form
∑

i∈I(−1)ηi1Si⊂S . Where ηi ∈ {−1,+1}, Si ⊂ V , |Si| = h
and Ih is any finite index set.

Proof

1. We use the following identities:

dj,S =
∑
i∈N(j)

1i∈S .

1i∈Sc = 1− 1i∈S .

Expanding the power and noting that 1S1⊂S1S2⊂S = 1S1∪S2⊂S , we obtain the result.

2. This follows trivially since E1Si⊂T = p|Si| and if gh(T ) is of the form above, ah =∑
i∈I(−1)ηi .

3. This follows from the fact that E1Si⊂S =
(n−|Si|l−|Si|

)

(nl)
=
∏h−1
i=0

l−i
n−i , where h = |Si|. If gh(T )

is of the form above, ah =
∑

i∈Ih(−1)ηi

Lemma 22 If f is of type 1 or 2 for a d regular graph G over n vertices with a fixed index r. Let τ
by the ‘type’ of the function.

1. Ef(S̃) = O
(
d
r
2

)
2. |Ef(S̃)− Ef (S) | = O

(
d
r
2

n

)
when p = l

n

3. Ef(S) ≤ Cd
r
2

(
1 +O( 1

n)
)

Proof

1. Let f be of type 1. Then,

|Ef(S̃)| ≤ E|dj,S̃ − dk,S̃ + dj,k|r

≤
(

1 + 2
(
E|dj,S̃ − Edj,S̃ |

r
) 1
r

)r
(16)

Where the inequalities above follow from Minkowski’s inequality and the fact that

dj,S̃ and dk,S̃ are identically distributed.

dj,S̃ is a 1 Lipschitz function of S̃ with respect to Hamming distance. We use MacDi-

armid’s inequality to conclude that

P(|dj,S̃ − Edj,S̃ | > t) ≤ 2 exp−
2t2

d
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From the above, we obtain the estimate:

E|dj,S̃ − Edj,S̃ |
r ≤

∫ ∞
0

2rtr−1e−
2t2

d =

(
rΓ( r2)

4

)
d
r
2 = O(d

r
2 )

Plugging it back into equation (16), we obtain the result.

For any type 2 function g, we use Cauchy Schwarz inequality to note that:

|Eg(S̃)| ≤ E|dj1,S̃ − dk1,S̃ + dj1,k1 |r1 |dj2,S̃ − dk2,S̃ + dj2,k2 |r2

≤
√

E|dj1,S̃ − dk1,S̃ + dj1,k1 |2r1
√
E|dj2,S̃ − dk2,S̃ + dj2,k2 |2r2

And note that

√
E|dji,S̃ − dki,S̃ + dji,ki |2ri = O

(
d

2ri
2

)
for i = 1, 2, as shown above, to

conclude the result.

2. We use Lemma 21 to conclude that Ef(S̃) =
∑r+2τ

h=0 ahp
h = L(p) . Using the result

in part 1, we conclude that for some absolute constant depending only on r, L(p) ≤
α := Cd

r
2 for every p ∈ [0, 1]. We then invoke Lemma 19 to show that |ah| ≤ C1α for

all h ∈ {0, 1, ..., r + 2τ} and that

|Ef(S̃)− Ef(S)| ≤
r+2τ∑
h=0

|ah|

∣∣∣∣∣
(
l

n

)h
−
h−1∏
i=0

l − i
n− i

∣∣∣∣∣
For a fixed r, |

(
l
n

)h −∏h−1
i=0

l−i
n−i | = O( 1

n) for every l ≤ n. Therefore,

|Ef(S̃)− Ef(S)| ≤
(
C2

n

)
d
r
2

3. This follows from parts 1 and 2.

Using the fact that the co-ordinates of the vector χS areweakly dependent, we prove the

following bound on the expectation of type 1 and type 2 functions. This gives an explicit

bound on the constant C(r) for every l, which will be useful when proving concentration

inequalities for d(S, Sc).

