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Abstract
We introduce several new black-box reductions that significantly improve the design of adaptive
and parameter-free online learning algorithms by simplifying analysis, improving regret guarantees,
and sometimes even improving runtime. We reduce parameter-free online learning to online exp-
concave optimization, we reduce optimization in a Banach space to one-dimensional optimization,
and we reduce optimization over a constrained domain to unconstrained optimization. All of our
reductions run as fast as online gradient descent. We use our new techniques to improve upon the
previously best regret bounds for parameter-free learning, and do so for arbitrary norms.

1. Parameter Free Online Learning

Online learning is a popular framework for understanding iterative optimization algorithms, includ-
ing stochastic optimization algorithms or algorithms operating on large data streams. For each of T
iterations, an online learning algorithm picks a point wt in some space W , observes a loss function
`t : W → R, and suffers loss `t(wt). Performance is measured by the regret, which is the total loss
suffered by the algorithm in comparison to some benchmark point ẘ ∈W :

RT (ẘ) =
T∑
t=1

`t(wt)− `t(ẘ) .

We want to design algorithms that guarantee low regret, even in the face of adversarially chosen `t.
To make the problem more tractable, we suppose W is a convex set and each `t is convex (this

is called Online Convex Optimization). With this assumption, we can further reduce the problem to
online linear optimization (OLO) in which each `t must be a linear function. To see the reduction,
suppose gt is a subgradient of `t at wt (gt ∈ ∂`t(wt)). Then `t(wt)− `t(ẘ) ≤ 〈gt, wt − ẘ〉, which
implies RT (ẘ) ≤

∑T
t=1〈gt, wt − ẘ〉. Our algorithms take advantage of this property by accessing

`t only through gt and controlling the linearized regret
∑T

t=1〈gt, wt − ẘ〉.
Lower bounds for unconstrained online linear optimization [18; 21] imply that when `t are L-

Lipschitz, no algorithm can guarantee regret better than Ω(‖ẘ‖L
√
T ln(‖ẘ‖LT + 1)). Relaxing

the L-Lipschitz restriction on the losses leads to catastrophically bad lower bounds [5], so in this
paper we focus on the case where a Lipschitz bound is known, and assume L = 1 for simplicity.1

1. One can easily rescale the gt by L to incorporate arbitrary L.
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Our primary contribution is a series of three reductions that simplify the design of parameter-
free algorithms,2 that is algorithms whose regret bound is optimal without the need to tune parame-
ters (e.g. learning rates). First, we show that algorithms for online exp-concave optimization imply
parameter-free algorithms for OLO (Section 2). Second, we show a general reduction from online
learning in arbitrary dimensions with any norm to one-dimensional online learning (Section 3). Fi-
nally, given any two convex sets W ⊂ V , we construct an online learning algorithm over W from
an online learning algorithm over V (Section 4).

All of our reductions are very general. We make no assumptions about the inner workings of
the base algorithms and are able to consider any norm, so thatW may be a subset of a Banach space
rather than a Hilbert space or Rd. Each reduction is of independent interest, even for non-parameter-
free algorithms, but by combining them we can produce powerful new algorithms.

First, we use our reductions to design a new parameter-free algorithm that improves upon the
prior regret bounds, achieving

RT (ẘ) ≤ ‖ẘ‖

√√√√ T∑
t=1

‖gt‖2? ln

(
‖ẘ‖

T∑
t=1

‖gt‖2? + 1

)
,

where ‖ · ‖ is any norm and ‖ · ‖? is the dual norm (‖gt‖? = ‖gt‖ when ‖ · ‖ is the 2-norm).
Previous parameter-free algorithms [18; 20; 22; 23; 8; 5; 24] obtain at best an exponent of 1 in
their dependence on ‖gt‖? (which is worse because ‖gt‖? ≤ 1 by our 1-Lipschitz assumption).
Achieving ‖gt‖2? rather than ‖gt‖? can imply asymptotically lower regret when the losses `t are
smooth [27], so this is not merely a cosmetic difference. In addition to the worse regret bound, all
prior analyses we are aware of are quite complicated, often involving pages of intricate algebra, and
are usually limited to the 2-norm. In contrast, our techniques are both simpler and more general.

We further demonstrate the power of our reductions through three more applications. In Section
5, we consider the multi-scale experts problem studied in [9; 1] and improve prior regret guarantees
and runtimes. In Section 6, we create an algorithm obtaining Õ(

√
T ) regret for general convex

losses, but logarithmic regret for strongly-convex losses using only first-order information, similar
to [30; 7], but with runtime improved to match gradient descent. Finally, in Section 7 we prove

a regret bound of the form RT (ẘ) = Õ

(√
d
∑T

t=1〈gt, ẘ〉2
)

for d-dimensional Banach spaces,

extending the results of [14] to unconstrained domains. We summarize our results in Figure 1.
Notation. The dual of a Banach space B over a field F , denoted B?, is the set of all continuous

linear maps B → F . We will use the notation 〈v, w〉 to indicate the application of a dual vector v ∈
B? to a vectorw ∈ B. B? is also a Banach space with the dual norm: ‖v‖? = supw∈B, ‖v‖=1〈w, v〉.
For completeness, in Appendix A we recall some more background on Banach spaces.

2. Online Newton Step to Online Linear Optimization via Betting Algorithms

In this section we show how to use the Online Newton Step (ONS) algorithm [12] to construct a 1D
parameter-free algorithm. Our approach relies on the coin-betting abstraction [23] for the design
of parameter-free algorithms. Coin betting strategies record the wealth of the algorithm, which is

2. The name “parameter-free” was first used by Chaudhuri et al. [4] for an expert algorithm that does not need to know
the entropy of the competitor to achieve the optimal regret bound for any competitor.
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Exp-Concave Optimization
⇓

Parameter Free OLO

1D OLO
⇓

Banach Space OLO

Unconstrained OLO
⇓

Constrained OLO

Õ

(√
d
∑T

t=1〈gt, ẘ〉2
)

Õ

(
‖ẘ‖

√∑T
t=1 ‖gt‖2?

)
Multi-scale

experts
Adapt to
curvature

Figure 1: We prove three reductions (top row), and use these reductions to obtain specific algorithms
and regret bounds (bottom row). Arrows indicate which reductions are used in each algorithm.

defined by some initial (i.e. user-specified) ε plus the total “reward”
∑T

t=1−gtwt it has gained:

WealthT = ε−
T∑
t=1

gtwt . (1)

Given this wealth measurement, coin betting algorithms “bet” a signed fraction vt ∈ (−1, 1) of
their current wealth on the outcome of the “coin” gt ∈ [−1, 1] by playing wt = vtWealthT−1, so
that WealthT = WealthT−1 − gtvtWealthT−1. The advantage of betting algorithms lies in the fact
that high wealth is equivalent to a low regret [20], but lower-bounding the wealth of an algorithm
is conceptually simpler than upper-bounding its regret because the competitor ẘ does not appear in
(1). Thus the question is how to pick betting fractions vt that guarantee high wealth. This is usu-
ally accomplished through careful design of bespoke potential functions and meticulous algebraic
manipulation, but we take a different and simpler path.

At a high level, our approach is to re-cast the problem of choosing betting fractions vt as itself an
online learning problem. We show that this online learning problem has exp-concave losses rather
than linear losses. Exp-concave losses are known to be much easier to optimize than linear losses
and it is possible to obtain ln(T ) regret rather than the

√
T limit for linear optimization [12]. So by

using an exp-concave optimization algorithm such as the Online Newton Step (ONS), we find the
optimal betting fraction v̊ very quickly, and obtain high wealth. The pseudocode for the resulting
strategy is in Algorithm 1.

Later (in Section 7), we will see that this same 1D argument holds seamlessly in Banach spaces,
where now the betting fraction vt is a vector in the Banach space and the outcome of the coin gt is a
vector in the dual space with norm bounded by 1. We therefore postpone computing exact constants
for the Big-O notation in Theorem 1 to the more general Theorem 8.

It is important to note that ONS in 1D is extremely simple to implement. Even the projection
onto a bounded set becomes just a truncation between two real numbers, so that Algorithm 1 can
run quickly. We can show the following regret guarantee:

Theorem 1 For |gt| ≤ 1, Algorithm 1, guarantees the regret bound:

RT (ẘ) = O

ε+ max

|ẘ| ln[ |ẘ|∑T
t=1 g

2
t

ε

]
, |ẘ|

√√√√ T∑
t=1

g2
t ln

[
|ẘ|2

∑T
t=1 g

2
t

ε2
+ 1

] .
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Algorithm 1 Coin-Betting through ONS

Require: Initial wealth ε > 0
1: Initialize: Wealth0 = ε, initial betting fraction v1 = 0
2: for t = 1 to T do
3: Bet wt = vt Wealtht−1, Receive gt ∈ [−1, 1]
4: Update Wealtht = Wealtht−1 − gtwt
5: //compute new betting fraction vt+1 ∈ [−1/2, 1/2] via ONS update on losses − ln(1− gtv)
6: Set zt = d

dvt
(− ln(1− gtvt)) = gt

1−gtvt
7: Set At = 1 +

∑t
i=1 z

2
i

8: vt+1 = max
(

min
(
vt − 2

2−ln(3)
zt
At
, 1/2

)
,−1/2

)
9: end for

Proof Define WealthT (̊v) to be wealth of the betting algorithm that bets the constant (signed) frac-
tion v̊ on every round, starting from initial wealth ε > 0.

We begin with the regret-reward duality that is the start of all coin-betting analyses [23]. Sup-
pose that we obtain a bound WealthT ≥ fT

(
−
∑T

t=1 gt

)
for some fT . Then,

RT (ẘ)− ε = −WealthT −
T∑
t=1

gtẘ ≤ −
T∑
t=1

gtẘ−fT

(
−

T∑
t=1

gt

)
≤ sup

G∈R
Gẘ−fT (G) = f?T (ẘ),

where f?T indicates the Fenchel conjugate, defined by f?T (x) = supθ θx− fT (θ).
So, now it suffices to prove a wealth lower bound. First, observing that WealthT = WealthT−1−

WealthT−1gtvt, we derive a simple expression for ln WealthT by recursion:

ln WealthT = ln (WealthT−1(1− gtvt)) = ln(ε) +

T∑
t=1

ln(1− vtgt) .

