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Abstract

We study the problem of testing, using only a single sample, between mean field distribu-
tions (like Curie-Weiss, ErdGs-Rényi) and structured Gibbs distributions (like Ising model
on sparse graphs and Exponential Random Graphs). Our goal is to test without know-
ing the parameter values of the underlying models: only the structure of dependencies
is known. We develop a new approach that applies to both the Ising and Exponential
Random Graph settings based on a general and natural statistical test. The test can dis-
tinguish the hypotheses with high probability above a certain threshold in the (inverse)
temperature parameter, and is optimal in that below the threshold no test can distinguish
the hypotheses.

The thresholds do not correspond to the presence of long-range order in the models.
By aggregating information at a global scale, our test works even at very high temperatures.
The proofs are based on distributional approximation and sharp concentration of quadratic
forms, when restricted to Hamming spheres. The restriction to Hamming spheres is
necessary, since otherwise any scalar statistic is useless without explicit knowledge of the
temperature parameter. At the same time, this restriction changes the behavior of the
functions under consideration, making it hard to directly apply standard methods (i.e.,
Stein’s method) for concentration of weakly dependent variables. Instead, we carry out
an additional tensorization argument using a Markov chain that respects the symmetry of
the Hamming sphere.

1. Introduction

Hypothesis testing for network data has received a lot of attention in recent years. There are
two basic types of network data: first, the network or graph itself; and second, observations
from the nodes in a network, where the network describes interactions between the nodes.
A recent example of the first type is studied in the paper of Bubeck et al. (2016), which
gives an optimal single-sample test to distinguish between geometric random graphs and
Erdgs-Rényi random graphs by counting the number triangles in the graph. Similarly,
Gao and Lafferty (2017) use distributional approximation for a specific statistic to distin-
guish between an Erd6s-Rényi random graph and sample from the Stochastic Block model.
Another paper in this direction is that of Ghoshdastidar et al. (2017), who consider the
problem of deciding whether two given graphs are samples from the same graph model
or from two different models. Their method is based on existence of a statistic that con-
centrates at different values for the two different graph models. The problem of testing if
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a known graph (with atleast 2(logn) vertices) is planted in an Erdés-Rényi random graph
with known edge parameter was studied by Javadi and Montanari (2015). They give sharp
single sample thresholds for the problem and the corresponding statistical test which can
achieve this threshold. As will be seen below, our result on testing graph models differs
in the fact that we consider the appearance of much smaller subgraphs and the subgraphs
are not ‘planted” explicitly.

As far as data from nodes in a network, Martin del Campo et al. (2017) considers the
problem of tractably finding goodness-of-fit for Ising models. Daskalakis et al. (2016)
developed methods for testing whether samples are coming from a given known Ising
model. They assume full knowledge of all the model parameters, and use a test based on the
empirical correlations between nodes, requiring polynomially many independent samples.
In contrast, we focus on testing using a single sample and use the special structure present in
the mean-field case to give a sharp threshold above which single sample testing is possible,
using a general framework applicable to other models. Daskalakis etal. (2017) and Gheissari
et al. (2017) show concentration for polynomials of Ising models at high temperature, and
improve the sample complexities obtained in Daskalakis et al. (2016) for testing whether
samples are from the product distribution (i.e., coordinates are independent) or from an
Ising model 7 guaranteed to have KL-divergence at least ¢ from the product distribution.
Analogously, Canonne et al. (2017) consider the problem of determining whether observed
samples from a distribution P agree with a known fully-specified Bayesian network @),
using multiple samples; and also the problem of testing whether two unknown Bayes nets
are identical or not, using multiple samples. Finally, this latter paper considers also structure
testing, i.e., testing if samples are from a Bayes net with a certain structure. Our objectives
differ from these papers in that: 1) our test is based on a single sample; and 2) there
are no assumptions of separation in KL-divergence or total variation on the distributions
generating the sample. Instead, the guarantees are in terms of the natural model parameter.
Mukherjee (2013) considers the problem of consistent parameter estimation of the two star
(wedge graph) ERGM considered in this paper. Their method assumes that the strength
of the ‘'wedge interaction” 5> € (0, c0) is fixed. Whereas, in our work, the sharp threshold
for distinguishing this graph from Erdds-Rényi graphs is shown to be 52 = @(%), which
goes to 0 with n. It is unclear how their parameter estimation methods can be used in this
case to obtain the sharp threshold behavior.

1.1. Results

In this paper we prove an abstract result, Theorem 9, that provides a framework for es-
tablishing near-optimal hypothesis tests between data from a network with a given depen-
dency structure (like Ising model, Exponential Random Graph Model) and unstructured
data (like Curie-Weiss, Erdés-Rényi). We do not assume knowledge of model parameters,
which makes the problem more challenging, but also more applicable to many settings
where there is no way to learn them accurately based on one sample.

As the first of two applications developed in this paper, we consider the problem of
testing whether the network data comes from an Ising model over a known d-regular
graph with unknown inverse temperature 3 (also with possibly nonzero external field) or
alternatively from a permutation invariant distribution (which includes the Curie-Weiss
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model at unknown temperature). We motivate this problem by discussing an adversarial
data scenario in Section 1.2.

Theorem 1 (Informal version of Theorem 11) We can distinguish Ising models on d-regular
graphs from the Curie-Weiss model (complete graph) with high probability with one sample if the
inverse temperature 3 of the Ising model satisfies f/nd — oo. Conversely, if v/nd — 0, then
there is no statistical test that can distinguish them with high probability, even using a constant
number of i.i.d. samples.

Remark 2 We interpret the result above as follows: whenever 3v/nd — oo, an adversary cannot
come up with a Curie-Weiss sample at some temperature such that it can be confused for a sample
from the d reqular Ising model. Conversely, whenever 3+/nd — 0, the adversary can choose a Curie-
Weiss model at a specific temperature depending only on [ such that the total variation distance
between these distributions converges to 0. The problem is formulated in the minimax sense.

The result works for every d-regular graph. Basak and Mukherjee (2017) showed that
certain properties of Ising models are well-approximated by the Curie-Weiss (mean-field)
model, including the limit of the log-partition function. It was shown in Bresler and
Nagaraj (2017) that pairwise correlations, and more generally kth-order moments, of the
Curie-Weiss model can be well approximated on average by expander graphs, yet the
result above holds even when the underlying graph is an expander. The test also works
deep inside the high temperature regime (3 < ©(})), when there is no global order, by
aggregating small dependencies from the entire network.

Our results also apply to certain random graph distributions, and in Section 7 we apply
our framework to compare G(n,p,) (the Erd6s-Rényi model) and exponential random
graphs. Let ERGM(f, B2) be the exponential random graph with respect to the single

edge E and the V-graph (/) with inverse temperature parameters 3 = (31, 32) € R% The
parameter [3; controls edge density, while 32 encourages presence of V-subgraphs.

Theorem 3 (Informal version of Theorem 15) We can distinguish G(n,p) and ERGM(p)
with high probability with one sample if \/nfB2 — oo. Conversely, if \/nfz — 0, then there is
no test which can distinguish them with high probability using a constant number of i.i.d. samples.

Remark 4 Specifically, we can distinguish between these models even with the same edge density,
as long as Ba\/n — oco. Whenever Ba+/n — 0, we can choose p and (31 such that the total variation
distance between these distributions converges to 0.

In Bhamidi et al. (2011) it is shown that in the high-temperature regime $, < ©(1), any finite
collection of k edges converges in distribution to independence. (In G(n, p) all edges are in-
dependent.) Our test aggregates global information to distinguish between them and works
when the dependence parameter (5 is much smaller than the high-temperature threshold.
Bhamidi et al. (2011) and Eldan and Gross (2017) consider existence of unique solutions to
a certain fixed point equation to define the high temperature regime in ERGMs. We use an
entirely different method to identify the phases in our setup—where we choose parameters
of degree 2 polynomials of binomial random variables to minimize the variance—to choose
B1 as a function of 5 and p such that ERGM(31, f2) converges in total variation distance to
G(n,p) whenever 2y/n — 0. This is illustrated in Appendix F.
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Outline. The next subsection motivates our results with an adversarial data detection
scenario. Section 2 introduces notation and defines the Ising and exponential random
graph models, formulates the statistical problem, and gives intuition for the test we use in
our applications. In Section 3 we state our abstract hypothesis testing result, which is based
on distributional approximation. In Section 4 we apply our framework to prove Theorem 11
for the Ising model. In Section 5 we prove the required distributional approximation
for quadratic forms using Stein’s method and in Section 6 we prove sharp concentration
inequalities for quadratic forms over the Hamming sphere using a novel method.