Lemma 23 If f is a function of type 1 or type 2 of index r and 0 ≤ l ≤ n then

E|f(S)| ≤ C(r)d
r
2

where C(r) is a constant depending only on r.
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Proof It is suffient to prove this result for type 1 functions since this implies the result

for type 2 functions through Cauchy-Schwarz inequality. Also, it is sufficient to prove this

result when r is even since an application of Jensen’s inequality for the concave function

x
r−1
r implies the result for odd integers. Assume r is even and f is a type 1 function defined

by:

f(S) = (dj,S − dk,S + dj,k)
r
1j∈S1k∈Sc

Define variable yi(S) := 1i∈S . We note that,

f(S) =

 ∑
i∈N(j)\k

yi −
∑

i1∈N(k)\j

yi1

r

1j∈S1k∈Sc

≤ E
∣∣∣∣ ∑
i∈N(j)\k

yi −
∑

i1∈N(k)\j

yi1

∣∣∣∣r1j∈S1k∈Sc
≤ E

∣∣∣∣ ∑
i∈N(j)\k

yi −
∑

i1∈N(k)\j

yi1

∣∣∣∣r
Define

gjk(S) =
∑

i∈N(j)\k

yi −
∑

i1∈N(k)\j

yi1

gjk is a function of (yi)i∈Djk where Dj,k = (N(j) \ {k}) ∆ (N(k) \ {j}) and |Dj,k| := h ≤
2(d− 1). gjk is 1 Lipschitz in Hamming distance.

We follow the concentration inequalities as given in Section 4.2 of Chatterjee (2005). We

fix j and k such that j 6= k. y∼r := (yi : i ∈ Dj,k \ r). Let µi be the law of yi. Define the

dependency matrix L = (ars) r, s ∈ Dj,k to be a matrix such that

dTV(µr(.|y∼r), µr(.|ŷ∼r)) ≤
∑
s∈Dj,k

ars1ys 6=ŷs

Let h1 = dH(y∼r) and h2 = dH(y∼r). We consider two cases:

1. l > h

dTV(µr(.|y∼r), µr(.|ŷ∼r)) = |µr(1|y∼r)− µr(1|ŷ∼r)|

=

∣∣∣∣∣
(

n−h
l−h1−1

)(
n−h+1
l−h1

) − ( n−h
l−h2−1

)(
n−h+1
l−h2

) ∣∣∣∣∣
=

∣∣∣∣ h1 − h2

n− h+ 1

∣∣∣∣
≤

∑
s∈Dj,k\{r}

1

n− h+ 1
1ys 6=ŷs
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2. l ≤ h
This is similar to the previous case. It is clear that dH(y∼r) ≤ l a.s. Therefore, simple

calculation shows that

µr(1|y∼r) =

{
0 if h1 = l
l−h1
n−h+1 if h1 < l

(17)

Proceeding similar to the previous case, we conclude the result.

Therefore, we set ars = 1
n−h+1 when r 6= s and arr = 0. A is a symmetric matrix.

Therefore, ‖A‖2 ≤ ‖A‖1 = h−1
n−h+1 . Applying theorem 4.3 from Chatterjee (2005), we have

P(|gj,k − E(gj,k)| > t) ≤ 2 exp

(
−

(
1− h−1

n−h+1

h

)
t2

)
(18)

Since h ≤ 2(d − 1) = o(n), we conclude that gj,k is subgaussian with a variance proxy

of
h
2 (1 + o(1)). We also note that E(gj,k) = 0. We can bound the centralised moments of

a sub-Gaussian random variable from Equation (18) as shown in Boucheron et al. (2013)

Theorem 2.1 :

E(gjk)
2q ≤ 2(q!)[h(1 + o(1))]q ≤ 2(q!)[2d(1 + o(1))]q , (19)

where q ∈ N is arbitrary. Taking r = 2q yields the result.

Let Y (S) := T (S)−ET (S)
σ . We intend to apply Theorem 14 to the Stein pair (Y, Y ′) when

d = o(n).

We first bound the term

E(|Y−Y ′|3)
3λ in the following lemma.

Lemma 24 ∀ s ∈ (δ, 1− δ) such that 0 < δ < 1
2 , we have

E
(
|Y − Y ′|3

)
3λ

= O

(√
1

n

)
and the bound is uniform for all s ∈ (δ, 1− δ).