Similarly, we have ln WealthT (̊v) = ln(ε) +
∑T

t=1 ln(1− v̊gt). We subtract the identities to obtain

ln WealthT (̊v)− ln WealthT =
T∑
t=1

− ln(1− vtgt)− (− ln(1− v̊gt)) . (2)

Now, the key insight of this analysis: we interpret equation (2) as the regret of an algorithm playing
vt on losses `t(v) = − ln(1− vgt), so that we can write

ln WealthT = ln WealthT (̊v)−RvT (̊v), (3)

where RvT (̊v) is the regret of our method for choosing vt.
For the next step, observe that − ln(1 − gtv) is exp-concave (a function f is exp-concave if

exp(−f) is concave), so that choosing vt is an online exp-concave optimization problem. Prior
work on exp-concave optimization allows us to obtainRvT (̊v) = O

(
ln
(∑T

t=1 g
2
t

))
for any |̊v| ≤ 1

2

using the ONS algorithm. Therefore (dropping all constants for simplicity), we use (3) to obtain
WealthT ≥WealthT (̊v)/

∑T
t=1 g

2
t for all |̊v| ≤ 1

2 .
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Finally, we need to show that there exists v̊ such that WealthT (̊v)/
∑T

t=1 g
2
t is high enough to

guarantee low regret on our original problem. Consider v̊ =
−

∑T
t=1 gt

2
∑T

t=1 g
2
t +2|∑T

t=1 gt|
∈ [−1/2, 1/2].

Then, we invoke the tangent bound ln(1 + x) ≥ x− x2 for x ∈ [−1/2, 1/2] (e.g. see [2]) to see:

ln WealthT (̊v)− ln(ε) =
T∑
t=1

ln(1− gtv̊) ≥ −
T∑
t=1

gtv̊ −
T∑
t=1

(gtv̊)2 ≥ (
∑T

t=1 gt)
2

4
∑T

t=1 g
2
t +4|∑T

t=1 gt|
.

WealthT ≥ ε exp

[
(
∑T

t=1 gt)
2

4
∑T

t=1 g
2
t +4|∑T

t=1 gt|

]/ T∑
t=1

g2
t = fT

(
T∑
t=1

gt

)
,

where fT (x) = ε exp[x2/(4
∑T

t=1 g
2
t + 4|x|)]/

∑T
t=1 g

2
t . To obtain the desired result, we recall that

WealthT ≥ fT
(∑T

t=1 gt

)
implies RT (ẘ) ≤ ε+ f?T (ẘ), and calculate f?T (see Lemma 19).

In order to implement the algorithm, observe that our reference betting fraction v̊ lies in [−1/2, 1/2],
so we can run ONS restricted to the domain [−1/2, 1/2]. Exact constants can be computed by sub-
stituting the constants coming from the ONS regret guarantee, as we do in Theorem 8.

3. From 1D Algorithms to Dimension-Free Algorithms

A common strategy for designing parameter-free algorithms is to first create an algorithm for 1D
problems (as we did in the previous section), and then invoke some particular algorithm-specific
analysis to extend the algorithm to high dimensional spaces [23; 6; 20]. This strategy is unappealing
for a couple of reasons. First, these arguments are often somewhat tailored to the algorithm at hand,
and so a new argument must be made for a new 1D algorithm (indeed, it is not clear that any prior
dimensionality extension arguments apply to our Algorithm 1). Secondly, all such arguments we
know of apply only to Hilbert spaces and so do not allow us to design algorithms that consider norms
other than the standard Euclidean 2-norm. In this section we address both concerns by providing a
black-box reduction from optimization in any Banach space to 1D optimization. In further contrast
to previous work, our reduction can be proven in just a few lines.

Our reduction takes two inputs: an algorithm A1D that operates with domain R and achieves
regret R1

T (ẘ) for any ẘ ∈ R, and an algorithm AS that operates with domain equal to the unit ball
S in some Banach space B, S = {x ∈ B : ‖x‖ ≤ 1} and obtains regret RAS

T (ẘ) for any ẘ ∈ S.
In the case when B is Rd or a Hilbert space, then online gradient descent with adaptive step sizes

can obtain RAS
T (ẘ) =

√
2
∑T

t=1 ‖gt‖22 (which is independent of ẘ) [13].
Given these inputs, the reduction uses the 1D algorithm A1D to learn a “magnitude” z and

the unit-ball algorithm AS to learn a “direction” y. This direction and magnitude are multiplied
together to form the final output w = zy. Given a gradient g, the “magnitude error” is given by
〈g, y〉, which is intuitively the component of the gradient parallel to w. The “direction error” is just
g. Our reduction is described formally in Algorithm 2.

Theorem 2 Suppose AS obtains regret RAS
T (ẘ) for any competitor ẘ in the unit ball and A1D

obtains regret R1
T (ẘ) for any competitor ẘ ∈ R. Then Algorithm 2 guarantees regret:

RT (ẘ) ≤ R1
T (‖ẘ‖) + ‖ẘ‖RAS

T (ẘ/‖ẘ‖) .

Where by slight abuse of notation we set ẘ/‖ẘ‖ = 0 when ẘ = 0. Further, the subgradients st
sent to A1D satisfy |st| ≤ ‖gt‖?.
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Algorithm 2 One Dimensional Reduction
Require: 1D Online learning algorithm A1D, Banach space B and Online learning algorithm AS

with domain equal to unit ball S ⊂ B
1: for t = 1 to T do
2: Get point zt ∈ R from A1D
3: Get point yt ∈ S from AS
4: Play wt = ztyt ∈ B, receive subgradient gt
5: Set st = 〈gt, yt〉
6: Send st as the tth subgradient to A1D
7: Send gt as the tth subgradient to AS
8: end for

Proof First, observe that |st| ≤ ‖gt‖?‖yt‖ ≤ ‖gt‖? since ‖yt‖ ≤ 1 for all t. Now, compute:

RT (ẘ) =
T∑
t=1

〈gt, wt − ẘ〉 =
T∑
t=1

〈gt, ztyt〉 − 〈gt, ẘ〉

=
T∑
t=1

〈gt, yt〉zt − 〈gt, yt〉‖ẘ‖︸ ︷︷ ︸
regret ofA1D at ‖ẘ‖∈R

+〈gt, yt〉‖ẘ‖ − 〈gt, ẘ〉

≤ R1
T (‖ẘ‖) + ‖ẘ‖

T∑
t=1

〈gt, yt〉 − 〈gt, ẘ/‖ẘ‖〉︸ ︷︷ ︸
regret ofAS at ẘ/‖w‖∈S

≤ R1
T (‖ẘ‖) + ‖ẘ‖RAS

T (ẘ/‖ẘ‖),

With this reduction in hand, designing dimension-free and parameter-free algorithms is now
exactly as easy as designing 1D algorithms, so long as we have access to a unit-ball algorithm
AS . As mentioned, for any Hilbert space we indeed have such an algorithm. In general, algo-
rithms AS exist for most other Banach spaces of interest [28], and in particular one can achieve

RAS
T (ẘ) ≤ O

(√
1
λ

∑T
t=1 ‖gt‖2?

)
whenever B is (2, λ)-uniformly convex [25] using the Follow-

the-Regularized-Leader algorithm with regularizers scaled by
√
λ√∑t

i=1 ‖gi‖2?
[19].

Applying Algorithm 2 to our 1D Algorithm 1, for any (2, λ)-uniformly convex B, we obtain:

RT (ẘ) = O

‖ẘ‖max

ln
‖ẘ‖

∑T
t=1 ‖gt‖2?
ε

,

√√√√ T∑
t=1

‖gt‖2? ln

(
‖ẘ‖2

∑T
t=1 ‖gt‖2?
ε2

+ 1

)
+
‖ẘ‖√
λ

√√√√ T∑
t=1

‖gt‖2? + ε

 .

Spaces that satisfy this property include Hilbert spaces such as Rd with the 2-norm (in which case
λ = 1), as well the Rd with the p-norm for p ∈ (1, 2] (in which case λ = p − 1). Finally, observe
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that the runtime of this reduction is equal to the runtime of A1D plus the runtime of AS , which in
many cases (including Rd with 2-norm or Hilbert spaces) is the same as online gradient descent.

Not only does this provide the fastest known parameter-free algorithm for an arbitrary norm,
it is also the first parameter-free algorithm to obtain a dependence on the gradients of ‖gt‖2? rather
than ‖gt‖?3. This improved bound immediately implies much lower regret in easier settings, such
as smooth losses with small loss values at ẘ [27].

4. Reduction to Constrained Domains

The previous algorithms have dealt with optimization over an entire vector space. Although com-
mon and important case in practice, sometimes we must perform optimization with constraints, in
which each wt and the comparison point ẘ must lie in some convex domain W that is not an en-
tire vector space. This constrained problem is often solved with the classical Mirror Descent [31]
or Follow-the-Regularized-Leader [26] analysis. However, these approaches have drawbacks: for
unbounded sets, they typically maintain regret bounds that have suboptimal dependence on ẘ, or,
for bounded sets, they depend explicitly on the diameter of W . We will address these issues with
a simple reduction. Given any convex domain V ⊃ W and an algorithm A that maintains regret
RAT (ẘ) for any ẘ ∈ V , we obtain an algorithm that maintains 2RAT (ẘ) for any ẘ in W .

Before giving the reduction, we define the distance to a convex setW as SW (x) = infd∈W ‖x−
d‖ as well as the projection to W as ΠW (x) = {d ∈ W : ‖d− x‖ ≤ ‖c− x‖,∀c ∈ W}. Note that
if B is reflexive,4 ΠW (x) 6= ∅ and that it is a singleton if B is a Hilbert space [16, Exercise 4.1.4].

The intuition for our reduction is as follows: given a vector zt ∈ V fromA, we predict with any
wt ∈ ΠW (zt). Then give A a subgradient at zt of the surrogate loss function 〈gt, ·〉 + ‖gt‖?SW ,
which is just the original linearized loss plus a multiple of SW . The additional term SW serves as
a kind of Lipschitz barrier that penalizes A for predicting with any zt /∈ W . Pseudocode for the
reduction is given in Algorithm 3.

Algorithm 3 Constraint Set Reduction
Require: Reflexive Banach space B, Online learning algorithm A with domain V ⊃W ⊂ B

1: for t = 1 to T do
2: Get point zt ∈ V from A
3: Play wt ∈ ΠW (zt), receive gt ∈ ∂`t(wt)
4: Set ˜̀

t(x) = 1
2 (〈gt, x〉+ ‖gt‖?SW (x))

5: Send g̃t ∈ ∂ ˜̀
t(zt) as tth subgradient to A

6: end for

Theorem 3 Assume that the algorithm A obtains regret RAT (ẘ) for any ẘ ∈ V . Then Algorithm 3
guarantees regret:

RT (ẘ) =

T∑
t=1

〈gt, wt − ẘ〉 ≤ 2RAT (ẘ), ∀ẘ ∈W .