1.2. Motivating example: detecting fraudulent data

Suppose that we have collected responses to a survey from a set of people, indicating
a binary preference for something (iPhone or Android, Democrat or Republican, etc.).
Moreover, we have access to the network structure G (e.g., induced Facebook subgraph)
and the data is modeled by a family of probability distributions {Qg\ : A € A} (e.g.,
Ising models on G) for some parameter set A. An adversary may attempt to counterfeit
the data generated by the network using instead a distribution P, possibly biased (e.g.,
to fix an election). We assume that the adversary may know the graph, but does not
know the labeling of the nodes. The adversary seeks to minimize the probability of the
tampering being detected, which amounts to minimizing E, infyca drv (P, Qc,»), Where
7 is a uniformly random permutation encoding the adversary’s prior over the node labels.

The analysis of the quantity E;infycp drv(P, Qrg ) is fairly involved and requires
convexity of the class of distributions. Our framework is able to handle testing against a
convex combination of distributions, but for this manuscript we instead relax this objective
to infrep Exdrv (P, Qa ).

For any permutation 7, let the distribution 7P be defined by 7P(z) = P(n(z)). For
arbitrary A € A,

_ 1 _
Exdrv(P, Qraa) = Exdry(r ' P,Qc,\) = o > dr(m P, Qe

> dtv (Z Lr7lp, QG,A) : (1)

™

In the first step, we have used the fact that 7Q¢ \ 4 Qrc,x (due to relabeling of vertices).
In the third step we have used Jensen’s inequality for the convex function dty. Clearly, the
distribution P := 1.3 7! Pis permutation invariant.

If there is a unique optimal distribution F for the adversary, we conclude that it must
be a permutation invariant distribution. Some of the key features of the problem above are:
There is only one sample available, the underlying network structure and model is known
and the adversary, who is agnostic to the network structure, comes up with permutation
invariant data to mimic the data from the network. The considerations above justify the
setup in Section 4, where the true network data is taken to be from an Ising model.
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2. Notation and Definitions

E,f denotes the expectation with respect to the probability measure p. For any two
probability measures 1 and v over R, we denote the Kolmogorov-Smirnoff distance as
dis(p,v) = sup,er [p({z : © < x0}) — v({z : © < x0})|. Let Lip; (R) be the class of all
1-Lipschitz real-valued functions over R. For ;. and v probability measures over R, the
Wasserstein distance is defined as: dw(u,v) = supseip,r) Epf — Euf. For any random
variable X, let £(X) be the probability law of X. Let ®(z) denote the standard normal
cumulative distribution function.

2.1. Ising Model

The interaction matrix J is a real-valued symmetric n x n matrix with zeros on the diagonal
and the external field is a real number h. Define the Hamiltonian H; : {-1,1}" — R
by Hyn(z) = 32TJz + h (3, 2;). Construct the graph G; = ([n], E;) with (i, ) € Ej iff
Jij # 0. AnIsing model over graph G ; with interaction matrix J and external field A is the
probability measure 7w over {—1,1}" such that 7(z) o exp (Hj(x)).

For any simple graph G = ([n], E) there is an associated symmetric n x n adjacency
matrix A(G) := (A;;), where A;; = 1if (4,j) € E and A;; = 0 otherwise.

Let K, be the complete graph on n nodes. The Curie-Weiss model at inverse tem-
perature Y > 0 and external field h“V is the Ising model with interaction matrix

,8CW
gA(Kn), which corresponds to the distribution p(z) o« e 2 nm?4+nhVm - Hore m =
m(z) = L3  ; is called the magnetization. The Curie-Weiss model is an unstruc-

tured/mean field model. It is permutation invariant and assigns the same probability to
states with the same magnetization m(z).

We will compare the above model to the Ising model on a d-regular graph G4 = ([n], Eqg).
For a given inverse temperature 3978, we consider the Ising model with interaction matrix
BYes A(G4) and external field h9r°&. We shall call this ‘d-regular Ising model”.

Remark 5 The Curie-Weiss model exhibits non-trivial behavior when SV = O(1). It undergoes
a phase transition when BV = 1, below which pairwise correlations are O(L) and when BV > 1
they are ©(1). The pairwise correlations tend to 1 as BV — oco. As considered in Section 4,
BV < Bmax for fixed Bmax is a natural choice of Curie-Weiss models. The non-trivial regime
for the d-reqular Ising model is Bareg O(%). As shown in Section 4, our test works as long as

ﬂSreg > \/%, which includes the regime of interest.

2.2. Exponential Random Graph Model

The Erdés-Rényi random graph model G(n,p) for p € [0, 1] is the distribution of simple
graphs on n vertices such that each edge is included independently with probability p.
Consider fixed finite simple graphs { H;} X |, such that H; is the graph with two vertices
and a single edge. Let 5 € R x (R*)Kﬁl. Given a graph G over n vertices, define N;(G) to
be the number of edge preserving isomorphisms from H; into G (i.e, no. of subgraphs of
G (not necessarily induced), which are isomorphic to H;). In particular N, (G) is twice the
number of edges in G. Let v; be the number of vertices in H;. In the following definition
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of Exponential Random Graph Model (ERGM)), to allow non-trivial behavior we follow the
convention in Bhamidi et al. (2011) that V;(G) are of the same order of magnitude.

We construct the Hamiltonian Hz(G) = 25 | 5; Ni(G) | The exponential random graph

model ERGM(f) is the probability distribution V(T)l over the set of simple graphs on n
vertices such that v(G) = 67;27;;;), where Z([3) is the normalizing factor. Note that when
Bi = 0 fori > 2, ERGM(f) is the same as G(n, %) Roughly speaking, ERGM is like
G(n,p), but it favors the occurrence of certain subgraphs. Therefore, G(n, p) is the mean

field model and ERGM is the structured model. In this paper, we take K = 2 and fix H» to
be the wedge graph (/) and denote the resulting model by ERGM(1, f82).

2.3. Problem Formulation

We formulate our problem as a minimax hypothesis testing problem:

Hyj : Data is from some mean field model P, with unknown v € T’

Hj : Data is from a structured model @) with unknown parameters A € A.

A~

A statistical test 7 is a decision function Dy : @ — {Ho, H1}. Letpi(v, T) := P(Dr(X) =
Hi|X ~ Py)and po(\, T) :=P(D7(X) = Ho|X ~ Q). We take the risk of the test 7 to be
worst case Bayesian probability of error:

R(T) = supsupmax(p1(y,T),p2(\, T)) -
~vel AeA

We describe the philosophy behind theorems 11 and 15 below. We keep I' fixed and
consider two different regimes for A:

1. Case 1: A is such that the interaction parameter /5 is large enough for every Q.

We explicitly construct a test 7 to for specific P, and @, such that pi(vy,7) — 0 and
p2(X, T) — 0. We then extend this to the composite case by proving that the test does
not actually require the knowledge of the parameters v and A and hence R(7) — 0.

2. Case 2: A is such that the interaction parameter /3 is small for every Q).

We show that in this case, for every sequence of tests {7,}, liminf, .. R(7,) > % ,
which is the same as random labeling w.p 4. To prove this, we show that for
every A € A in this set, we can find v € I" such that drv(P,,Q,) — 0. Since
max(p1 (v, T),p2(A, T)) > 3(1 — drv(Py, @»)), we conclude the result.

2.4. Intuition behind the Comparison Result

Let ¢(-) be the Ising model with interaction matrix pdreg B (p9re8 unknown) and the Curie-
Weiss model p(-) (at an unknown temperature 3“V). The measure ¢(-) assigns higher
probability to states with higher value of 2T Bz, so a natural idea for distinguishing between
p and ¢ would be to check if 2T Bz has a large value. However, the inverse temperature
parameters are unknown, which implies that we can have the same expected value for the
statistic under both hypotheses (for some choice of temperature parameters).
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Instead, we exploit the symmetry in the Curie-Weiss model. Let Q,, = {—1,1}" and
recall the magnetization m(z) = # Let Ay, = {z € Qpn : m(x) = mp} for mg €
{-1,-1+ %, ..., 1} =: M,,. We can partition €2, as Q, = Upenmr, Ame-

By symmetry, the Curie-Weiss model p(-) gives the uniform distribution over each set
A, irrespective of the inverse temperature and external field, which mitigates our initial
problem. The distribution ¢(-), given the magnetization m, assigns most of the probability
to states = with large values of 2T Bx. We first prove a central limit theorem for g(x) := 2T Bx
when z is drawn uniformly from the set A4,,,,. Then we show that the event

9(2) ~ Byly(a)lz € Aug] _
Vvary(g(z)lz € Amg)
has a small probability under p(-|z € A,,,) for large values of T', but has a large probability

under ¢(-) because it favors larger values of g(x). This gives us a distinguishing statistic for
large enough inverse temperature 348,

Similarly, ERGM(1, 52) favors the appearance of "V’ subgraphs (/) when compared to
G(n, p), but the expected number of "V’ subgraphs can be made equal by increasing p. We
overcome this issue by exploiting the symmetry in G(n, p): it assigns the same probability
to all graphs with the same number of edges. So conditioned on the number of edges in
the sample graph, we check if the number of “V” subgraphs are disproportionately large.