Proof Using Lemma 18,

E
(
|Y − Y ′|3

)
3λ

=
E
(
|T − T ′|3

)
3λσ3

=
CE

(
|T − T ′|3

)
(1 +O

(
d
n

)
)

√
nd

3
2 s3(1− s)3

(20)

Conditioning on S,

E
(
|T − T ′|3

)
= E

16

n2

∑
j∈S

∑
k∈Sc
|dj,S − dk,S + dj,k|3

=
16

n2

∑
j∈V

∑
k∈V

E
(
|dj,S − dk,S + dj,k|31j∈S1k∈Sc

)
= O

(
d

3
2

)
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Where we get the last relation using Lemma 22. Substituting in Equation 20, we conclude

the result.

We now bound the second term. Since |Y − Y ′| = |T−T ′|
σ . Therefore,√

var(E((Y ′ − Y )2|S))√
2πλ

=
1√

2πλσ2

√
var(E((T ′ − T )2|S))

=
1√

2πλσ2

√
var(E((T ′ − T )2|S))

=
1√

2πλσ2

√√√√√var

 8

n2

∑
j∈S

∑
k∈Sc

(dj,S + dj,k − dk,S)2



=

√
2

π

1

(n− 1)σ2

√√√√√var

∑
j∈V

∑
k∈V

(dj,S + dj,k − dk,S)21j∈S1k∈Sc


(21)

For j, k ∈ V , define hj,k(R) := (dj,R + dj,k − dk,R)2
1j∈R1k∈Rc . Clearly,

var

∑
j∈V

∑
k∈V

(dj,S + dj,k − dk,S)2
1j∈S1k∈Sc

 =
∑

j,k,j1,k1∈V
cov(hj,k(S), hj1,k1(S)) (22)

Using Lemma 22, when p = l
n ,

cov(hj,k(S), hj1,k1(S)) = cov(hj,k(S̃), hj1,k1(S̃)) +O(
d2

n
) (23)

Using equations 22 and 23 we conclude

var

∑
j∈V

∑
k∈V

(dj,S + dj,k − dk,S)2
1j∈S1k∈Sc

 = var

∑
j∈V

∑
k∈V

(dj,S̃ + dj,k − dk,S̃)2
1j∈S̃1k∈S̃c


+O(n3d2) (24)

Lemma 25

var

∑
j∈V

∑
k∈V

(dj,S̃ + dj,k − dk,S̃)2
1j∈S̃1k∈S̃c

 = O(n3d3)

uniformly for all p ∈ [0, 1]. Using equation 24, we conclude that ∀s ∈ [a, b] with 0 < a < b < 1,

var

∑
j∈V

∑
k∈V

(dj,S + dj,k − dk,S)2
1j∈S1k∈Sc

 = O(n3d3)

uniformly.
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Proof The elements of S̃ are drawn i.i.d with probability of inclusion p. Define εi = 1i∈S̃ .

Then, εi ∼ Ber(p) i.i.d for 1 ≤ i ≤ n. We use ε and S̃ interchangeably.

F (ε) := F (S̃) =
∑
j∈V

∑
k∈V

hj,k(S̃)

Let S̃i := S̃ \ {i} and ∆i
j,k

(
S̃i

)
:= hj,k

(
S̃i

)
− hj,k

(
S̃i ∪ {i}

)
. Since entries of the vector

ε are independent, we use Efron-Stein method to tensorize the variance as follows:

var(F (ε)) ≤
n∑
i=1

Evari (F (ε))

Where vari (F (ε)) = var (F (ε)|ε∼i) Now, when ε∼i is fixed, F (ε) can take two values.