Further, the subgradients g̃t sent to A satisfy ‖g̃t‖? ≤ ‖gt‖?.

3. Independently, [10] achieved the same runtime in the supervised prediction setting, but with no adaptivity to gt.
4. All Hilbert spaces and finite-dimensional Banach spaces are reflexive.
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Before proving this Theorem, we need a small technical Proposition, proved in Appendix D.

Proposition 1 SW is convex and 1-Lipschitz for any closed convex set W in a reflexive Banach
space B.

Proof [of Theorem 3] From Proposition 1, we observe that since SW is convex and ‖gt‖? ≥ 0, ˜̀
t is

convex for all t. Therefore, by A’s regret guarantee, we have

T∑
t=1

˜̀
t(zt)− ˜̀

t(ẘ) ≤ RAT (ẘ) .

Next, since ẘ ∈ W , 〈gt, ẘ〉 = 2˜̀
t(ẘ) for all t. Further, since wt ∈ ΠW (zt), we have 〈gt, zt〉 +

‖gt‖?‖wt − zt‖ = 2˜̀
t(zt). Finally, by the definition of dual norm we have

〈gt, wt − ẘ〉 ≤ 〈gt, zt − ẘ〉+ ‖gt‖?‖wt − zt‖ = 2˜̀
t(zt)− 2˜̀

t(ẘ) .

Combining these two lines proves the regret bound of the theorem. The bound on ‖g̃t‖? follows
because SW is 1-Lipschitz, from Proposition 1.

We conclude this section by observing that in many cases it is very easy to compute an element
of ΠW and a subgradient of SW . For example, whenW is a unit ball, it is easy to see that ΠW (x) =
x
‖x‖ and ∂SW (x) = ∂‖x‖ for any x not in the ball. In general, we provide the following result that
often simplifies computing the subgradient of SW (proved in Appendix D):

Theorem 4 Let B be a reflexive Banach space such that for every 0 6= b ∈ B, there is a unique
dual vector b? such that ‖b?‖? = 1 and 〈b?, b〉 = ‖b‖. Let W ⊂ B a closed convex set. Given
x ∈ B and x /∈W , let p ∈ ΠW (x). Then {(x− p)?} = ∂SW (x).

5. Reduction for Multi-Scale Experts

In this section, we apply our reductions to the multi-scale experts problem considered in [9; 1].
Our algorithm improves upon both prior algorithms: the approach of [1] has a mildly sub-optimal
dependence on the prior distribution, while the approach of [9] takes timeO(T ) per update, resulting
in a quadratic total runtime. Our algorithm matches the regret bound of [9] while running in the same
time complexity as online gradient descent.

The multi-scale experts problem is an online linear optimization problem over the probability
simplex {x ∈ RN≥0 :

∑N
i=1 xi = 1} with linear losses `t(w) = gt · w such that each gt =

(gt,1, . . . , gt,N ) satisfies |gt,i| ≤ ci for some known quantities ci. The objective is to guarantee that
the regret with respect to the ith basis vector ei (the ith “expert”) scales with ci. Formally, we want
RT (ẘ) = O(

∑N
i=1 ci|ẘi|

√
T log(ci|ẘi|T/πi)), given a prior discrete distribution (π1, . . . , πN ).

As discussed in depth by [9], such a guarantee allows us to combine many optimization algorithms
into one meta-algorithm that converges at the rate of the best algorithm in hindsight.

We accomplish this through two reductions. First, given any distribution (π1, . . . , πN ) and any
family of 1-dimensional OLO algorithmsA(ε) that guaranteesR(u) ≤ O

(
ε+ |u|

√
log(|u|T/ε)T

)
on 1-Lipschitz losses for any given ε (such as our Algorithm 1 or many other parameter-free algo-
rithms), we apply the classic “coordinate-wise updates” trick [29] to generate an N -dimensional
OLO algorithm with regret RT (u) = O

(
ε+

∑N
i=1 |ui|

√
log (|ui|T/(επi))T

)
on losses that are

1-Lipschitz with respect to the 1-norm.
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Algorithm 4 Coordinate-Wise Updates

Require: parametrized family of 1-D online learning algorithm A(ε), prior π, ε > 0
1: Initialize: N copies of A: A1(επ1), . . . ,AN (επN )
2: for t = 1 to T do
3: Get points zt,i from Ai for all i to form vector zt = (zt,1, . . . , zt,N )
4: Play zt, get loss gt ∈ RN with ‖gt‖∞ ≤ 1
5: Send gt,i to Ai for all i
6: end for

Theorem 5 Suppose for any ε > 0, A(ε) guarantees regret

RT (u) ≤ O

(
ε+ |u|

√
log
(
|u|T
ε + 1

)
T

)
for 1-dimensional losses bounded by 1. Then Algorithm 4 guarantees regret

RT (u) ≤ O

(
ε+

N∑
i=1

|ui|
√

log
(
|ui|T
επi

+ 1
)
T

)
.

Proof Let RiT (ui) be the regret of the ith copy of A with respect to ui ∈ R. Then

T∑
t=1

〈gt, wt−u〉 =
N∑
i=1

T∑
t=1

gt,i(wt,i−ui) ≤
N∑
i=1

RiT (ui) ≤ O

(
ε+

N∑
i=1

|ui|
√

log
(
|ui|T
επi

+ 1
)
T

)
.

Algorithm 5 Multi-Scale Experts

Require: parametrized 1-D Online learning algorithm A(ε), prior π, scales c1, . . . , cN
1: Initialize: coordinate-wise algorithm Aπ with prior π using A(ε)
2: Define W = {x : xi ≥ 0 for all i and

∑N
i=1 xi/ci = 1}

3: Let AWπ be the result of applying the unconstrained-to-constrained reduction to Aπ with con-
straint set W using ‖ · ‖1

4: for t = 1 to T do
5: Get point zt ∈W from AWπ
6: Set xt ∈ RN by xt,i = zt,i/ci. Observe that xt is in the probability simplex
7: Play xt, get loss vector gt
8: Set g̃t ∈ RN by g̃t,i =

gt,i
ci

9: Send g̃t to AWπ
10: end for

With this in hand, notice that applying our reduction Algorithm 3 with the 1-norm easily yields
an algorithm over the probability simplex W with the same regret (up to a factor of 2), as long as
‖gt‖∞ ≤ 1. Then, we apply an affine change of coordinates to make our multi-scale experts losses
have ‖gt‖∞ ≤ 1, so that applying this algorithm yields the desired result (see Algorithm 5).

9
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Theorem 6 If gt satisfies |gt,i| ≤ ci for all t and i and A(ε) satisfies the conditions of Theorem 5,
then, for any ẘ in the probability simplex, Algorithm 5 satisfies the regret bound

RT (ẘ) ≤ O

(
ε+

N∑
i=1

ci|ẘi|
√

log
(
ci|ẘi|T
επi

+ 1
)
T

)
.

Proof Given any ẘ in the probability simplex, define w̃ ∈ RN by w̃i = ciẘi. Observe that w̃ ∈W .
Further, observe that since |gt,i| ≤ ci, ‖g̃t‖∞ ≤ 1. Finally, observe that g̃t · zt =

∑N
i=1 g̃t,izt,i =∑N

i=1
gt,i
ci
cixt,i = gt ·xt and similarly g̃t ·w̃ = gt ·ẘ. Thus

∑T
t=1 g̃t ·zt− g̃t ·w̃ =

∑T
t=1 gt ·(xt−ẘ).

Now, by Theorem 5 and Theorem 3 we have

T∑
t=1

gt · (xt − ẘ) =
T∑
t=1

g̃t · (zt − w̃) ≤ O

(
ε+

N∑
i=1

|w̃i|
√

log
(
|w̃i|T
επi

+ 1
)
T

)
Now simply substitute the definition w̃i = ciẘi to complete the proof.

In Appendix E we show how to compute the projection ΠS and a subgradient of SW in O(N)
time via a simple greedy algorithm. As a result, our entire reduction runs in O(N) time per update.

6. Reduction to Adapt to Curvature

In this section, we present a black-box reduction to make a generic online learning algorithm
over a Banach space adaptive to the curvature of the losses. Given a set W of diameter D =
supx,y∈W ‖x − y‖, our reduction obtains O(log(TD)2/µ) regret on online µ-strongly convex op-
timization problems, but still guarantees O(log(TD)2D

√
T ) regret for online linear optimization

problems, both of which are only log factors away from the optimal guarantees. We follow the
intuition of [7], who suggest adding a weighted average of previous wts to the outputs of a base
algorithm as a kind of “momentum” term. We improve upon their regret guarantee by a log factor
and by the ‖gt‖2? terms instead of ‖gt‖?. More importantly, their algorithm involves an optimization
step which may be very slow for most domains (e.g. the unit ball). In contrast, thanks to our fast re-
duction in Section 4, we keep the same running time as the base algorithm. Finally, previous results
for algorithms with similar regret (e.g. [7; 30]) show logarithmic regret only for stochastic strongly
convex problems. We give a two-line argument extending this to the adversarial case as well.

Theorem 7 Let A be an online linear optimization algorithm that outputs wt in response to gt.
Suppose W is a convex closed set of diameter D. Suppose A guarantees for all t and v̊:

t∑
i=1

〈g̃i, wi − v̊〉 ≤ ε+ ‖̊v‖A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln
(
‖̊v‖2tC
ε2

+ 1
))

+B‖̊v‖ ln
(
‖̊v‖tC
ε + 1

)
,

for constants A, B and C and ε independent of t. Then for all ẘ ∈W , Algorithm 6 guarantees

RT (ẘ) ≤
T∑
t=1

〈gt, xt − ẘ〉 ≤ O
(√

VT (ẘ) ln TD
ε ln(T ) + ln DT

ε ln(T ) + ε

)
,

where VT (ẘ) := ‖x0 − ẘ‖2 +
∑T

t=1 ‖g̃t‖2?‖xt − ẘ‖2 ≤ D2 +
∑T

t=1 ‖gt‖2?‖xt − ẘ‖2.