3. Abstract Result

We consider a sequence of probability spaces (€2, Fy,,pn), n € N. Consider a F,, measur-
able, real valued function g,, such that E,, [¢’9"] < oo for all 3, € R and define measure
¢n using Radon-Nikodym derivative as:

dgn, eBan
dpn By, [enon]

We try to compare the distributions p,, and ¢, in the total variation sense. We shall use
the notation defined in the following discussion of the abstract result even when dealing
with specific examples. Consider the following conditions:

C1 For some finite index set M,, such that |M,| = M(n) € N, we can partition Q =
Umen,, Am with disjoint sets A, such that p,(A,,) > 0V m € M,,.

C2 For a set S, C My, pp(Umes, Am) > 1 — a, for some sequence o, — 0.

C3 Let p(™) be the probability measure over A,, defined by p(™) (A) := pﬁ ’21(4’2) VACA,

and A € F,. Let X,, ~ p™ and X ~ p,. Let em(gn) = Elgn(Xm)] and 02,(g,) :=
var [gn(Xm)]. For all m,m’' € S,

2
am’ (gn)

for some constants c,C' independent of n. We let o,, be any sequence such that

com(gn) < on < Cop(gn) for some absolute constants ¢ and C for every m € S,.

Although g,, can depend on f3,, gn(z) — e (gn) does not depend on 3, for z € A,,.
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C4 There is a sequence 7, — 0 such that

sup dks (ﬁ (M> ,N(0, 1)) < Tp.

ag

C5 Let X ~ p,. C3 holds, var(g,(X)) = O(c2) and

2 2
log E [eﬁ(gn(X)ngn(X))} <- C|ﬁ5 G;
—13IDo.

forall |5] < D%m for absolute constants C, D independent of n.

Remark 6 Condition C4 can be relaxed to convergence to a fixed distribution with a strictly positive
tail. We use standard normal distribution because it is sufficient for the examples in this paper.

Remark 7 We note that the function g,, can have (3,, as a parameter but, condition C3 requires that
gn(x) — em(z) does not depend on [3,, whenever v € A,,. Therefore, the conditional variances do
not depend on the value of 3,,. A trivial example is: gn(z) = l(z) + Bnm(z). Other examples
satisfying these conditions are given in Sections 4 and 7.

We consider the following simple hypothesis testing problem for data X € €2, and
then extend this test to the composite case in Sections 4 and 7.

Hy: X ~py
Hy:X ~g¢q, forsome /,.

The value of 3, may be unknown.
We define the following test:

Definition 8 (Canonical Test) Let T > 0 and x : Q — R. Define the function m so that
m(z) = mo iff & € Ay,. Given a sample X, we define the decision function D°"(X) € {Ho, H1 }:

1. if m(X) ¢ Sy, then D°"(X) = H;
2. if m(X) € Sy and "= > T then DEN(X) = H,
3. otherwise D" (X) = Hy

The statistical test with decision function D" is the canonical statistical test T<*"(T', k).

We note that the canonical test depends only on the function «, the set S,, and the conditional
measures p{"™). A natural choice of « is: k = g,. We show the following result for this
choice of k. Our metric of comparison will the following ‘probability of error” for any test
T with decision function D:

Perror = max(]P’[D(X) = Hy|X ~ Hl],P[D(X) = H|X ~ H()]) .

Theorem 9 Assume w.l.o.g that 3, > 0. We have the following results.
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1. Suppose that conditions C1,C2,C3, and C4, hold. Then
h_>m drv(Pnsgn) =1 Zfﬁnan — 0 )

If Bpon > Ly for a known sequence L, — oo (3, being possibly unknown), then the
canonical test T<" (T}, gn) can distinguish between p,, and q,, with high probability from a
single sample for T,, — oo depending only on L,, and 7,,. The probability of type 1 and type
2 errors can be bounded above by a function of o, T, and Ly, tending to 0.

2. Suppose that condition C5 holds. Then

hﬁm dTV(pna QR) =0 lfﬁnan — 0 (3)

We defer the proof to Appendix A. The idea behind the first part of the proof is described

in Section 2.4. To understand the proof of the second part of the theorem, we take 2 to be a
Bng(x)
E:pgﬁng *

finite space. Then, ¢(z) = p(x) Condition C5 along with Jensen's inequality implies

that whenever 8,0, — 0,

Chpop
ePrErg < Epeﬂng < PnEr9eT=Dlonlon = (1 + o(1))e nEr9

Therefore, g(z) = (1 — o(1))p(z)e’(9@)~Ex(9)) We use Chebyshev inequality to show that
Bn(g(z) — E,(g)) is small most of the time i.e, ¢(x) = (1 £ o(1))p(z) with high probability.
This proves that the total variation distance converges to zero.

4. Testing Ising Model Structure
We intend to test between the following hypotheses for data X € {—1,1}™

Hj: The datais generated by a Curie-Weiss model at an unknown inverse temperature
0 < BV (n) < Bmax and external field |hV| < hpax < 00

H; : The data is generated by an Ising model on a known d-regular graph at an
unknown inverse temperature 0 < Bdres o and arbitrary external field A48 € R
such that (,Bﬁreg, hYe8) € Aging

We will apply Theorem 9 to prove Theorem 11. We use the notation from the conditions
of Theorem 9. Let z € Q := {—1,1}". We take p, to be Curie-Weiss model at inverse
temperature BV < Bmax and external field h°W such that |h°WV| < hpax < 00 ive, pn(z)
e3ATN M nhWm(@) \where m 1= m(z) =157, 2.

Let G be any known d-regular graph over n vertices with adjacency matrix A and

d = o(n). We take q to be the Ising model with interaction matrix 85 ¢ A and external field
ﬂ%rcg re,
hdreg such that B8 > 0 and h9™°8 € R. That is, g (z) o ¢z *"Aztnh®m(z)

CW d pdreg _pCW
We take g,,(z) = j2TAz — § gsreg m’ + z(njmﬂ"eg +2 e :

m(zx). Therefore,

 pa(a)e i@

) = g ]

9
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Let M,, and A,,, for mg € M, be as defined in Section 2.4. Clearly, A,,, = {z : [{i :
z; = 1}| = X" n}. Magnetization concentration of Curie-Weiss model is well studied (c.f.
Ellis (2007)). The magnetization for the Curie Weiss model concentrates at the roots of the
equation m* = tanh (Bcwm* + hcw). Since BCY < Bmax < 00 and ]hCW| < hmax < 00 one
has for some € > 0 and constants B, C'(Smax; imax) > 0 depending only on Smax and Amax,

pn(m(z) € [-1+6,1—¢€) >1— Be Clmachmain —. 1 _ o
Therefore, we let S,, = M,, N [—1 +¢,1 — €.

Remark 10 Consider the canonical test for Ho and Hy given in Definition 8. Let a sample X with
magnetization 1 = m(X) be given. By definition of S, we can determine whether m(X) € S,
without using (85", h¥8) and (W, hCW). Clearly, p‘™ is the uniform measure over Ay,
irrespective of the value of 5V and h°V. Let X5, ~ p(™. A calculation shows that

%XTAX _E [;X;Axm] — (%) — enlg)

Therefore, o2, := var(g(Xy)) = var (3 X1 AX,,) . We observe that neither of the quantities above
depend on the values of the unknown parameters and hence the same is true for whether or not

9X)=enl9) > T. Letting /<;|Sing(f() XTAX, we have that T (T, gn) = T (T}, Kising )-

om(9)
By Theorem 12, o,,, = O(v/nd) uniformly for all m € S,, and

sup dys (£ (8X2=e20) N (0,1)) < (0L =i,

meSy, n
Theorem 11 Let d = o(n) and L,, be any positive sequence diverging to infinity.