Therefore,

vari(F (ε)) = p(1− p)
(
F (S̃i)− F (S̃i ∪ {i}

)2
= p(1− p)

∑
j,k

∆i
j,k(S̃i)

2

(25)

By Cauchy-Schwarz inequality,√√√√√E

∑
j,k

∆i
j,k(S̃i)

2

≤
∑
j,k

√
E
(

∆i
j,k(S̃i)

)2
(26)

Clearly, ∆i
j,k(S̃i) 6= 0 only if one of the following is true:

1. j = i and k 6= i

2. j 6= i and k = i

3. j ∈ N(i) and k 6∈ N(i) ∪ {i}

4. j 6∈ N(i) ∪ {i} and k ∈ N(i)

For case 1, considering sub cases k ∈ N(i) and k 6∈ N(i), we conclude:

∆i
i,k(S̃i) = −

(
di,S̃i − dk,S̃i

)2
1k∈S̃ci

di,S̃i ∼ Bin(p, d), dk,S̃i ∼ Bin(p, d− 1) if k ∈ N(i) and dk,S̃i ∼ Bin(p, d) if k 6∈ N(i). We use

the same Minkowski inequality - McDiarmid concentration argument as in Lemma 22 to

conclude that when j = i and k 6= i

E
(

∆i
i,k(S̃i)

)2
= O(d2) (27)

By a similar argument for case 2, when j 6= i and k = i,

E
(

∆i
j,i(S̃i)

)2
= O(d2) (28)
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We consider case 3. Let j ∈ N(i) and k 6∈ N(i) ∪ {i}. Then,

∆i
j,k(S̃i) = −

(
2(dj,S̃i − dk,S̃i + dj,k)− 1

)
1j∈S̃i1k∈S̃ci

Clearly, dj,Si ∼ Bin(p, d − 1) and dk,Si ∼ Bin(p, d). Using similar reasoning as case 1, we

conclude that when j ∈ N(i) and k 6∈ N(i) ∪ {i}

E
(

∆i
j,k(S̃i)

)2
= O(d) (29)

We can repeat a similar argument for case 4 to conclude that when j 6∈ N(i) ∪ {i} and
k ∈ N(i),

E
(

∆i
j,k(S̃i)

)2
= O(d) (30)

All theO() in the bounds above are uniform for p ∈ [0, 1]. There are at most 2n pairs j, k
which satisfy cases 1 or 2. There are at most 2nd pairs which satisfy cases 3 or 4. Therefore,

using equations (26) (27) (28) (29) (30)√√√√√E

∑
j,k

∆i
j,k(S̃i)

2

= 2nO(d) + 2ndO(
√
d) = O(nd

3
2 )

Therefore, we conclude from equation (25) that for every i ∈ V

E(vari(F (ε))) = O(n2d3)

By Efron-Stein method, we conclude that

var(F (ε)) = O(n3d3)

We bound the second term in Theorem 14

Lemma 26 Let s ∈ (δ, 1− δ) with 0 < δ < 1
2 .√

var(E((Y ′ − Y )2|S))√
2πλ

= O

(√
d

n

)
(31)

The bound above holds uniformly for s ∈ (δ, 1− δ).

Proof Using Lemma 25 in equation (21) and using the fact that σ2 = Θ(nd) for all

s ∈ [δ, 1− δ] uniformly, we conclude√
var(E((Y ′ − Y )2|S))√

2πλ
= O

(√
d

n

)
(32)
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Proof [Proof of Theorem 12] We use Lemmas 26 and 24 along with Theorem 14 to show

that

dW(L(Y ),N (0, 1)) ≤ C
√
d

n

We conclude the bound for the Kolmogorov metric using the fact that when one of the

arguments has the standard normal distribution, dKS ≤ C
√
dW for some absolute constant

C.

Appendix C. Proof of Concentration of Quadratic Forms

We continue here from the end of Section 6. We refer to Chatterjee (2007) for details of the

exchangeable pairs method for concentration inequalities and theorem 2.3 in Boucheron

et al. (2013) for properties of sub-gamma distributions.