10
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Algorithm 6 Adapting to Curvature

Require: Online learning algorithm A
1: Initialize: W , a convex closed set in a reflexive Banach space, x0 an arbitrary point in W
2: for t = 1 to T do
3: Get point wt from A
4: Set zt = wt + xt−1

5: Play xt ∈ ΠW (zt), receive subgradient gt ∈ ∂`t(xt)
6: Set g̃t ∈ gt + ‖gt‖?∂SW (zt)

7: Set xt =
x0+

∑t
i=1 ‖g̃i‖2?xi

1+
∑t

i=1 ‖g̃i‖2?
8: Send g̃t so A as the tth subgradient
9: end for

To see that Theorem 7 implies logarithmic regret on online strongly-convex problems, suppose
that each `t is µ-strongly convex, so that `t(wt)− `(ẘ) ≤ 〈gt, wt − ẘ〉 − µ

2‖wt − ẘ‖
2. Then:

T∑
t=1

`(xt)− `(ẘ) ≤ O


√√√√log2(DT )

T∑
t=1

‖xt − ẘ‖2 −
µ

2

T∑
t=1

‖xt − ẘ‖2 + log2(TD)


≤ O

(
sup
X

√
log2(DT )X − µ

2
X + log2(TD)

)
= O

(
log2(DT )

(
1 +

1

µ

))
.

Where we have used ‖gt‖? ≤ 1.

7. Banach-space betting through ONS

In this section, we present the Banach space version of the one-dimensional Algorithm 1. The
pseudocode is in Algorithm 7. We state the algorithm in its most general Banach space formulation,
which obscures some of its simplicity in more common scenarios. For example, when B is Rd
equipped with the p-norm, then the linear operator L can be taken to be simply the identity map
I : Rd → Rd ∼= (Rd)?, and the ONS portion of the algorithm is the standard d-dimensional ONS
algorithm. We give the regret guarantee of Algorithm 7 in Theorem 8. The proof, modulo technical
details of ONS in Banach spaces, is identical to Theorem 1, and can be found in Appendix C.

Theorem 8 Let B be a d-dimensional real Banach space and u ∈ B be an arbitrary unit vector.
Then, there exists a linear operator L such that using the Algorithm 7, we have for any ẘ ∈ B,

RT (ẘ) ≤ ε+ max

d‖ẘ‖2
− 8‖ẘ‖+ 8‖ẘ‖ ln

8‖ẘ‖
(

1 + 4
∑T

t=1 ‖gt‖2?
)4.5d

ε

 ,

2

√√√√√ T∑
t=1

〈gt, ẘ〉2 ln

5‖ẘ‖2
ε2

(
8

T∑
t=1

‖gt‖2 + 2

)9d+1

+ 1


 .

11
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Algorithm 7 Banach-space betting through ONS

Require: Real Banach space B, initial linear operator L : B → B?, initial wealth ε > 0
1: Initialize: Wealth0 = ε, initial betting fraction v1 = 0 ∈ S = {x ∈ B : ‖x‖ ≤ 1

2}
2: for t = 1 to T do
3: Bet wt = vt Wealtht−1, receive gt, with ‖gt‖? ≤ 1
4: Update Wealtht = Wealtht−1 − 〈gt, wt〉
5: //compute new betting fraction vt+1 ∈ S via ONS update on losses − ln(1− 〈gt, v〉):
6: Set zt = d

dvt
(− ln(1− 〈gt, vt〉)) = gt

1−〈gt,vt〉
7: Set At(x) = L(x) +

∑t
i=1 zi〈zi, x〉

8: vt+1 = ΠAt
S (vt − 2

2−ln(3)A
−1
t (zt)), where ΠAt

S (x) = argminy∈S 〈At(y − x), y − x〉
9: end for

The main particularity of this bound is the presence of the terms
√
d
∑T

t=1〈gt, ẘ〉2 rather than

the usual ‖ẘ‖
√∑T

t=1 ‖gt‖2?. We can interpret this bound as being adaptive to any sequence of

norms ‖ · ‖1, . . . , ‖ · ‖t because
√
d
∑T

t=1〈gt, ẘ〉2 ≤
√
d
∑T

t=1 ‖ẘ‖2t (‖gt‖t)2
?. A similar kind of

“many norm adaptivity” was recently achieved in [9], which competes with the best fixed Lp norm
(or the best fixed norm in any finite set). Our bound in Theorem 8 is a factor of

√
d worse,5 but we

can compete with any possible sequence of norms rather than with any fixed one.
Similar regret bounds to our Theorem 8 have already appeared in the literature. The first one

we are aware of is the Second Order Perceptron [3] whose mistake bound is exactly of the same
form. Recently, a similar bound was also proven in [14], under the assumption that W is of the
form W = {̊v : 〈gt, v̊〉 ≤ C}, for a known C. Also, Kotłowski [15] proved the same bound
when the losses are of the form `t(wt) = `(yt, wt · xt) and the algorithm receives xt before its
prediction. In contrast, we can deal with unbounded W and arbitrary convex losses through the use
of subgradients. Interestingly, all these algorithms (including ours) have a O(d2) complexity per
update.

8. Conclusions

We have introduced a sequence of three reductions showing that parameter-free online learning al-
gorithms can be obtained from online exp-concave optimization algorithms, that optimization in a
vector space with any norm can be obtained from 1D optimization, and that online optimization
with constraints is no harder than optimization without constraints. Our reductions result in sim-
pler arguments in many cases, and also often provide better algorithms in terms of regret bounds
or runtime. We therefore hope that these tools will be useful for designing new online learning
algorithms.
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Appendix

This appendix is organized as follows:

1. In Section A we collect some background information about Banach spaces, their duals, and
other properties.

2. In Section B we provide an analysis of the ONS algorithm in Banach spaces that is useful for
proving Theorem 8.

3. In Section C we apply this analysis of ONS in Banach spaces to prove Theorem 8, and pro-
vide the missing Fenchel conjugate calculation required to prove Theorem 1, which are our
reductions from parameter-free online learning to Exp-concave optimization.

4. In Section D we prove Proposition 1, used in our reduction from constrained optimization
to unconstrained optimization in Section 4. In this section we also prove Theorem 4, which
simplifies computing subgradients of SW in many cases.

5. In Section E we show how to compute ΠW and a subgradient of SW on O(N) time for use in
our multi-scale experts algorithm.

6. Finally, in Section F we prove Theorem 7, our regret bound for an algorithm that adapts to
stochastic curvature.

Appendix A. Banach Spaces

Definition 2 A Banach space is a vector space B over R or C equipped with a norm ‖ · ‖ : B → R
such that B is complete with respect to the metric d(x, y) = ‖x− y‖ induced by the norm.

Banach spaces include the familiar vector spaces Rd equipped with the Euclidean 2-norm, as
well as the the same vector spaces equipped with the p-norm instead.

An important special case of Banach spaces are the Hilbert spaces, which are Banach spaces
that are also equipped with an inner-product 〈, 〉 : B × B → R (a symmetric, positive definite,
non-degenerate bilinear form) such that 〈b, b〉 = ‖b‖2 for all b ∈ B. In the complex case, the
inner-product is C valued and the symmetric part of the definition is replaced with the condition
〈v, w〉 = 〈w, v〉where x indicates complex conjugation. Hilbert spaces include the typical examples
of Rd with the usual dot product, as well as reproducing kernel Hilbert spaces.

The dual of a Banach space B over a field F , denoted B?, is the set of all continuous linear
functions B → F . For Hilbert spaces, there is a natural isomorphism B ∼= B? given by b 7→ 〈b, ·〉.
Inspired by this isomorphism, in general we will use the notation 〈v, w〉 to indicate application of
a dual vector v ∈ B? to a vector w ∈ B. It is important to note that our use of this notation in
no way implies the existence of an inner-product on B. When B is a Banach space, B? is also
a Banach space with the dual norm: ‖w‖? = supv∈B, ‖v‖=1〈w, v〉. A subgradient of a convex
function ` : B → R is naturally an element of the dual B?. Therefore, the reduction to linear losses
by `t(wt) − `t(ẘ) ≤ 〈gt, wt − ẘ〉 for gt ∈ ∂`t(wt) generalizes perfectly to the case where W is a
convex subset of a Banach space.

Given any vector space V , there is a natural injection V → V ?? given by x 7→ 〈·, x〉. When
this injection is an isomorphism of Banach spaces, then the space V is called reflexive. All finite-
dimensional Banach spaces are reflexive.
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Given any linear map of Banach spaces T : X → Y , we define the adjoint map T ? : Y ? → X?

by T ?(y?)(x) = 〈y?, T (x)〉. T ? has the property (by definition) that 〈y?, T (x)〉 = 〈T ?(y?), x〉.
As a special case, if B is a reflexive Banach space and T : B → B?, then we can use the natural
identification between B?? and B to view T ? as T ? : B → B?. Thus, in this case it is possible to
have T = T ?, in which case we call T self-adjoint.

Definition 3 We define a Banach space B as (p,D) uniformly convex if [25]:

‖x+ y‖p + ‖x− y‖p ≥ 2‖x‖p + 2D‖y‖p, ∀x, y ∈ B . (4)

From this definition, we can see that if B is (2, D) uniformly convex, then ‖ · ‖2 is a D-strongly
convex function with respect to ‖ · ‖:

Lemma 9 Let f(x) a convex function that satisfies

f

(
x+ y

2

)
≤ 1

2
f(x) +

1

2
f(y)− D

2p
‖x− y‖p .

Then, f satisfies f(x + δ) ≥ f(x) + g(δ) + D ‖δ‖
p

p for any subgradient g ∈ ∂f(x). In particular
for p = 2, f is D strongly convex with respect to ‖ · ‖.

Proof Set y = x + 2δ for some arbitrary δ. Let g ∈ X? be an arbitrary subgradient of f at x. Let
Rx(τ) = f(x+ τ)− (f(x) + g(τ)). Then

f(x) + g(δ) ≤ f
(
x+ y

2

)
≤ f(x) + f(x+ 2δ)

2
− D‖2δ‖p

2p
= f(x) + g(δ) +

Rx(2δ)

2
− D‖2δ‖p

2p
,

that implies D
p ‖2δ‖

p ≤ Rx(2δ). So that f(x+ τ) = f(x) + g(τ) +Rx(τ) ≥ f(x) + g(τ) + D
p ‖τ‖

p

as desired.

Lemma 10 Let B be a (2, D) uniformly convex Banach space, then f(x) = 1
2‖x‖

2 is D-strongly
convex.

Proof Let x = u+ v and y = u− v. Then, from the definition of (2, D) uniformly convex Banach
space, we have

2‖u+ v‖2 + 2D‖u− v‖2 ≤ 4‖u‖2 + 4‖v‖2,

that is
1

2

∥∥∥∥u+ v

2

∥∥∥∥2

≤ 1

2
‖u‖2 +

1

2
‖v‖2 − D

4
‖u− v‖2 .

Using Lemma 9, we have the stated bound.