1. If Aising = {(ﬂgreg, hdres) . Bdree > ;L |hAC8| < hyax }, the canonical test T (T, Kising ),
which depends only on Bmax, hmax and Ly, can distinguish Hy and Hy with high probability
for some choice of Tr,( Bmax, Pmax, Ln) — 0.

2. If Aiging = {(Bar8, hres) . garee — o ”, |hdre8| < hpnay }, there is no statistical test which
can distinguish Hy and Hy with high probabzlzty using constant number of i.i.d. samples.

We defer the proof to Appendix D. The idea is to use Remark 10 to conclude 7°*(T;,, gn) =
T (T, Kising) (X)) and then use Theorem 9 to conclude the result.

We note from the proof that above the threshold, the distribution p,, need not necessarily
be the Curie-Weiss model. It can be any family of permutation invariant probability
distribution such that p,(m(xz) € [0,1 — 6]) — 1 for some § > 0 and our proof for the
success of our statistical test goes through.

10
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5. A Central Limit Theorem for Quadratic Forms over Hamming Sphere

In order to apply Theorem 9 to problems of interest, we would like to prove a central
limit theorem with Berry-Esseen type bounds for quadratic forms over Hamming Spheres.
Consider § = {(z1,...,x,) € {—1,1}" : {i : ; = 1}| = sn}. Thatis, S is the Hamming
sphere of radius sn for a fixed s € (0,1). Let X ~ unif(S). Given an adjacency matrix A4,
we intend to prove a central limit theorem for the quadratic form A(X) = $XTAX. The
problem of limiting distributions has been well studied for quadratic forms of i.i.d random
variables (see Hall (1984), Rotar et al. (1979), de Jong (1987), Gotze and Tikhomirov (2002)).
These methods use the independence of the entries of the random vector, which does not

hold here. We use Stein’s method to prove the following result:

Theorem 12 Let d = o(n) and A be the adjacency matrix of a d reqular graph. Let 0 < 0 < s <
1—-6<lando? :=var(A(X))and L = %ISEA(X). Then,

1. 02 =8nds?(1 — s)%(1 + O(%))

2. dys(L(L),N(0,1)) < oyg
C depends only on & and the bound O () holds uniformly for all s € (5,1 — 6).

A pair of random variables (7', 7") is called exchangeable if (7, 7") L (T",7).

Definition 13 We call a real valued exchangeable pair (T,T") an a-Stein pair with respect to the
sigma algebra F if T is F measurable and E(T'|F) = (1 — a)T + aE(T)

We prove Theorem 12 using the following CLT (Theorem 3.7 in Ross et al. (2011)).

Theorem 14 Let (W, W') be an a-Stein pair with respect to the sigma algebra F such that W has
0 mean and unit variance. Let N have the standard normal distribution. Then,

Vvar (W = W)*LF]) | E (W - W)
V2ma 3a

Consider the set S(xz) = {i € [n] : ; = 1}. Let xs be the n dimensional column vector
such that xg(i) = 1ifi € S and xs(i) = 0 if i € S°. We shall henceforth use S(x), xs(x)
and z interchangeably. Define d(A, B) to be the number of edges of G with one vertex in
A and the other in B. When A = {j}, we denote d(A, B) be d;g. We can easily show that
taT Az = %d —2d(S(X), S(X)°). It is sufficient to prove the CLT for d(S(X), S(X)¢) when
X ~ unif(S). We continue with the proofs of the theorems in Appendix B.

6. Concentration of Quadratic Forms over Hamming Sphere

Let S be the uniform random set of constant size and 7'(S) = d(S, S¢) be the size of the
edge-cut, just like in Section 5. Here, we relax the constraint on the size of S so that
0 < |S| < n. To lower bound the total variation distance, we need Condition C5. To prove
this condition, for the examples considered in this paper, we need sub-exponential bounds
of the form:

11
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C3%nd
logEexp (BT — SET) < T DvndlF|

In the case of centered independent random variables, i.e, when y; = Ber(s)—s, Hanson-
Wright inequality for quadratic forms gives a sub-exponential concentration inequality
like (4), but it is not clear how to extend this to case when the space is restricted to the
Hamming sphere (and therefore has weak dependencies).

To deal with this, tensorization of roughly the following form is normally proved:
logEexp (BT — BET) < CB2>°1 | EAZ(T), where A;(f(x)) := f(z;)— f(x; ) is the discrete
derivative. Here we run into a second problem: since our random set S has constant
size almost surely, we cannot remove a single element and the discrete derivative A; f(x)
cannot be defined within our space. We use the exchangeable pair used in Section 5 and
Appendix B to prove a well defined tensorization similar to the one above.

Using our method, based on Burkholder-Davis-Gundy type inequalities proved in
Chatterjee (2007), we show that

(4)

)

32ndy?(1 + o(1))
loc E T-ET) <
og Eexp( ) < 1 —16nd~?(1+ o(1))

We defer the full proof to Appendix C.

7. Comparing ERGM to Erd6s-Rényi Model

Here, we compare G(n, p,,) to ERGM(f1, 52). Fix 6 > 0. Consider the following hypothesis
testing problem given a single sample of a random simple graph G over n vertices:

Hj : G is drawn from the distribution G(n, p) for some p € (5,1 — §)
H; : G is drawn from ERGM(fy, 32) for 81 € R and 33 € R™ for unknown 3; and 3»
such that (81, 82) € Agram

Given a sample graph X, we let V(X) be the number of wedge graphs (\/) in X.
Theorem 15 Let L,, be any positive sequence diverging to infinity.

1. If Aerem = {(B1, B2) : B2 > Ln%, p1 € R} then the canonical statistical test T (T,,V),
which depends only on 6 and L,,, can distinguish Hy and Hy with high probability for some
choice of T, (9, Ly,) — oo.

2. If Aerem = {(B1,62) : 0 < Ba = %\/ﬁ, B1 € R}, then there is no statistical test which can

distinguish Hy and H; with high probability using constant number of i.i.d. samples.
We proceed in a way similar to Section 4 by proving each of the conditions (C1) - (C5). We
defer the proof to Appendix E.
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Appendix A. Proof of Main Abstract Theorem 9

We first consider the case when o,,3,, — oo. Given a sample from p,, or g,, we prove that
the statistical test 7°"(7},, g») succeeds with high probability for some choice of 7,,. Let
D" be the decision function associated with the test 7" (1}, gy,).

Consider the type 1 error rate:

P(D?"(X) = Hi|X ~ Ho) = po (m(X) & Su) + D pa

meSn am
Sant 3 [1-@(T) + dis (£ (MXemk=em @) v (0,1))] p(An)
meSh
gan+1€—<l>(T)+Tn (6)

Now consider the type 2 error rate:

. <9(X) — em(x)(9)
" Om(X)

o PN (GO

o
meSn m

P (D"(X) = HolX ~ Hy) =

<T,m(X) € Sn>

() = m ) g ()

n (7"(}();2"1(9) <T‘X€Am)

- m; an (2X2eml9) cor| X e A ) 4 (£ > 07| XA,

<>
meSy

— Z fg<em+Tcm

f> 42T
mesn gzem om

e(Bnem+TBnom)
Z p(m)({gZem+2Ta'm})e(ﬁnem+2TBn0'm) q (Am)
meSy
e*TﬂnU'm
< o) -7, 4 (Am)
mGSn

e—CTﬁn on
S Te@) 7)

)Qn (Am)

qn Q(X);Zm(fl) <T’X€Am)

>Qn (Am)

40 (Lm0 >0 XA,

ePngdp(m)
eﬁngdp(m) qn (Am)

IN

We use the fact that for positive « and y, max(z, y) < x+y, equation (6) and (7), to conclude
that for every 7' > 0 such that 1 — ®(27") > 7, the error rate perror

—cT Bnon —cT L,

e
o(2T) — 7,

e
O12T) — 7,

perrorgan'f‘l—(I)(T)—FTn"Fli San—i—l—(I)(T){-Tn_Fli (8)