We begin with the Stein pair (S, S′) defined in Section 5 with |S| = l and 0 ≤ l ≤ n.
Following the notation in Chatterjee (2007), we take F (S, S′) := T (S)− T (S′). Then,

f(S) := E
[
F (S, S′)|S

]
= λ(T − E(T ))

and

∆(S) :=
1

2
E
[
(f(S)− f(S′))F (S, S′)|S

]
=
λ

2
E
[
(T − T ′)2|S

]
=

4λ

n2

∑
j∈V

∑
k∈V

(dj,S − dk,S + dj,k)
2
1j∈S1k∈Sc

:=
4λ

n2

∑
j∈V

∑
k∈V

g2
j,k(S)1j∈S1k∈Sc (33)

From Theorem 1.5 in Chatterjee (2007),

E((f(S))2q) ≤ (2q − 1)qE(∆(S)q)

=⇒ E(T − E(T ))2q ≤
(

2q − 1

λ2

)q
E(∆(S)q)

= 4q
(

2q − 1

λ

)q
E

 1

n2

∑
j∈V

∑
k∈V

g2
j,k(S)1j∈S1k∈Sc

q

≤ 4q
(

2q − 1

λ

)q 1

n2

∑
j∈V

∑
k∈V

E
[
gj,k(S)2q

]
≤ 2.4q.

(
2q − 1

λ

)q
q![2d(1 + o(1))]q

≤ 2.(2q)!.
(√

4nd(1 + o(1))
)2q

(34)
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Where we used Jensen’s inequality in the third step and Equation (19) in the fourth step.

Following the proof of Theorem 2.3 in Boucheron et al. (2013), we conclude that for

every γ such that 2|γ|
√

4nd(1 + o(1)) < 1,

logE exp γ(T − ET ) ≤ 32ndγ2(1 + o(1))

1− 16ndγ2(1 + o(1))

Which is the required result in Equation (5) This follows from a simple power series

argument.

Appendix D. Proof of Theorem 11

We use the notation established in Section 4.

Proof [Proof of Theorem 11] Consider the first case: βdreg
n

√
nd = Θ(σnβ

dreg
n ) ≥ Ln → ∞.

We first fix the parameters βdreg
n , βCW

, hdreg
and hCW

. pn and qn satisfy Conditions C1-C4
of Theorem 9 as shown in Section 4.

We invoke Theorem 9 to conclude that for some choice of Tn depending only on τn, Ln
and Sn, the canonical test T can(Tn, gn) can distinguish between pn (with given parameters

βCW
, hCW

, βdreg
n and hdreg

) and qn with a single sample with probability of error

perror ≤ f(Ln, αn, τn)→ 0

We conclude from Remark 10 that the canonical tests T (Tn, gn) and T (Tn, κIsing) are the

same. Therefore, the test T (Tn, κIsing) has the same success probability for the same choice

of Tn. κIsing doesn’t depend on the unknown parameters. The parameters Sn, τn and

αn depend only on βmax and hmax. Therefore, given Ln, Tn can be chosen without the

knowledge of the unknown parameters. The probability of error tends to 0 uniformly

for every choice of the unknown parameters. Hence, we conclude that the canonical test

T (Tn, κIsing) succeeds with high probability for any choice of the unknown parameters.

We now consider the second case: βdreg
n

√
nd = Θ(σnβ

dreg
n ) ≤ 1

Ln
→ 0. It is sufficient to

prove that for a specific sequence (βCW
n , βdreg

n ) and external fields (hdreg, hCW),

dTV(pn, qn)→ 0 .

We take βCW = ndβdreg
n

n−1 and hdreg = hCW
. A simple calculation using Lemma 16 we show

that

em(g) = Eg(Xm) = 0 .

Using Equation (5), we conclude

g(Xm)− em(g) = −2 (T (Sm)− E [T (Sm)])
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Where Sm = S(Xm). Clearly, for n large enough, we have 4βdreg
n

√
4nd(1 + o(1)) < 1. We

shall denote Tm :
d
= T (Sm)

Ep
[
eβ

dreg
n g

]
=

∑
m0∈Mn

p (m(x) = m0)E
[
eβ

dreg
n g(Xm)

]
=

∑
m0∈Mn

p (m(x) = m0)E
[
e−2βdreg

n (Tm−E[Tm])
]

≤ e

128nd(βdregn )
2
(1+o(1))

1−64nd(βdregn )
2
(1+o(1))

≤ e
128nd(βdregn )

2
(1+o(1))

1−8β
dreg
n
√
nd(1+o(1))

(35)