Any Hilbert space is (2, 1)-strongly convex. As a slightly more exotic example, Rd equipped
with the p-norm is (2, p− 1) strongly-convex for p ∈ (1, 2].
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Appendix B. Proof of the regret bound of ONS in Banach spaces

First, we need some additional facts about self-adjoint operators. These are straight-forward prop-
erties in Hilbert spaces, but may be less familiar in Banach spaces so we present them below for
completeness.

Proposition 4 Suppose X and Y are Banach spaces and T : X → Y is invertible. Then, T ? is
invertible and (T−1)? = (T ?)−1.

Proof Let y? ∈ Y ?. Let x ∈ X . Recall that by definition 〈T ?(y?), x〉 = 〈y?, T (x)〉. Then we have

〈(T−1)?(T ?(y?)), x〉 = 〈T ?(y?), T−1(x)〉 = 〈y?, x〉,

where we used the definition of adjoint twice. Therefore, (T−1)?(T ?(y?)) = y? and so (T−1)? =
(T ?)−1.

Proposition 5 Suppose B is a reflexive Banach space and T : B → B? is such that

T (x) =

N∑
i=1

〈bi, x〉bi

for some vectors bi ∈ B?. Then T ? = T .

Proof Let g, f ∈ B. Since B is reflexive, g corresponds to the function 〈·, g〉 ∈ B??. Now, we
compute:

T ?(g)(f) = 〈T (f), g〉 =

N∑
i=1

〈bi, f〉〈bi, g〉 = 〈T (g), f〉 = T (g)(f) .

Proposition 6 Suppose τ > 0, B is a d-dimensional real Banach space, b1, . . . , bd are a basis for
B? and g1, . . . , gT are elements of B?. Then, A : B → B? defined by A(x) = τ

∑d
i=1〈bi, x〉bi +∑T

t=1〈gt, x〉gt is invertible and self-adjoint, and 〈Ax, x〉 > 0 for all x 6= 0.

Proof First, A is self-adjoint by Proposition 5.
Next, we showA is invertible. Suppose otherwise. Then, sinceB andB? are both d-dimensional,

A must have a non-trivial kernel element x. Therefore,

0 = 〈Ax, x〉 = τ
d∑
i=1

〈bi, x〉2 +
T∑
t=1

〈gt, x〉2, (5)

so that 〈bi, x〉 = 0 for all i. Since the bi form a basis for B?, this implies 〈y, x〉 = 0 for all y ∈ B?,
which implies x = 0. Therefore, A has no kernel and so must be invertible.

Finally, observe that since (5) holds for any x, we must have 〈Ax, x〉 > 0 if x 6= 0.

Now we state the ONS algorithm in Banach spaces and prove its regret guarantee:

17



BLACK-BOX REDUCTIONS FOR PARAMETER-FREE ONLINE LEARNING IN BANACH SPACES

Algorithm 8 ONS in Banach Spaces

Require: Real Banach space B, convex subset S ⊂ B, initial linear operator L : B → B?,
τ, β > 0

1: Initialize: v1 = 0 ∈ S
2: for t = 1 to T do
3: Play vt
4: Receive zt ∈ B?

5: Set At(x) = τL(x) +
∑t

i=1 zi〈zi, x〉
6: vt+1 = ΠAt

S (vt − 1
βA
−1
t (zt)), where ΠAt

S (x) = argminy∈S 〈At(y − x), y − x〉
7: end for

Theorem 11 Using the notation of Algorithm 8, suppose L(x) =
∑d

i=1〈bi, x〉 for some basis
bi ∈ B? and that B is d-dimensional. Then for any v̊ ∈ S,

T∑
t=1

(
〈zt, vt − v̊〉 −

β

2
〈zt, vt − v̊〉2

)
≤ βτ

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉 .

Proof First, observe by Proposition 6 that At is invertible and self-adjoint for all t.
Now, define xt+1 = vt − 1

βA
−1
t (zt) so that vt+1 = ΠAt

S (xt+1). Then, we have

xt+1 − v̊ = vt − v̊ −
1

β
A−1
t (zt),

that implies

At(xt+1 − v̊) = At(vt − v̊ −
1

β
A−1
t (zt)) = At(vt − v̊)− 1

β
zt,

and

〈At(xt+1 − v̊), xt+1 − v̊〉

= 〈At(vt − v̊)− 1

β
zt, xt+1 − v̊〉

= 〈At(vt − v̊), xt+1 − v̊〉 −
1

β
〈zt, xt+1 − v̊〉

= 〈At(vt − v̊), xt+1 − v̊〉 −
1

β
〈zt, vt − v̊ −

1

β
A−1
t (zt)〉

= 〈At(vt − v̊), xt+1 − v̊〉 −
1

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉

= 〈At(vt − v̊), vt − v̊ −
1

β
A−1
t (zt)〉 −

1

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉

= 〈At(vt − v̊), vt − v̊〉 −
1

β
〈At(vt − v̊), A−1

t (zt)〉 −
1

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉

= 〈At(vt − v̊), vt − v̊〉 −
2

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉,

18
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where in the last line we used 〈At(vt − v̊), A−1
t (zt)〉 = 〈(vt − v̊), A?tA

−1
t (zt)〉 and A?t = At.

We now use the Lemma 8 from [12], extended to Banach spaces thanks to the last statement of
Proposition 6, to have

〈At(xt+1 − v̊), xt+1 − v̊〉 ≥ 〈At(vt+1 − v̊), vt+1 − v̊〉

to have

〈zt, vt − v̊〉 ≤
β

2
〈At(vt − v̊), vt − v̊〉 −

β

2
〈At(vt+1 − v̊), vt+1 − v̊〉+

2

β
〈zt, A−1

t (zt)〉 .

Summing over t = 1, · · · , T , we have

T∑
t=1

〈zt, vt − v̊〉 ≤
β

2
〈A1(v1 − v̊), v1 − v̊〉+

β

2

T∑
t=2

〈At(vt − v̊)−At−1(vt − v̊), vt − v̊〉

− β

2
〈AT (vT+1 − v̊), vT+1 − v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉

≤ β

2
〈A1(v1 − v̊), v1 − v̊〉+

β

2

T∑
t=2

〈zt〈zt, vt − v̊〉, vt − v̊〉+
2

β

T∑
t=1

〈zt, A−1
t (zt)〉

=
β

2
〈τL(̊v), v̊〉+

β

2

T∑
t=1

〈zt, vt − v̊〉2 +
2

β

T∑
t=1

〈zt, A−1
t (zt)〉 .

It remains to choose L properly and analyze the sum
∑T

t=1〈zt, A
−1
t (zt)〉 In order to do this, we

introduce the concept of an Auerbach basis (e.g. see [11] Theorem 1.16):

Theorem 12 Let B be a d-dimensional Banach space. Then there exists a basis of b1, . . . , bd of B
and a basis b1, . . . , bd of B? such that ‖bi‖ = ‖bi‖? = 1 for all i and 〈bi, bj〉 = δij . Any bases (bi)
and (bi) satisfying these conditions is called an Auerbach basis.

We will use an Auerbach basis to define L, and also to provide a coordinate system that makes
it easier to analyze the sum

∑T
t=1〈zt, A

−1
t (zt)〉.

Theorem 13 Suppose B is d-dimensional. Let (bi) and (bi) be an Auerbach basis for B. Set
L(x) =

∑d
i=1〈bi, x〉bi. Define At as in Algorithm 7. Then, for any v̊ ∈ S, the following holds

βτ

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉 ≤

βτ

2
d‖̊v‖2 +

2

β
d ln

(∑T
t=1 ‖zt‖2?
τ

+ 1

)
.

Proof First, we show that β2 〈L(̊v), v̊〉 ≤ βd
2 ‖̊v‖

2. To see this, observe that for any x ∈ B,

〈L(x), x〉 =
d∑
i=1

〈bi, x〉2 ≤
d∑
i=1

‖bi‖2?‖x‖2 ≤ d‖x‖2 .
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Now, we characterize the sum part of the bound. The basic idea is to use the Auerbach basis
to identify B with Rd (equivalently, we view 〈L(x), x〉 as an inner product on B). We use this
identification to translate all quantities in B and B? to vectors in Rd, and observe that the 2-norm
of any gt in Rd is at most d. Then we use analysis of the same sum terms in the classical analysis of
ONS in Rd [12] to prove the bound.

We spell these identifications explicitly for clarity. Define a map F : B → Rd by

F (x) = (〈b1, x〉, . . . , 〈bd, x〉) .

We have an associated map F ? : B? → Rd given by

F ?(x?) = (〈x?, b1〉, . . . , 〈x?, bd〉) .

Since 〈bi, bj〉 = δij , these maps respect the action of dual vectors in B?. That is,

〈x, y〉 = F ?(x) · F (y) .

Further, since each ‖bi‖ = ‖bi‖? = 1, we have

‖F (x)‖2 =

d∑
i=1

〈bi, x〉2 ≤ d‖x‖2 .

and

‖F ?(x)‖2 =
d∑
i=1

〈x, bi〉2 ≤ d‖x‖2? .

where the norm in Rd is the 2-norm. To make the correspondence notation cleaner, we write x =
F (x) for x ∈ B and y = F ?(y) for y ∈ B?. xi indicates the ith coordinate of x.

Given any linear mapM : B → B? (which we denote byM ∈ L(B,B?)), there is an associated
map M : Rd → Rd given by

M = F ?MF−1 .

Further, when written as a matrix, the ijth element of M is

M ij = (F ?MF−1ej) · ei,

where ej represents the jth standard basis element in Rd. A symmetric statement holds for any
linear map B? → B, in which M = FM(F ?)−1.

These maps all commute properly: Mx = Mx for any M ∈ L(B,B?) and x ∈ B, and
similarly Mx = Mx for any M ∈ L(B?, B) and x ∈ B?. It follows that M−1

= M−1 for any M
as well.

Now, let’s calculate Lij :

Lij = (F ?LF−1ej) · ei = 〈Lbj , bi〉 = δij ,

so that the matrix L is the identity.
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Finally, if Mg : B → B? is the map Mg(x) = 〈g, x〉g, then a simple calculation shows

Mg = ggT .

With these details described, recall that we are trying to bound the sum

T∑
t=1

〈zt, A−1
t (zt)〉 .

We transfer to Rd coordinates:

T∑
t=1

〈zt, A−1
t (zt)〉 =

T∑
t=1

zt ·At
−1
zt .