For n large enough, 7, + e~f» < L. For such n, we can pick ' = T, > 0 such that

1—®2T,) = 7 + ¢ n
Clearly, T;,, — oo, therefore, 1 — ®(7;,) — 0 and
echnLn

— —C(Tn—l)Ln 0
1— 0@, —m ¢ ”
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Using the equations above in equation (8), we conclude that:

pEI’I’Or < an + ]. - @(Tn) + Tn + efc(Tnfl)Ln - O

Therefore, the decision function D®"(X) has a vanishing error rate for the choice of
T = T,, made above. Let A®" = {x € Q: D°"(2) = Hy}

dTV(men) = sup pn(A) - Qn(A)
AeF,
> pn(Acan) _ qn(Acan)
— 1 _pn ((ACBH)C) o qn(Acan)
=1-P(D?°"(X) = Hi|X ~ Hy) — P(D°"(X) = Ho| X ~ Hy)
>1—2max(P(D“"(X) = Hi|X ~ Hy),P(D?°"(X) = Hy|X ~ Hy))
=1- 2perror (9)
Using Equation (9) we conclude that whenever o,,3, — oo,

drv(pn, gn) — 1

We now consider the case 3,0, — 0. Consider the set A;, = {x € Q : E@@f:gn < 1}
Pn

It can be easily shown that Ay, € A and drv(pn, gn) = pn(Ay,) — an(Ag,). Let Zy, =

E,. efr9n Since, Bp0y, — 0, the following inequalities hold when 3,,0,, is small enough and
any 7' > 0

drv(Pn; qn) = pn(Agn) - Qn(Agn)
eﬁngn
_ /:H-A <1 _ e_lﬁngn—l()gzgn') dpn
gn
/ <1 — eflﬁngnflogzgn|> dpn

/ 1_6 19 —BnEpn [9a]l | 108 Zgy, — ﬂnEpn[gn)dpn

2 _2
<1 o B o 1Bn(on— Epn[gn1)|> ip,

IN

IN

IN

ABron \ _pr
<pn(lgn —Ep,[gn]| = T) + 1 —exp " 1— BBnon e
nv¥n

2 A 2 2
1 exp (_ _ABoy )e—ﬁnT (10)

- T2 1— BBnon

Where we have used the Chebyshev bound in the last step and the subexponentiality
of g,,. The coefficients (A, B) are consistent with coefficients (C, D) in condition C5. Let
7n — 0 be any positive sequence such that ﬁ’;% — 0. Let T' = J*. Using this choice of T'in
Equation (10), we conclude that:

20.2 A 20.2
d <tninog o S Thed T —n) = 0.
v (Pns gn) < o eXP( 1_j%n%)exp( Vn)
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Appendix B. Proof of Central Limit Theorem

We use the quantities as defined in Section 5.

For the sake of clarity, we denote the random variable S(X) by just S. Clearly, |S| =
sn =: l. Define T'(S) := d(S5,5¢). Recall that our objective is to prove a CLT for T'(S).
We define the following exchangable pair (5, 5’) : Draw K and J € {1,...,n} uniformly at
random and independent of each other and independent of S. Define x s to be the vector
obtained by exchanging entries at indices K and J of xs.

A calculation using the fact that G is d-regular shows that

T(S) if xs(J) = xs(K)
T(S/) =qT(S)+2(dss —dr,s +djk) if Je€ Sand K € §¢ (11)
T(S)—i—?(d}(,s—d(],s—f‘d(]’[{) if K€ Sand J € §¢

We apply Theorem 14 to the centered and normalized version of the Stein pair (7'(S), T'(S))
to prove Theorem 12.

Lemma 16 (T'(S),T(S")) is a A-Stein pair with respect to F(S), where X = 4", Further,
E[T(S)] = "5

n—1

Proof Clearly,

E[T(5")]S] = %Z > djs —dis + dj (12)
€5 kese
Zd djse)(n—1)—= Y ldps+> keSdy  (13)
es keSe JjES
(n—1)d
< ) o =0 (14)
Using the fact that ET'(S) = ET'(S’), we conclude the result. [

We shall henceforth shorten 7'(S”) to 7" and define A := 4” . We list some elementary
results about various moments.

Lemma 17 For a d-reqular graph, whenn —d —2 > 1> d+2,ifl = 0(n)
1-1)(1—2 1—1)(n—1
L EYjes Ypese dig =1Un—1) <d2 ((n—lggn—Q)) + d((n—l))((n—2))>
n—I[-1
2. BEY jes Yrese dis =1(n —1) <d2 (n( )1()(71 )2) + d((n)(l)(n 2)))
3. EYjes Spese dsdis = d2l(n — 1) 2550 — var(T)

5. Ezjes > kese disdjk = O(nd?)

17
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6. B jes D kese d?,k = O(nd)

Proof
1.
3 slj € 8)

EY > dis:

jES kese =1
Denoting the neighborhood of j by N(j),

E(dgljeS)= > PlaecSbeSjes)
a,beN ()

A simple computation of the probability gives the result.

2. proof similar to the previous part.

ES" S djsdrs =E[(ld—T(S)) T(S)]

jES kese

Using the fact that E [T'(5)] = dl(;l__ll ) we arrive at the result.

4. The result follows from the fact that

2> dindis = ) dis

jeS kese kese
5.
2
Y dirdis = djsdjse = O(nd?)
jeS kese jeS

6. We note that since G is a d-regular graph, d2. = dj k- Therefore,

EY Y d3y =Hd(S,5°)

jES kese
u
Lemma 18
var(T) = 21)\]E (T-T1)% . (15)
Ifl = 0(n), then,
20 1\2
var(T) = 2dnl(nn4l) +O(@)

Denoting | = snand s € (0,1),
o2 == var(T) = 2ds*(1 — 5)*(1 + O(g))
n

. The O(£) holds uniformly for all s € [6,1 — §] when 0 < § <1-6 <1

18
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Proof Equation 15 follows from the fact that (7', 7") forms a A-Stein pair.

2

n n? 8
T)=——=E[E[T-T)95]] =7 |E5 djs + dj — di,s)?
Val“( ) 8(n — 1) [ [( ) ‘ H 8(n — 1) n2 Z Z( j,s T Q5 k k:,S)
JjES kese
1
=——E> > (d, +dis—2djsdys +djy +2djdjs — 2d; pd.s)
JES kese

We use Lemma 17 to compute this expectation. |

Lemma 19 Let v(s) = Y.\ a;s" be any polynomial such that 0 < y(s) < a'V s € [s1, s2] such
that s; < sg, then |a;| < Ca for some constant C' depending only on r, s1 and sy

Proof Choose distinct x; € [s1,s0] for i € {0,1,..,7}. Leta = [agay ..a,]T and b =
[vY(z0) ¥(z1) ... ¥(z,)]T. Consider the Vandermonde matrix with entries V; ; = « fori,j €
{0,1,...,7}. Visinvertible since x; are distinct and Va = b. Therefore, a = V ~'b. Therefore
llalloo < IV ool|blloo- Since ||b]joc < a, we obtain the result by setting C' = |V ![|o.. M

Definition 20 (function type) Let R be a subset of vertices of a given graph G. We define the
following classification of functions f(R)

1. Wecall f to be of type 1 of index r € Nif f(R) = (dj,r — di,r + dji)" LjerLliecre,
2. We call f to be of type 2 of index r € N if

f(R) = (dj,,r — diy,r + djy k)" (djy,R — iy, kR + djy k)™ 1jye5Tpere LjpesTpyese

such that r1,mo € Nand r = r1 + ro.

Since the coordinates of the random set S are dependent (because |S| = I), it is hard to
bound moments of functions of S. Therefore, we draw a random set S such that each vertex
is included independently with probability p = % As we shall see, S is locally similar to S
and hence we can use the known tools for bounding moments of functions of independent

variables to bound the moments of f(S).

Lemma 21 Let f be a function of type 1 or type 2 with G being a d-reqular graph. Then, the
following are true. Let T by the ‘type” of the function f.

L f(R) =Y, gn(R)VRCV

2. If each vertex is included in the set S independently with probability p = L, then,

n

r21
Ef (S) = Z ahph

h=0

for some constants ay, € Z.
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3. If the set S is chosen uniformly at random from all vertex subsets of size I, then Ef(S) =
T+2T ap Hh 01 l;z
7 n—

Where gh( ) is a function of the form )", ;(—=1)"1g,cs. Wheren; € {—=1,+1}, S; CV,|Si| = h
and I, is any finite index set.

Proof

1. We use the following identities:

dis= Y lis.

1EN(J)

Licse =1 — Lies .

Expanding the power and noting that 1s,-csls,cs = 1s,us,cs, we obtain the result.