Where we have used Equation (5) in the second to last step. To bound the variance varpg,
we note that Ep(g) = 0 and Eg(Xm) = 0. Therefore,

varpg = Epg2 =
∑

m0∈Mn

p (m(x) = m0)Eg2(Xm0) =
∑

m0∈Mn

p (m(x) = m0)σ2
m0

(36)

Clearly, βCW → 0. Therefore, for n large enough, βCW < 1. We refer to the large de-

viations result for Curie-Weiss model given in Ellis (2007) to conclude that p(|m(x)| >
mmax(hmax)) ≤ C1e

−nC
for some positive constants C1 and C. Clearly,

σm0 ≤ Cn2d2

for every m0. Invoking Theorem 12, we conlude that whenever m0 ≤ mmax(hmax), σm0 ≤
D
√
nd for some constant D. Plugging these results in Equation (36), we conclude that

varp[g] ≤ Dnd+ C1n
2d2e−nC = O(nd) (37)

Therefore, using Equations (37) and (35) we conclude that for this particular choice

of βCW
and hCW

, p and g satisfy Condition C5. Therefore, invoking the second part of

Theorem 9, we conclude that

dTV(pn, qn)→ 0 .

which proves our result.

Appendix E. Proof of Theorem 15

Consider Erdős-Rényi model over n vertices. We let N =
(
n
2

)
, the maximum number of

edges. Consider X := {0, 1}N . We index elements of x ∈ X by tuples e = (i, j) such that

i, j ∈ [n] and i < j. We can represent any simple graph G = (V,E) over n vertices by an

element x(G) ∈ X such that x(G)e = 1 iff e ∈ E. Henceforth we use ‘eth component of x’
and ‘edge e’ interchangeably.

Consider anN ×N symmetric matrixH such thatHe,f ∈ {0, 1} andHe,f = 1 iff e and f
have a common vertex. Clearly, H is the adjacency matrix of a d = 2(n− 2) regular graph
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over N vertices. We partition X into Hamming spheres. For m ∈ {0, 1, . . . , N} =: Mn,

defineAm ⊂ X to be the set of simple graphs over n vertices with exactlym edges. Here we

define the function E(x) := m(x) to be the number of edges in the graph associated with

x ∈ X . Clearly, the number of V graphs ( ) which are subgraphs of the graph represented

by x is

V (x) =
1

2

∑
e,f

xexfHef =
1

2
xᵀHx

Let 1 be the all one vector. A simple calculation using the fact thatH is a regular matrix

shows that:

(2x− 1)ᵀH(2x− 1) = 4xᵀHx− 41ᵀHx+ 1
ᵀH1

= 8V (x)− 8(n− 2)E(x) + 2(n− 2)N (38)

Clearly, 2x− 1 ∈ {−1, 1}N and |{e : 2xe − 1 = 1}| = E(x).
Let µ be the probability measure associated with G(n, pn) (p(·) in the notation of The-

orem 9) such that δ < pn < 1 − δ for some constant δ > 0. We shall drop the subscript of

pn for the sake of clarity. Since E is a binomial random variable, we can easily show using

McDiarmid’s inequality that:

µ

(
E(x) ∈

[
δ

2
N,

(
1− δ

2

)
N

])
≥ 1− 2e−c(δ)N =: 1− αn

For some constant c(δ) > 0. Therefore, we let

Sn = Mn ∩
[
δ

2
N,

(
1− δ

2

)
N

]

We let g(x) =

(
n

(
β1− 1

2
log p

1−p
β2

)
E(x) + V (x)

)
.