We have ‖zn‖ ≤
√
d‖zn‖? and

At = τL+

t∑
t=1

ztzt
T ,

so that by [12] Lemma 11,

T∑
t=1

zt ·At
−1
zt ≤ ln

|AT |
|A0|

≤ d ln

(∑T
t=1 ‖zt‖2

dτ
+ 1

)
≤ d ln

(∑T
t=1 ‖zt‖2?
τ

+ 1

)
,

where in the second inequality we used the fact that the determinant is maximized when all the

eigenvalues are equal to
∑T

t=1 ‖zt‖2
d .

For completeness, we also state the regret bound and the setting of the parameters β and τ to ob-
tain a regret bound for exp-concave functions. Note that we use a different settings in Algorithms 1
and 7, tailored to our specific setting.

Theorem 14 Suppose we run Algorithm 7 on α exp-concave losses. Let D be the diameter of the
domain S and ‖∇f(x)‖? ≤ Z for all the x in S. Then set β = 1

2 min
(

1
4ZD , α

)
and τ = 1

β2D2 .
Then

RT (̊v) ≤ 4d

(
ZD +

1

α

)
(1 + ln(T + 1)) .

Proof First, observe that classic analysis of α exp-concave functions [12, Lemma 3] shows that for
any x, y ∈ S,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
β

2
〈∇f(y), x− y〉2 .

(Note that although the original proof is stated in Rd, the exact same argument applies in a Banach
space)

Therefore, by Theorems 11 and 13, we have

RT (u) ≤ βτ

2
d‖u‖2 +

2

β
d ln(Z2T/τ + 1) .
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Substitute our values for β and τ to conclude

RT (u) ≤ d

2β

(
1 + ln(Z2Tβ2D2 + 1)

)
≤ 4d

(
ZD +

1

α

)
(1 + ln(T + 1)),

where in the last line we used 1
β ≤ 8(ZD + 1/α).

Appendix C. Proofs of Theorems 1 and 8

In order to prove Theorem 1 and 8, we first need some technical lemmas. In particular, first we show
in Lemma 17 that ONS gives us a logarithmic regret against the functions `t(β) = ln(1 + 〈gt, β〉).
Then, we will link the wealth to the regret with respect to an arbitrary unitary vector thanks to
Theorem 21.

Lemma 15 For −1 < x ≤ 2, we have

ln(1 + x) ≤ x− 2− ln(3)

4
x2 .

Lemma 16 Define `t(v) = − ln(1− 〈gt, v〉). Let ‖̊v‖, ‖v‖ ≤ 1
2 and ‖gt‖? ≤ 1. Then

`t(v)− `t(̊v) ≤ 〈∇`t(v), v − v̊〉 − 2− ln(3)

2

1

2
〈∇`t(v), v − v̊〉2 .

Proof We have

ln(1− 〈gt, v̊〉) = ln(1− 〈gt, v〉+ 〈gt, v − v̊〉) = ln(1− 〈gt, v〉) + ln

(
1 +
〈gt, v − v̊〉
1− 〈gt, v〉

)
.

Now, observe that since 1 − 〈gt, v̊〉 ≥ 0 and 1 − 〈gt, v〉 ≥ 0, 1 + 〈gt,v−v̊〉
1−〈gt,v〉 ≥ 0 as well so that

〈gt,v−v̊〉
1−〈gt,v〉 ≥ −1. Further, since ‖̊v − v‖ ≤ 1 and 1 − 〈gt, v〉 ≥ 1/2, 〈gt,v−v̊〉1−〈gt,v〉 ≤ 2. Therefore, by
Lemma 15 we have

ln(1− 〈gt, v̊〉) ≤ ln(1− 〈gt, v〉) +
〈gt, v − v̊〉
1− 〈gt, v〉

− 2− ln(3)

4

〈gt, v − v̊〉2

(1− 〈gt, v〉)2
.

Using the fact that∇`t(v) = gt
1−〈gt,v〉 finishes the proof.

Lemma 17 Define S = {v ∈ B : ‖v‖ ≤ 1
2} and `t(v) : S → R as `t(v) = − ln(1 − 〈gt, v〉),

where ‖gt‖? ≤ 1. If we run ONS in Algorithm 7 with β = 2−ln(3)
2 , τ = 1, and S = {v : ‖v‖ ≤ 1

2},
then

T∑
t=1

`t(vt)− `t(̊v) ≤ d

(
1

17
+ 4.5 ln

(
1 + 4

T∑
t=1

‖gt‖2?

))
.
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Proof From Lemma 16, we have

T∑
t=1

`t(vt)− `t(̊v) ≤
T∑
t=1

(
〈∇`t(vt), vt − v̊〉 −

β

2
〈∇`t(vt), vt − v̊〉2

)
.

So, using Lemma 11 we have

T∑
t=1

(
〈∇`t(vt), vt − v̊〉 −

β

2
〈∇`t(vt), vt − v̊〉2

)
≤ β

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉,

where zt = ∇`t(vt). Now, use Theorem 13 so that

β

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉 ≤

dβ

8
+

2d

β
ln

(
1 +

T∑
t=1

‖zt‖2?

)
,

where we have used ‖̊v‖ ≤ 1/2. Then observe that ‖zt‖2? = ‖gt‖2?
(1+〈gt,βt〉)2 ≤ 4‖gt‖2? so that ln(1 +∑T

t=1 ‖zt‖2?) ≤ ln(1 + 4
∑T

t=1 ‖gt‖2?). Finally, substitute the specified value of β and numerically
evaluate to conclude the bound.

Now, we collect some Fenchel conjugate calculations that allow us to convert our wealth lower-
bounds into regret upper-bounds:

Lemma 18 Let f(x) = a exp(b|x|), where a, b > 0. Then

f?(θ) =

{ |θ|
b

(
ln |θ|ab − 1

)
, |θ|

ab > 1

−a, otherwise.
≤ |θ|

b

(
ln
|θ|
ab
− 1

)
.

Lemma 19 Let f(x) = a exp(b x2

|x|+c), where a, b > 0 and c ≥ 0. Then

f?(θ) ≤ |θ|max

(
2

b

(
ln

2|θ|
ab
− 1

)
,

√
c

b
ln

(
cθ2

a2b
+ 1

)
− a

)
.

Proof By definition we have
f?(θ) = sup

x
θx− f(x) .

It is easy to see that the sup cannot attained at infinity, hence we can safely assume that it is attained
at x? ∈ R. We now do a case analysis, based on x?.

Case |x?| ≤ c. In this case, we have that f(x?) ≥ a exp(bx
2

2c ), so

f?(θ) = θx? − f(x?) ≤ θx? − a exp

(
b
(x?)2

2c

)
≤ sup

x
θx− a exp

(
b
x2

2c

)
≤ |θ|

√
c

b
ln

(
cθ2

a2b
+ 1

)
− a,

where the last inequality is from Lemma 18 in [23].
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Case |x?| > c. In this case, we have that f(x?) ≥ a exp
(
b (x?)2

2|x?|

)
= a exp

(
b
2 |x

?|
)
, so

f?(θ) = θx? − f(x?) ≤ θx? − a exp

(
b

2
|x?|
)

≤ sup
x

θx− a exp

(
b

2
|x|
)
≤ 2|θ|

b

(
ln

2|θ|
ab
− 1

)
,

where the last inequality is from Lemma 18.
Considering the max over the two cases gives the stated bound.

Theorem 20 Let u be an arbitrary unit vector and ‖gt‖? ≤ 1 for t = 1, · · · , T . Then

sup
‖v‖≤ 1

2

T∑
t=1

ln(1− 〈gt, v〉) ≥
1

4

〈
∑T

t=1 gt, u〉2∑T
t=1〈gt, u〉2 +

∣∣∣〈∑T
t=1 gt, u

〉∣∣∣ .
Proof Recall that ln(1 + x) ≥ x− x2 for |x| ≤ 1/2. Then, we compute

sup
‖v‖≤1/2

T∑
t=1

ln(1− 〈gt, v〉) ≥ sup
‖v‖≤1/2

T∑
t=1

(
−〈gt, v〉 − 〈gt, v〉2

)
= sup
‖v‖≤1/2

−

〈
T∑
t=1

gt, v

〉
−

T∑
t=1

〈gt, v〉2 .

Choose v = u
2

〈∑T
t=1 gt,u〉∑T

t=1〈gt,u〉2+|〈∑T
t=1 gt,u〉|

. Then, clearly ‖v‖ ≤ 1
2 . Thus, we have

sup
‖v‖≤1/2

T∑
t=1

ln(1 + 〈gt, v〉) ≥ sup
‖v‖≤1/2

−

〈
T∑
t=1

gt, v

〉
−

T∑
t=1

〈gt, v〉2

≥ 1

2

〈
∑T

t=1 gt, u〉2∑T
t=1〈gt, u〉2 +

∣∣∣〈∑T
t=1 gt, u

〉∣∣∣ − 〈
∑T

t=1 gt, u〉2

4
(∑T

t=1〈gt, u〉2 +
∣∣∣〈∑T

t=1 gt, u
〉∣∣∣)2

T∑
t=1

〈gt, u〉2

≥ 1

4

〈
∑T

t=1 gt, u〉2∑T
t=1〈gt, u〉2 +

∣∣∣〈∑T
t=1 gt, u

〉∣∣∣ .

Lemma 21 Let u be an arbitrary unit vector inB and t > 0. Then, using the Algorithm 7, we have

RT (tu) ≤ ε+ tmax

d
2
− 8 + 8 ln

8t
(

4
∑T

t=1 ‖gt‖2? + 1
)4.5d

ε
,

2

√√√√√ T∑
t=1

〈gt, u〉2 ln

5t2

ε2
exp

(
d

17

)(
4

T∑
t=1

‖gt‖2 + 1

)9d+1

+ 1


 .
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Proof Let’s compute a bound on our wealth, WealthT . We have that

Wealtht = Wealtht−1 − 〈gt, wt〉 = Wealtht−1(1− 〈gt, vt〉) = ε

T∏
t=1

(1− 〈gt, vt〉),

and taking the logarithm we have

ln Wealtht = ln ε+
T∑
t=1

ln(1− 〈gt, vt〉) .

Hence, using Lemma 17, we have

ln Wealtht ≥ ln ε+ max
‖v‖≤ 1

2

T∑
t=1

ln(1 + 〈gt, v〉)− d

(
1

17
+ 4.5 ln

(
1 +

T∑
t=1

4‖gt‖2?

))
.

Using Theorem 20, we have

WealthT ≥
ε

exp
[
d
(

1
17 + 4.5 ln

(
1 + 4

∑T
t=1 ‖gt‖2?

))] exp

1

4

〈
∑T

t=1 gt, u〉2∑T
t=1〈gt, u〉2 +

∣∣∣〈∑T
t=1 gt, u

〉∣∣∣
 .