2. This follows trivially since Elg,-r = pl%il and if gn(T') is of the form above, a;, =

Zie[(_l)m-
[S; \)

3. This follows from the fact that Elg,cs = (i =12t = where h = |Sy]. If gu(T)
l

1=0 n—i’
is of the form above, ap, = >, (—1)"

Lemma 22 If f is of type 1 or 2 for a d reqular graph G over n vertices with a fixed index r. Let T
by the ‘type’ of the function.

1. Ef(3) =0 (d%)

NI

2. [Ef(S) ~Ef (S)| = O (%) whenp =1

3. Ef(S) < Cdz (1+0(1))

Proof
1. Let f be of type 1. Then,

Ef(S)| < Eld; 5 — dy 5+ djul”

1IN\ T
< <1+2(]E|dj7§—IEdj7§]”)T> (16)
Where the inequalities above follow from Minkowski’s inequality and the fact that

d; 5 and dj, g are identically distributed.

d g is a 1 Lipschitz function of S with respect to Hamming distance. We use MacDi-
armid’s inequality to conclude that

2

P(ld; g~ Ed, 3| > 1) < 2exp™ @
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From the above, we obtain the estimate:

o0 t2 F z T T
Eld; 5 — Ed; 5|" < / 2rt" e T = <T i2)> d2 = 0(d2)
0

Plugging it back into equation (16), we obtain the result.

For any type 2 function g, we use Cauchy Schwarz inequality to note that:

Bg(S)| <Eld, 5 —dp, 5+ djy i ["1d, g — dp, g+ djp o |

< \/E’ ]1 S k:l S’ + djl,kl‘%l \/E’dp,é‘ - dkg,g + dj27k2|2r2

2ry .
And note that \/]E|dji g~ dki g+ dj, ;|21 =0 (d7> for i = 1,2, as shown above, to

conclude the result.

. We use Lemma 21 to conclude that Ef(S) = ZZJF%T app = L(p) . Using the result
in part 1, we conclude that for some absolute constant depending only onr, L(p) <
o := Cdz for every p € [0, 1]. We then invoke Lemma 19 to show that |a;,| < Cja for

allh € {0,1,...,7 + 27} and that
)
Lln—1
=0

For a fixed 7, | (%)h — T2y =i = O(2) for every | < n. Therefore,

E£(3) - E£(5) < (2) d

r+27

Ef(S) S < Z |an]

3. This follows from parts 1 and 2.

Using the fact that the co-ordinates of the vector x s are weakly dependent, we prove the

following bound on the expectation of type 1 and type 2 functions. This gives an explicit
bound on the constant C(r) for every [, which will be useful when proving concentration
inequalities for d(S, S¢).

Lemma 23 If f is a function of type 1 or type 2 of index r and 0 < [ < n then

E|f(S)| < C(r)d?

where C(r) is a constant depending only on r.
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Proof It is suffient to prove this result for type 1 functions since this implies the result
for type 2 functions through Cauchy-Schwarz inequality. Also, it is sufficient to prove this
result when 7 is even since an application of Jensen’s inequality for the concave function
a implies the result for odd integers. Assume r is even and f is a type 1 function defined
by:

f(8) = (djs — di,s + djk) LjesLiese
Define variable y;(S) := 1;c5. We note that,

f(S) = Z Yi — Z Yiy | Ljesliese
iEN()\k i1 EN(K)\j
Z Yi — Z Yiq HJESHRESC
1EN(5)\k i1 EN(k)\J
v Y.
zeN( ) \k €N (k)\J

Define

ge(S) = > wi— >
1EN(H)\k i1€EN(k)\J
gjk is a function of (y;)iep,, where D; = (N(j)\ {k}) A(N(k)\ {j}) and [Djx| := h <
2(d — 1). gj, is 1 Lipschitz in Hamming distance.
We follow the concentration inequalities as given in Section 4.2 of Chatterjee (2005). We
fix j and k such that j # k. y~, := (y; : © € Djj \ r). Let u; be the law of y;. Define the
dependency matrix L = (a,s) r, s € D, 1, to be a matrix such that

dTV(NT( |f‘/~r) NT |y~r Z arsl Ys£Ys
SGDJIc

Let h1 = dg(y~r) and hy = dg(y~,). We consider two cases:

1.1>h

drv (pr (Yo )s o ([Gmr)) = [r (Hyr) = i (1 Gr )|

(PR I PO

(R B Y

l—hy l—ha
_ h1 — ho
n—h+1
1
< — 1., s
= Z n—h+1 YsFYs
s€D; \{r}

22
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2.1<h
This is similar to the previous case. It is clear that dy(y~,) < [ a.s. Therefore, simple
calculation shows that

0 ifh) =1

r(Y~r) = 17
pr (L) {nﬁi&l S 17)

Proceeding similar to the previous case, we conclude the result.

Therefore, we set a,s = n%hﬂ when r # s and a,, = 0. A is a symmetric matrix.

Therefore, [|All2 < ||A]|1 = nfi;lﬂ Applying theorem 4.3 from Chatterjee (2005), we have

1— h—1
P(|gjr — E(gjr)| > 1) < 2exp (- (2“1) t2> (18)

Since h < 2(d — 1) = o(n), we conclude that g; . is subgaussian with a variance proxy
of (1 + o(1)). We also note that E(g; ) = 0. We can bound the centralised moments of
a sub-Gaussian random variable from Equation (18) as shown in Boucheron et al. (2013)
Theorem 2.1 :

E(gjr)* < 2(q)[A(1 + 0(1))]* < 2(¢)[2d(1 + o(1))], (19)
where ¢ € N is arbitrary. Taking r = 2q yields the result. u

Let Y (S) := w. We intend to apply Theorem 14 to the Stein pair (Y,Y”) when
d = o(n).

. E(Y-Y']3) . .
We first bound the term ——y—— in the following lemma.

Lemma24 Vs€ (6,1—6)suchthat 0 < < 3, we have

S0 o (1)

and the bound is uniform for all s € (9,1 — 0).

Proof Using Lemma 18,

E(Yy-Y'P) E(T-TF) CE(T-TP)1+0(3)
3\ O Vndzs3(1— s)3

(20)
Conditioning on §,

16
E(T-TP)=E5> > ldis—drs+djxl’
" ies kese

16
Tz > > E(ldjs — dis +djxl*Ljeslrese)
JEV kev

-0 (d%)
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Where we get the last relation using Lemma 22. Substituting in Equation 20, we conclude
the result. [

We now bound the second term. Since |Y — Y| = |T:_7T/| Therefore,

Vvar(E((Y — Y)2]9)) 1
= ar(E((T" —T)2|S
5oy TMJQ\/V (E(( )215))
1
= ——/var(E((T" — T)2|S
s Vo BT = TY7TS))
= # var %Z Z(djs—l—d'k—dks)Q
V2o " jes kese
2 1 )
Va1 " Z > (djs + djg — dr,s)?LjesLrese
JEV keVvV
(21)
For j, ke V, define thg(R) = (dj7R + dj’]C — dk,R)2:ﬂ-j€R:ﬂ-k€RC- Clearly,
var [ >N (djs +djk —dis) Ljeslhese | = > cov(hr(S), hj i, (S)  (22)
JEV keV Jok.g1 k1 €V
Using Lemma 22, whenp = £,
- - d?
cov(jk(S), sk, (5)) = cov(yk(S), By o () + O(—) (23)

Using equations 22 and 23 we conclude

var { Y (djs +djg — dis)*Ljeslyese | =var [ Y (d; 5+ djg — dy 5)*L 51y c5
JeV kev JeV kev

+ O(n3d?) (24)
Lemma 25

var | ) (d; 5+ djp —dy §)*Licslycse | = O(nPd?)
JEV kEV

uniformly for all p € [0, 1]. Using equation 24, we conclude that Vs € [a,b] with0 < a < b < 1,

var | 75" (s + djx — dps)?LjesTrese | = OmPd?)
JEV kEV

uniformly.
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Proof The elements of S are drawn i.i.d with probability of inclusion p. Define ¢; = 1, g
Then, ¢; ~ Ber(p) i.i.d for 1 < i < n. We use € and S interchangeably.