Remark 27 Let µ(m) be the conditional distribution µ(·|E(x) = m) (p(m) in Section 3). Similar
to Remark 10 about Ising models, we note that µ(m) is the uniform distribution over the graphs with
fixed number of edges m irrespective of the value of p (i.e, uniform distribution over the set Am).
Proceeding as in Remark 10, let X̂ be the given sample and m̂ = m(X̂). We can decide whether
m̂ ∈ Sn without the knowledge of the unknown parameters and since

g(X̂)− em̂(g) = V (X̂)− em̂V (x)

and

varm̂(g) = varm̂(V )

we can decide whether g(X̂)−em̂(g)
σm̂(g) ≥ T without the knowledge of the unknown parameters. We

conclude that T (Tn, gn) = T (Tn, V )
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Let Xm ∼ µ(m)
. Therefore, whenever x ∈ Am for m ∈

[
δ
2N,

(
1− δ

2

)
N
]
, 2Xm − 1

satisfies the hypothesis for Theorem 12. Using Equation (38) and the fact that E(Xm) = m
is a constant a.s. we conclude that:

var (g(Xm)) =: σ2
m = Θ(n3)

and

dKS

(
L
(
g(Xm)−Eg(Xm)

σm

)
,N (0, 1)

)
≤ C 4

√
1

n
=: τn

Where we have used the fact that degree d = Θ(n) and number of rows/columns is

N = Θ(n2). All the Θ(·) and bounds hold uniformly for allm ∈ Sn. Let βn := 2β2
n . We take

ν(x) = µ(x) e
βng(x)

Eµeβng
=: ERGM(β1, β2).

To prove Theorem 15, we will need the following Lemma, where we get very small

variance of a quadratic function by picking the right coefficient.

Lemma 28 Let p ∈ [0, 1] be arbitrary. Then there exists an absolute constant c such that whenever
2β2
n =: βn <

c(1−o(1))
n3 for some absolute constant c then for some choice of β1 as a function of p and

β2, the following hold:

1. varµ(g) = O(n3) = O(N
3
2 )

2. logEµ
[
eβn(g−Eµg)

]
≤ Cn3β2

n(1+o(1))

1−Dβn
√
n3(1+o(1))

+ C1β2
nn

2(1+o(1))
1−|βn|D1n(1+o(1))

Where C, C1, D and D1 are absolute constants

We defer the proof of this Lemma to Appendix F.

We proceed with the proof of Theorem 15.

Proof [Proof of Theorem 15] Since βn := 2β2
n , it is sufficient to consider the regimes:

βnn
3/2 →∞ and βnn

3/2 → 0. By Remark 27, T (Tn, gn) = T (Tn, V ), which doesn’t depend

on parameters β1, p or β2. The proof of the first part is similar to that in Theorem 11 and it

follows from the discussion above and Theorem 9.

We now assume β2 ≤ 1
Ln

1√
n
and fix p ∈ [δ, 1−δ]. To prove the second part it is sufficient

to show one distribution inH0 is near to one distribution inH1 in the total variation sense.

We will β1 as a function of p and β2 such that dTV(µn, νn)→ 0.
Using the notation of Theorem 9, we have σn = Θ(n3/2). By Lemma 28, we conclude

that Condition C5 for Theorem 9 holds for some choice of β1 and hence dTV(µn, νn)→ 0

Appendix F. Proof of Super Concentration

Lemma 29 If E ∼ Bin(N, p), then,

E(E −Np)2q ≤ q!CqN q

For some absolute constant C independent of N
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Proof By McDiarmid’s theorem,

P (|E −Np| > t) ≤ 2e−
2t2

N

We use the equivalence of moment inequalities and sub-gaussian concentrations (refer

Theorem 2.1 in Boucheron et al. (2013)) to conclude the result.

Let X be a random vector taking values in {0, 1}N such that its coordinates are i.i.d.

Ber(p). Consider the function h(X) = E2(X)− (2pN + 1− 2p)E(X). As we shall see, this

choice of coefficients is special since it corresponds to a very small variance.

Obtain the random variable X ′ as follows: Choose n random index I ∼ unif([N ]).
Xi = X ′i whenever i 6= I and X ′I ∼ Ber(p) independent of X . Clearly, (X,X ′) is an

exchangeable pair.

Lemma 30

1. (h(X), h(X ′)) is an η-Stein pair with respect to F(X) where η = 2
N .

2. Eh(X) = −p2N(N − 1)

Proof We shorten E(X) to E. Let a := −(2pN + 1− 2p)

E
[
h(X ′)− h(X)|X

]
= p

(
1− E

N

) (
(E + 1)2 + a(E + 1)− E2 − aE

)
+ E

N (1− p)
(
(E − 1)2 + a(E − 1)− E2 − aE

)
= − 2

NE
2 + E

N [2pN − 2p+ 1− a] + p(1 + a)

= − 2
N h(X)− 2p2(N − 1)

Using the definition of a Stein pair and the fact that Eh(X) = Eh(X ′), we conclude the

result.