Defining

f(x) =
ε

exp
[
d
(

1
17 + 4.5 ln

(
1 + 4

∑T
t=1 ‖gt‖2?

))] exp

[
1

4

x2∑T
t=1〈gt, u〉2 + |x|

]
,

we have

RT (tu) = ε−WealthT − t

〈
T∑
t=1

gt, u

〉

≤ ε− t

〈
T∑
t=1

gt, u

〉
− f

(〈
T∑
t=1

gt, u

〉)
≤ ε+ f?(−t)

≤ ε+ tmax

[
8

(
ln

8t

ε
+

d

17
+ 4.5d ln

(
4

T∑
t=1

‖gt‖2? + 1

)
− 1

)
,√√√√√4

T∑
t=1

〈gt, u〉2 ln

5t2

ε2
exp

(
d

17

)(
4

T∑
t=1

‖gt‖2 + 1

)9d T∑
t=1

〈gt, u〉2 + 1




≤ ε+ tmax

d
2
− 8 + 8 ln

8t
(

4
∑T

t=1 ‖gt‖2? + 1
)4.5d

ε
,

2

√√√√√ T∑
t=1

〈gt, u〉2 ln

5t2

ε2
exp

(
d

17

)(
4

T∑
t=1

‖gt‖2 + 1

)9d+1

+ 1


 ,
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where we have used the calculation of Fenchel conjugate of f from Lemma 19. Then observe that
exp(d/17) ≤ exp((9d+ 1)/153) ≤ 29d+1 to conclude:

RT (tu) ≤ ε+ tmax

d
2
− 8 + 8 ln

8t
(

4
∑T

t=1 ‖gt‖2? + 1
)4.5d

ε
,

2

√√√√√ T∑
t=1

〈gt, u〉2 ln

5t2

ε2

(
8

T∑
t=1

‖gt‖2 + 2

)9d+1

+ 1


 .

Proof [Proof of Theorem 8] Given some ẘ, set u = ẘ
‖ẘ‖ and t = ‖ẘ‖. Then observe that

t2
∑T

t=1〈gt, u〉2 =
∑T

t=1〈gt, ẘ〉2 and apply the previous Lemma 21 to conclude the desired re-
sult.

Appendix D. Proof of Proposition 1 and Theorem 4

We restate Proposition 1 below:

Proposition 1 SW is convex and 1-Lipschitz for any closed convex set W in a reflexive Banach
space B.

Proof Let x, y ∈ B, t ∈ [0, 1], x′ ∈ ΠW (x), and y′ ∈ ΠW (y). Then

SW (tx+ (1− t)y) = min
d∈W
‖tx+ (1− t)y − d‖ ≤ ‖tx+ (1− t)y − tx′ − (1− t)y′‖

= ‖t(x− x′) + (1− t)(y − y′)‖ ≤ t‖x− x′‖+ (1− t)‖y − y′‖
= tSW (x) + (1− t)SW (y) .

For the Lipschitzness, let x ∈ B and x′ ∈ ΠW (x), and observe that

SW (x+ δ) = inf
d∈W
‖x+ δ − d‖ ≤ ‖x+ δ − x′‖ ≤ SW (x) + ‖δ‖ .

Similarly, let x ∈ B, δ such that x+ δ ∈ B and x′ ∈ ΠW (x+ δ), then

SW (x) = min
d∈W
‖x− d‖ ≤ ‖x+ δ − δ − x′‖ ≤ SW (x+ δ) + ‖δ‖ .

So that |SW (x)− SW (x+ δ)| ≤ ‖δ‖.

Now we restate and prove Theorem 4:

Theorem 4 Let B be a reflexive Banach space such that for every 0 6= b ∈ B, there is a unique
dual vector b? such that ‖b?‖? = 1 and 〈b?, b〉 = ‖b‖. Let W ⊂ B a closed convex set. Given
x ∈ B and x /∈W , let p ∈ ΠW (x). Then {(x− p)?} = ∂SW (x).
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Proof Let x′ = x+p
2 . Then clearly SW (x′) ≤ ‖x′ − p‖ = ‖x−p‖

2 = SW (x)− ‖x− x′‖. Since SW
is 1-Lipschitz, SW (x′) ≥ SW (x)− ‖x− x′‖ and so SW (x′) = SW (x)− ‖x− x′‖.

Suppose g ∈ ∂SW (x). Then 〈g, x′ − x〉+ SW (x) ≤ SW (x′) = SW (x)−‖x− x′‖. Therefore,
〈g, x′ − x〉 ≤ −‖x− x′‖. Since ‖g‖? ≤ 1, we must have ‖g‖? = 1 and 〈g, x− p〉 = ‖x− p‖. By
assumption, this uniquely specifies the vector (x−p)?. Since ∂SW is not the empty set, {(x−p)?} =
∂SW (x).

Appendix E. Computing SW for multi-scale experts

In this section we show how to compute ΠW (x) and a subgradient of SW (x) in Algorithm 5. First
we tackle ΠW (x). Without loss of generality, assume the ci are ordered so that c1 ≥ c2 ≥ · · · ≥ cN .
We also consider Wk = {x : xi ≥ 0 for all i and

∑N
i=1 xi/ci = k} instead of W = W1. Obviously

we are particularly interested in the case k = 1, but working in this mild generality allows us to
more easily state an algorithm for computing ΠW (x) in a recursive manner.

Proposition 7 Let N > 1 and Wk = {x : xi ≥ 0 for all i and
∑N

i=1 xi/ci = k}, and let
SWk

(x) = infy∈Wk
‖x − y‖1. Suppose the ci are ordered so that c1 ≥ c2 ≥ · · · ≥ cN . Then

for any x = (x1, . . . , xn), there exists a y = (y1, . . . , yn) ∈ ΠWk
(x) such that

y1 =


0, x1 < 0
x1, x1 ∈ [0, kc1]
kc1, x1 > kc1

Proof First, suppose N = 1. Then clearly there is only one element of Wk and so the choice of
ΠWk

(x) is forced. So now assume N > 1.
Let (y1, . . . , yN ) ∈ ΠWk

(x1, . . . , xN ) be such that |y1−x1| is as small as possible (such a point
exists because Wk is compact).

We consider three cases: either x1 > kc1, x1 < 0 or x1 ∈ [0, kc1].
Case 1: x > kc1. Suppose y1 < kc1. Let i be the largest index such that yi 6= 0. i 6= 1

since y1/c1 < k. Choose 0 < ε < min(yi
c1
ci
, kc1 − y1). Then let y′ be such that y′1 = y1 + ε,

y′i = yi − ε cic1 and y′j = yj otherwise. Then by definition of ε, y′i ≥ 0 and y′1 ≤ kc1. Further,∑N
j=1 y

′
j/cj = ε/c1 − ci

c1
ε/ci +

∑N
j=1 yj/cj = k so that y′ ∈ Wk. However, since x1 > kc1,

‖y′ − x‖1 ≤ ‖y − x‖1 − ε+ ε cic1 ≤ ‖y − x‖1. Therefore, y′ ∈ ΠWk
(x), but |y′1 − x1| < |y1 − x1|,

contradicting our choice of y1. Therefore, y1 = kc1.
Case 2: x < 0. This case is very similar to the previous case. Suppose y1 > 0. Let i be the

largest index such that yi 6= kci. i 6= 1 since otherwise
∑N

j=1 yj/cj >
∑N

j=2 k = k(N − 1) ≥ k,
which is not possible. Choose 0 < ε < min(y1, c1(kci − yi)/ci). Set y′ such that y′1 = y1 − ε,
y′i = yi + ε cic1 . Then, again we have y′ ∈Wk and ‖y′ − x‖1 ≤ ‖y − x1‖1 − ε+ ε cic1 ≤ ‖y − x‖1 so
that y′ ∈ ΠWk

(x), but |y′1 − x1| < |y1 − x1|. Therefore, we cannot have y1 > 0 and so y1 = 0.
Case 3: x ∈ [0, kc1]. Suppose y1 < x1 ≤ kc1. Then by the same the argument as for Case

1, there is some i > 1 such that for any 0 < ε < min(yi
c1
ci
, x1 − y1), we can construct y′ with

y′ ∈ ΠWk
(x) and |y′1 − x1| < |y1 − x1|. Therefore, y1 ≥ x1.

Similarly, if y1 > x1, then by the same argument as for Case 2, there is some i > 1 such that
for any 0 < ε < min(y1 − x1, c1(kci − yi)/ci), we again construct y′ with y′ ∈ ΠWk

(x) and
|y′1 − x1| < |y1 − x1|. Therefore, y1 = x1.
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This result suggests an explicit algorithm for choosing y ∈ ΠW (x) = ΠW1(x). Using the
Proposition we can pick y1 such that there is a y ∈ ΠW1(x) with first coordinate y1. If y ∈ ΠWk

(x)

has first coordinate y1, then if W 2
k = {(y2, . . . , yn) : yi ≥ 0 for all i and

∑N
i=2 yi/ci = k},

then (y2, . . . , yN ) ∈ ΠW 2
k−y1/c1

(x2, . . . , xN ). Therefore, we can use a greedy algorithm to choose

each yi in increasing order of i and obtain a point y ∈ ΠWk
(x) in O(N) time. This procedure is

formalized in Algorithm 9.

Algorithm 9 Computing ΠW (x)

Require: (x1, . . . , xN ) ∈ RN
1: Initialize: k1 = 1, i = 1
2: for i = 1 to N do
3: if i = N then
4: Set yi = kici
5: else
6: if xi ≤ 0 then
7: Set yi = 0
8: end if
9: if xi > kici then

10: Set yi = kici
11: end if
12: if xi ∈ (0, kici] then
13: Set yi = xi
14: end if
15: Set ki+1 = ki − yi/ci
16: end if
17: end for
18: return (y1, . . . , yN )

E.1. Computing a subgradient of SW for multi-scale experts

Unfortunately, ‖ ·‖1 does not satisfy the hypotheses of Theorem 4 and so we need to do a little more
work to compute a subgradient.

Proposition 8 Let (y1, . . . , yn) be the output of Algorithm 9 on input x = (x1, . . . , xN ). Then if
i = N , ∂SW (x)

∂xi
= sign(xN − yN ). Let M be the smallest index such that yM = kMcM , where ki is

defined in Algorithm 9. There exists a subgradient g ∈ ∂SW (x) such that

gi =


−1, xi ≤ 0
1, xi > kici
sign(xM − yM ) cMci , xi ∈ (0, kici], xM 6= kMcM
cM
ci
, xi ∈ (0, kici], xM = kMcM

Proof We start with a few reductions. First, we show that by a small perturbation argument we can
assume xM 6= kMcM . Next, we show that it suffices to prove that SW is linear on a small L∞
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ball near x. Then we go about proving the Proposition for that L∞ ball, which is the meat of the
argument.