F(e):=F(S)=>_ > hjx(5)
JEV keV
Let S; := S\ {i} and ALy (S}) =hj (SZ) — hjk (SZ U {z}) Since entries of the vector
€ are independent, we use Efron-Stein method to tensorize the variance as follows:

var(F'(e)) < Z Evar; (F(€))
i=1

Where var; (F'(e)) = var (F'(€)|e~;) Now, when €., is fixed, F'(€) can take two values.
Therefore,

2
vmxﬂd)M1M<F(01N&UUDQMlm(E:AhG%) (25)
7,k

By Cauchy-Schwarz inequality,

2
E(ZA%(})) sz E(Ag,k(@))z (26)

Clearly, A; .(Si) # 0 only if one of the following is true:
1. j=diand k # 1
2. j#iand k=i
3. jeN(i)and k & N (i) U {i}
4. j¢€ N(i)U{i} and k € N(7)
For case 1, considering sub cases k € N (i) and k ¢ N (i), we conclude:
k(S = - (di,gi - dk,§i>2 Lyege
d; 5, ~ Bin(p,d), d; 5 ~ Bin(p,d — 1) if k € N(i) and dj g ~ Bin(p,d) if k ¢ N(i). We use

the same Minkowski inequality - McDiarmid concentration argument as in Lemma 22 to
conclude that when j =i and k # i

o \2
E(A14(8)) = 0(d) 27)
By a similar argument for case 2, when j # i and k = 4,
L \2
E(A%Li(8)) = 0@ (28)
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We consider case 3. Let j € N (i) and k ¢ N (i) U {i}. Then,

;‘,k;(gi) = (2(dj,§i - dk,S‘i + dj,k) - 1) ljegi]lkegf

Clearly, dj s, ~ Bin(p,d — 1) and dj 5, ~ Bin(p, d). Using similar reasoning as case 1, we
conclude that when j € N(i)and k ¢ N (i) U {i}
;202

E(254(5)) =0l (29)

We can repeat a similar argument for case 4 to conclude that when j ¢ N (i) U {i} and

ke N(7),

RN

E(A54(5)) =0() (30)

All the O() in the bounds above are uniform for p € [0, 1]. There are at most 2n pairs j, k
which satisfy cases 1 or 2. There are at most 2nd pairs which satisfy cases 3 or 4. Therefore,
using equations (26) (27) (28) (29) (30)

2
E (Z A;'.,k(Si)) = 2n0(d) + 2ndO(Vd) = O(nd?)
j.k
Therefore, we conclude from equation (25) that for every i € V'
E(var;(F(€))) = O(n%d®)
By Efron-Stein method, we conclude that
var(F(e)) = O(n3d?®)
|
We bound the second term in Theorem 14

Lemma 26 Let s € (6,1 —0) with 0 < § < 1.

war(E(% : YRS _ < Z) -

The bound above holds uniformly for s € (6,1 — ¢).

Proof Using Lemma 25 in equation (21) and using the fact that 02 = ©(nd) for all
s € [0,1 — 0] uniformly, we conclude

\/var(E(\(/;; Y)?|S)) -0 < Z) (32)
|

26



COMPARING STRUCTURED AND UNSTRUCTURED NETWORK DATA

dw(L(Y),N(0,1)) < C\/z

Appendix C. Proof of Concentration of Quadratic Forms

Proof [Proof of Theorem 12] We use Lemmas 26 and 24 along with Theorem 14 to show
that

We conclude the bound for the Kolmogorov metric using the fact that when one of the
arguments has the standard normal distribution, dxs < C'v/dw for some absolute constant

We continue here from the end of Section 6. We refer to Chatterjee (2007) for details of the
exchangeable pairs method for concentration inequalities and theorem 2.3 in Boucheron
et al. (2013) for properties of sub-gamma distributions.

We begin with the Stein pair (5, S’) defined in Section 5 with |S| = land 0 < [ < n.

Following the notation in Chatterjee (2007), we take F'(S,S") := T'(S)

f(S):=E[F(S,5)]S] = \(T — E(T))

and

A(S) = SE[(F(5) ~ F()F(S,5)S]

= 2B (@ - T)2s]

4
Y] > D (dis —dis + djp) *Ljesrese

JjeEV keVv

4\
=3 DY 97(9)LjesTkese

JEV keV
From Theorem 1.5 in Chatterjee (2007),

E((f(5))*) < (24 — 1)E(A(S)1)

— E(T - E(T))* < <2qu 1) E(A(S)7)

Jev kev

JeV keV

<940 <2qA > 1[2d(1 + o(1))]¢

<2.(20)!. (vAnd(1 + 0(1)))2q

27
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—T(S"). Then,

q
ﬂjes]lkeSc)

<2q — 1> %Z ZE [9,(S)%

(33)
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Where we used Jensen’s inequality in the third step and Equation (19) in the fourth step.
Following the proof of Theorem 2.3 in Boucheron et al. (2013), we conclude that for

every v such that 2|v|y/4nd(1 + o(1)) < 1,

32ndv2(1 + o(1))
locE T —-—FET) <
og Eexp( )< 1 —16ndy2(1 4 o(1))

Which is the required result in Equation (5) This follows from a simple power series
argument.

Appendix D. Proof of Theorem 11

We use the notation established in Section 4.
Proof [Proof of Theorem 11] Consider the first case: 82 °8v/nd = ©(0,85°8) > L,, — co.
We first fix the parameters pdree gCW pdreg and W 4 and g, satisfy Conditions C1-C4
of Theorem 9 as shown in Section 4.

We invoke Theorem 9 to conclude that for some choice of 7, depending only on 7,,, L,
and S, the canonical test 7<"(7,,, g, ) can distinguish between p,, (with given parameters

BEW, W, Bgreg and h98) and g, with a single sample with probability of error

Derror < f(Lna QOpy, Tn) —0

We conclude from Remark 10 that the canonical tests 7 (7}, gn) and 7 (T}, Kising) are the
same. Therefore, the test 7 (7, fising) has the same success probability for the same choice
of T,,. Fkising doesn’t depend on the unknown parameters. The parameters S,, 7, and
oy, depend only on fmax and hmax. Therefore, given L,, T;, can be chosen without the
knowledge of the unknown parameters. The probability of error tends to 0 uniformly
for every choice of the unknown parameters. Hence, we conclude that the canonical test
T (T, Kising) succeeds with high probability for any choice of the unknown parameters.
We now consider the second case: 85°%v/nd = O(c,f3°%) < 7~ — 0. Itis sufficient to

prove that for a specific sequence (8SW, 35"°8) and external fields (hdres, hLCW),
dTV(pm Qn) —0.

dre
We take 3V = %jlg and h¥ee = BCW_ A simple calculation using Lemma 16 we show
that

em(9) = Eg(Xpm) =0.

Using Equation (5), we conclude

g(Xm) - em(g) =-2 (T (Sm) —E [T (Sm)])
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Where S,,, = S(X,,,). Clearly, for n large enough, we have 462reg\/4nd(1 +o0(1)) < 1. We
shall denote T}, :< T(Sm)

E, [e Sregg} = Z p(m(z) =mo)E [e ffegg(Xm)}
mOGMn
= Y p(m(z)=m)E [e—%?f”%Tm—E[Tm])}
mo€Mp
a5 140

<e 1—64nd(ﬁ2reg)2(1+o(1))

128nd(ﬂgreg)2(1+o(1))

S e 1_8ﬁgreg nd(140(1)) (35)

Where we have used Equation (5) in the second to last step. To bound the variance var,g,
we note that E,(¢g) = 0 and Eg(X,,,) = 0. Therefore,

var,g = Bpg® = > p(m(z) = mo)Bg*(Xme) = D> p(m(z) =mo)ay,,  (36)

mo€EMy moEMy,

Clearly, 3V — 0. Therefore, for n large enough, 5V < 1. We refer to the large de-
viations result for Curie-Weiss model given in Ellis (2007) to conclude that p(|m(x)| >
Mmax(Pmax)) < Ch e~ "C for some positive constants C; and C'. Clearly,

Ome < Cn2d?

for every my. Invoking Theorem 12, we conlude that whenever mg < mmax(hmax), Ome <
D+/nd for some constant D. Plugging these results in Equation (36), we conclude that

vary[g] < Dnd + Cin*d?*e "¢ = O(nd) (37)

Therefore, using Equations (37) and (35) we conclude that for this particular choice
of BV and AW, p and g satisfy Condition C5. Therefore, invoking the second part of
Theorem 9, we conclude that

dTV(Pn, Qn) — 0.

which proves our result. ]

Appendix E. Proof of Theorem 15

Consider Erdgs-Rényi model over n vertices. We let N = (g), the maximum number of
edges. Consider X' := {0,1}". We index elements of x € X by tuples e = (i, j) such that
i,j € [n] and i < j. We can represent any simple graph G = (V, E) over n vertices by an
element 2(G) € X such that z(G). = 1 iff e € E. Henceforth we use ‘eth component of z’
and ‘edge e’ interchangeably.