We proceed in the same way as Section 6.

F (X,X ′) := h(X)− h(X ′)

f(X) := E
[
F (X,X ′)|X

]
= η(h(X)− Eh(X))

∆(X) :=
1

2
E
[
(f(X)− f(X ′))F (X,X ′)|X

]
=
η

2
E
[(
h(X)− h(X ′)

)2 |X]
=
η

2

[
p
(
1− E

N

)
(2E − 2pN + 2p)2 + E

N (1− p)(2E − 2pN + 2p− 2)2
]

≤ 2η
[
p(E − pN + p)2 + (1− p)(E − pN + p− 1)2

]
(39)
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From Theorem 1.5 in Chatterjee (2007), for every q ∈ N,

E((f(X))2q) ≤ (2q − 1)qE(∆(X)q)

=⇒ E(h(X)− Eh(X))2q ≤
(

2q − 1

η2

)q
E(∆(X)q)

= 2q
(

2q − 1

η

)q
E
[
p(E − pN + p)2 + (1− p)(E − pN + p− 1)2

]q
≤ 2q

(
2q − 1

η

)q
E
[
p(E − pN + p)2q + (1− p)(E − pN + p− 1)2q

]
= 8q

(
2q − 1

η

)q
E
[
p
(
E−pN

2 + p
2

)2q
+ (1− p)

(
E−pN

2 + p−1
2

)2q
]

≤ 8q

2

(
2q − 1

η

)q (
E
[
(E − pN)2q

]
+ p2q+1 + (1− p)2q+1

)
≤ C2q(2q)!N2q

(40)

Where we have used Equation (39) in the second step, Jensen’s inequality for the convex

function φ(x) = |x|q in the third step, Jensen’s inequality again for the function φ(x) = |x|2q
and Lemma 29 in the final step.

Following the proof of Theorem 2.3 in Boucheron et al. (2013), we conclude that for

every γ such that |γ|CN < 1,

Eeγ[h(X)−Eh(X)] ≤ 2
C2γ2N2

1− |γ|CN
(41)

Where C is an absolute constant.

We use Equation (5) along with Equation (38) to conclude that for everym ∈ {0, . . . , N}
and some absolute constants C and D,

logEeβng(Xm) ≤ βnEg(Xm) +
Cn3β2

n(1 + o(1))

1−Dβn
√
n3(1 + o(1))

(42)

Proof [Proof of Lemma 28] The bound on variance follows from the bound onMGF shown

in the second part of the theorem after an application of Theorem 2.3 in Boucheron et al.

(2013). Therefore, it is sufficient to show the bound on the MGF.

Eg(Xm) = E[g(X)|E(X) = m]

= EV (Xm) + n

(
β1 − 1

2 log p
1−p

β2

)
m

=
n− 2

N − 1
m2 + n

(
β1 − 1

2 log p
1−p

β2

)
m− n− 2

N − 1
m

Therefore, we can choose β1 a function of p and β2 such that :

E[g(X)|E(X)] =
n− 2

N − 1
h(X) =

n− 2

N − 1

(
E2 − (2pN + 1− 2p)E

)
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Therefore,

Eµ
[
eβn(g−Eµg)

]
= Eµ

[
E
[
eβn(g(Xm)−Eµg)

∣∣∣E(X) = m
]]

≤ e
Cn3β2n(1+o(1))

1−Dβn
√
n3(1+o(1))Eµ

[
eβn

n−2
N−1

(h(X)−Eµh)
]

≤ e
Cn3β2n(1+o(1))

1−Dβn
√
n3(1+o(1)) e

2
C2β2nn

2(1+o(1))

1−|βn|Cn(1+o(1))

Here, we have used Equation (42) and the fact that for this particular choice of β1, Eµh =
n−2
N−1Eµg. In the third step we have used Equation (41).
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