Consider an N x N symmetric matrix H such that H, y € {0,1} and H, y = liff eand f
have a common vertex. Clearly, H is the adjacency matrix of a d = 2(n — 2) regular graph
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over N vertices. We partition X into Hamming spheres. For m € {0,1,...,N} =: M,,
define A,, C & to be the set of simple graphs over n vertices with exactly m edges. Here we
define the function E(x) := m(x) to be the number of edges in the graph associated with

x € X. Clearly, the number of V' graphs (/) which are subgraphs of the graph represented
by x is
1 1
= — e He - = TH
V(zx) 5 egfx opHep = gaTHe

Let 1 be the all one vector. A simple calculation using the fact that H is a regular matrix
shows that:

(22— 1)TH(2z — 1) = 42THz — 41THz + 1TH1
=8V (z) —8(n—2)E(z) +2(n—2)N (38)

Clearly, 2z — 1 € {-1,1}" and |{e : 2z, — 1 = 1}| = E(x).

Let u be the probability measure associated with G(n,p,) (p(-) in the notation of The-
orem 9) such that § < p,, < 1 — ¢ for some constant § > 0. We shall drop the subscript of
pr, for the sake of clarity. Since E is a binomial random variable, we can easily show using
McDiarmid’s inequality that:

m <E(x) S BN, (1 — g) ND >1—2e" 0N =1 q,

For some constant ¢(d) > 0. Therefore, we let

We let g(z) = <n (ﬁ‘;g> B) + V(x)).

Remark 27 Let ;™) be the conditional distribution pu(-|E(z) = m) (pU™) in Section 3). Similar
to Remark 10 about Ising models, we note that ("™ is the uniform distribution over the graphs with
fixed number of edges m irrespective of the value of p (i.e, uniform distribution over the set A,,).
Proceeding as in Remark 10, let X be the given sample and 1 = m(X). We can decide whether
m € Sy, without the knowledge of the unknown parameters and since

9(X) = emlg) = V(X) — enV (2)
and

var;, (g) = varg, (V)

we can decide whether %ﬁgﬁ(g) > T without the knowledge of the unknown parameters. We

conclude that T (T}, gn) = T (Tp,, V)
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Let X,, ~ p(™. Therefore, whenever = € A,, for m € [gN, (1- g) N, 2X,, — 1
satisfies the hypothesis for Theorem 12. Using Equation (38) and the fact that F(X,,) =m
is a constant a.s. we conclude that:

var (¢(Xm)) =: 02, = O(n®)

m

dis (£ (B0 ) N (0,1)) < ci‘/: =7,

Where we have used the fact that degree d = O(n) and number of rows/columns is
N = ©(n?). All the O(-) and bounds hold uniformly for all m € S,. Let 3, := % We take
v(x) = p(2)§ 5 = ERGM(BL, Ba).

To prove Theorem 15, we will need the following Lemma, where we get very small
variance of a quadratic function by picking the right coefficient.

and

Lemma 28 Let p € [0, 1] be arbitrary. Then there exists an absolute constant ¢ such that whenever

% =: Bn < % for some absolute constant c then for some choice of 51 as a function of p and
B, the following hold:

1. var,(g) = O(n3) = O(N%)

Bn(9—Epg) Cn?ps (1+0(1)) C1B2n*(1+0(1))
2. logE,ﬂ [6 g ug} < 1=DBn+/n3(1+0(1)) 1—|Bn|Din(14+o0(1))

Where C, C1, D and Dq are absolute constants

We defer the proof of this Lemma to Appendix F.

We proceed with the proof of Theorem 15.

Proof [Proof of Theorem 15] Since 3, := 2—52, it is sufficient to consider the regimes:
Ban®? — oo and B,n3/? — 0. By Remark 27, T(Tn, gn) = T (Ty, V'), which doesn’t depend
on parameters 31, p or 2. The proof of the first part is similar to that in Theorem 11 and it
follows from the discussion above and Theorem 9.

We now assume (3 < L—ln ﬁ and fix p € [, 1—0]. To prove the second part it is sufficient
to show one distribution in H is near to one distribution in H; in the total variation sense.
We will 5; as a function of p and /33 such that dry (g, vn) — 0.

Using the notation of Theorem 9, we have o,, = @(n3/ 2). By Lemma 28, we conclude
that Condition C5 for Theorem 9 holds for some choice of 8; and hence dtv (i, vy) — OB

Appendix F. Proof of Super Concentration

Lemma 29 If E ~ Bin(N, p), then,
E(E — Np)?? < ¢!CIN4

For some absolute constant C' independent of N
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Proof By McDiarmid’s theorem,

2

P(|E— Np| >t) <2~

We use the equivalence of moment inequalities and sub-gaussian concentrations (refer
Theorem 2.1 in Boucheron et al. (2013)) to conclude the result. |

Let X be a random vector taking values in {0, 1} such that its coordinates are i.i.d.
Ber(p). Consider the function h(X) = E?(X) — (2pN + 1 — 2p)E(X). As we shall see, this
choice of coefficients is special since it corresponds to a very small variance.

Obtain the random variable X’ as follows: Choose n random index I ~ unif([N]).
X; = X! whenever i # I and X, ~ Ber(p) independent of X. Clearly, (X,X’) is an
exchangeable pair.

Lemma 30
1. (MX), (X)) is an n-Stein pair with respect to F(X) where n = 2.
2. Eh(X) = —p?N(N — 1)
Proof We shorten E(X) to E. Leta := —(2pN + 1 — 2p)
E[R(X)=hX)X]=p(1-%) (E+1)*+a(E+1)— E*—akE)
+£1-p) (E-1)*+a(E—1)— E* - aE)
~2E*+ £ 2pN —2p+ 1 —a] +p(1 +a)
— R (X) = 2p*(N — 1)

Using the definition of a Stein pair and the fact that Eh(X) = Eh(X’), we conclude the
result. [

We proceed in the same way as Section 6.

F(X,X') = h(X) — h(X)
F(X) =E[F(X,X")|X] = n(h(X) - Eh(X))

A(X) = LE[(/(X) - F(X)F(X, X')|X]
= 5E[(h0) — 1)’ ]
=21~ >2E—zpzv+zp> + £(1-p)(2F - 2N +2p - 2)"]
< 2 [p(E = pN +p)* + (1 = p)(E = pN +p — 1)?] (39)
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From Theorem 1.5 in Chatterjee (2007), for every ¢ € N,

E((f(X))*) < (2 = )"E(A(X)?)

1) o)

— E(h(X) - BA(X))% < (

(40)

Where we have used Equation (39) in the second step, Jensen’s inequality for the convex
function ¢(z) = |x|? in the third step, Jensen’s inequality again for the function ¢(x) = |z|?
and Lemma 29 in the final step.

Following the proof of Theorem 2.3 in Boucheron et al. (2013), we conclude that for
every v such that |[7|CN < 1,

C242N?

EMX)-Er(X)] 9 ~ T -7 41
‘ =HT=Tlow 4
Where C is an absolute constant.

We use Equation (5) along with Equation (38) to conclude that for every m € {0,..., N}
and some absolute constants C and D,

Cn3B2(1+ o(1))
1 — DBp/n3(1+0(1))
Proof [Proof of Lemma 28] The bound on variance follows from the bound on MGF shown

in the second part of the theorem after an application of Theorem 2.3 in Boucheron et al.
(2013). Therefore, it is sufficient to show the bound on the MGF.

log EePn9Xm) < 8 Bg(X,,) +

(42)

Eg(Xm) = Elg(X)|E(X) = m]

B — 5 log £
:EV(Xm)+n<121p m
B2
1 D
_n—2 9 51—§log1_p n—2
N +n< By meN"

Therefore, we can choose 31 a function of p and 35 such that :

"m0 = P22 (B2 (2pN 41— 2)E)

Elg(X)|B(X)] = =
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Therefore,

E, [eﬁn(g—Eug)} =E, [IE [eﬁn(g(Xm)—]Eug)‘E(X) — m”

cnB82 (1+0(1))

< e1-Diny/n3 o) {eﬁn ]\lf;_%(h(X)—Euh)}

Ccn3p2 (1+0(1) 252 n2(1+0(1))
< e1-DBnV/n3(1+0(1)) “1=[Bn[Cn(i+o(1))

Here, we have used Equation (42) and the fact that for this particular choice of 8, E,h =

=2, g. In the third step we have used Equation (41).
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