Before we start the perturbation argument, we need a couple observations about M . First,
observe that ki = yi = 0 for all i > M .

Next, we show that either have M = N , or xM ≥ kMcM . If M 6= N , then by inspection of
the Algorithm 9, we must have xM ≤ 0 and kM = 0 or xM ≥ kMcM . If kM = 0, then we have
0 = kM = kM−1 − yM−1

cM−1
. This implies kM−1cM−1 = yM−1, which contradicts our choice of M

as the smallest index with yM = kMcM . Therefore, we must have xM ≥ kMcM . Therefore, we
must have M = N , or xM ≥ kMcM .

Now, we show that we may assume xM 6= kMcM . Let δ > 0. If xM 6= kMcM , set xδ = x.
Otherwise, set xδ = x + δeM . By inspecting Algorithm 9, we observe that the output on xδ is
unchanged from the output on x, and M is still the smallest index such that yi = kici.

We claim that it suffices to prove g ∈ ∂SW (xδ) for all δ rather than g ∈ ∂SW (x). To see this,
observe that by 1-Lipschitzness, |SW (xδ)− SW (x)| ≤ δ, so that if g ∈ ∂SW (xδ), then for any w,

SW (w) ≥ SW (xδ) + 〈g, w − xδ〉 ≥ SW (x) + 〈g, w − x〉 − 2δ .

By taking δ → 0, we see that g must be a subgradient of SW at x if g ∈ ∂SW (xδ) for all δ. This
implies that if we prove the Proposition for any xδ, which has xM 6= kMcM , we have proved the
proposition for x.

Following this perturbation argument, for the rest of the proof we consider only the case xM 6=
kMcM .

Now, we claim that to show the Proposition, it suffices to exhibit a closed L∞ ballB such that x
is on the boundary of B and for z ∈ B, SW (z) = 〈g, z〉+ F for some constant F . To see this, first
suppose that we have such a B. Then observe that g is the derivative, and therefore a subgradient,
of SW for any point in the interior of B. Let z be in the interior of B and let w be an arbitrary point
in RN . Then since g is a subgradient at z, we have SW (w) ≥ SW (z) + 〈g, w− z〉. Further, since x
is on the boundary ofB (and therefore inB), SW (x) = SW (z)+ 〈g, x−z〉. Putting these identities
together:

SW (w) ≥ SW (z) + 〈g, w − z〉
= SW (z) + 〈g, x− z〉+ 〈g, w − x〉
= SW (x) + 〈g, w − x〉 .

Therefore, g is a subgradient of SW at x.
Next, we turn to identifying the particular L∞ ball we will work with. Let

q =
1

2
min
xi>0

xi,

d =
1

2
min

j|xj 6=kjcj
min(1/c1, 1)|xj − cjkj |,

h = min(q, d) min(cN , 1)/N .

Consider the L∞ ball given by

B = {x+ (ε1, . . . , εN )| εj ∈ [−h, 0]} .
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Clearly, x is on the boundary of B. Now, we proceed to show that SW is linear on the interior
of B, which will prove the Proposition by the above discussion.

Let x′ = x + ε be an element of B. We will compute SW (x′) by computing the output y′

of running Algorithm 9 on x′. We will also refer to the internally generated variables ki as k′i to
distinguish between the ks generated when computing y versus when computing y′. The overall
strategy is to show that all of the conditional branches in Algorithm 9 will evaluate to the same
branch on x as on x′.

Specifically we show the following claim by induction:

Claim 9 for any i < M :

y′i =

{
0 xi ≤ 0
x′i xi ∈ (0, kici]

,

k′i+1 = ki+1 +
∑

j≤i, xj∈(0,kjcj ]

−εj/cj ,

ki+1 ≤ k′i+1 ≤ ki+1 + d
i

2N
,

|y′i − x′i| =
{
|yi − xi| − εi xi ≤ 0
|yi − xi| xi ∈ (0, kici]

.

For i = M ,

y′i = k′ici,

k′i+1 = 0,

|y′i − x′i| = |yi − xi|+ sign(xi − yi)εM +
∑

j<M | xj∈(0,kjcj ]

cM εj/cj .

And for i > M :

y′i = 0,

k′i+1 = 0,

|y′i − x′i| =
{
|yi − xi| − εi xi ≤ 0
|yi − xi|+ εi xi > 0

.

First we do the base case. Observe that k′1 = k1. Then we consider three cases, either x1 ≤ 0,
x1 ∈ (0, k1c1], or x1 > k1c1. These cases correspond to y1 = 0, y1 = x1, or y1 = k1c1.

Case 1 (x1 ≤ 0): Since ε1 ≤ 0, we have x′1 = x1 + ε1 ≤ 0. Therefore, by inspecting the
condition blocks in Algorithm 9, y′1 = y1 = 0 and k′2 = k2.

Case 2 (x1 ∈ (0, k1, c1]): Since x1 > 0, we have |ε1| ≤ q ≤ x1/2. Therefore, x′1 > 0. Since
ε1 ≤ 0, x′1 ≤ x1 ≤ k1c1 = k′1c1 so that x′1 ∈ (0, k′1c1]. This implies y′1 = x′1 and

k′2 = k′1 −
x′1
c1

= k1 −
x1 + ε1
c1

= k2 −
ε1
c1
.
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Case 3 (x1 > k1c1): In this last case, observe that |ε1| < d ≤ (x1 − k1c1)/2 so that x1 ≥ x′1 >
k1c1 = k′1c1. This implies y′1 = k′1c1 = k1c1 and k′2 = 0.

The values for |y′1 − x′1| can also be checked via the casework. First, suppose 1 = M . Then we
must have x1 > k1c1 (because we assume xM 6= kMcM by our perturbation argument). Therefore,
y1 = y′1 = k1c1 and the base case is true.

When 1 < M , then we consider the cases x1 ≤ 0 and x1 ∈ (0, k1c1]. The case x1 > k1c1 does
not occur because 1 < M . When x1 ≤ 0, then by the above casework we must have x′1 ≤ 0 and
y′1 = y1 = 0. Therefore,

|y′1 − x′1| = |x′1| = |x1|+ |ε1| = |y1 − x1| − ε1,

where we have used ε1 ≤ 0 to conclude |x′1| = |x1|+ |ε1|.
When x1 ∈ (0, k1c1], we have y1 = x1, and by the above casework we have and y′1 = x′1. Thus

|y′1 − x′1| = 0 = |y1 − x1|. This concludes the base case of the induction.

Now, we move on to the inductive step. Suppose the claim holds for all j < i. To show the
claim also holds for i, we consider the three cases i < M , i = M and i > M separately:

Case 1 (i < M ): We must consider two sub-cases, either xi ≤ 0, or xi ∈ (0, kici]. The case
xi > kici does not occur because i < M .

Case 1a (xi ≤ 0): In this case, we have yi = 0 and ki+1 = ki. By definition, εi ≤ 0 so that
x′i ≤ 0. Then by inspection of Algorithm 9, y′i = 0 = yi so that k′i+1 = k′i. By the induction
assumption, this implies

k′i+1 = k′i = ki +
∑

j<i, xj∈(0,kjcj ]

−εj/cj = ki+1 +
∑

j≤i, xj∈(0,kjcj ]

−εj/cj .

Also, k′i+1 = k′i ≥ ki = ki+1 and also

|k′i+1 − ki+1| = |k′i − ki| ≤ d
i− 1

N
≤ d i

N
.

Finally, since y′i = 0 = yi and xi, x′i ≤ 0, we have

|y′i − x′i| = |x′i| = −x′i = −xi − εi = |xi| − εi = |yi − xi| − εi .

Thus all parts of the claim continue to hold.
Case 1b (xi ∈ (0, kici]): In this case we show that x′i ∈ (0, k′i, ci]. Observe that yi = xi and

ki+1 = ki − xi/ci. By definition again, εi ≤ 0, and also |εi| ≤ q ≤ xi/2, so that x′i > 0. Finally,
since k′i ≥ ki,

x′i ≤ xi ≤ ciki ≤ cik′i .

Therefore, x′i ∈ (0, k′ici] so that y′i = x′i and

k′i+1 = k′i − x′i/ci
= ki + (k′i − ki)− xi/ci − εi/ci
= ki+1 + (k′i − ki)− εi/ci
= ki+1 +

∑
j≤i, xj∈(0,kjcj ]

−εj/cj ,
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where the last equality uses the induction assumption. Now, since εj ≤ 0 for all j, this implies
k′i+1 ≥ ki+1. Further, |εi/ci| ≤ dcN/(Nci) ≤ d/N and by the inductive assumption, |k′i − ki| ≤
d i−1
N so that |k′i+1 − ki+1| ≤ d i

N as desired. Finally, since y′i = x′i and yi = xi, |y′i − x′i| = 0 =
|yi − xi|.

Case 2 (i = M ): First we show that y′i = k′ici, which implies k′i+1 = 0, and then we prove the
expression for |y′i − x′i|. Since xM 6= kMcM , we must have either either xi > kici or M = N .

If M = N , then the claim y′i = k′ici is immediate by inspection of Algorithm 9. So suppose
xi > kici. By the inductive assumption, k′i ≤ ki + d i

N ≤ ki + d. Now, we observe that d ≤
1

2c1
(xi − ciki) ≤ 1

2ci
(xi − ciki), which implies

cik
′
i ≤ ciki + cid

≤ ciki + (xi − ciki)/2
≤ xi − (xi − ciki)/2 .

Next, observe that d ≤ 1
2(xi − ciki) to conclude

cik
′
i ≤ xi − (xi − ciki)/2
≤ xi − d
≤ xi − h
≤ x′i .

Therefore, x′i ≥ k′ici, so that y′i = cik
′
i.

It remains to compute |y′i − x′i|. By the induction assumption, we have

k′i = ki +
∑

j<i, xj∈(0,kjcj ]

−εj/cj .

Therefore,

x′i − y′i = xi + εM − yi + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj . (6)

Observe that εM + cM
∑

j<i, xj∈(0,kjcj ] εj/cj ≤ 0 since εi ≤ 0 for all i ≤M . Now, since cM ≤ cj
for j ≤M , we have ∣∣∣∣∣∣εM + cM

∑
j<i, xj∈(0,kjcj ]

εj/cj

∣∣∣∣∣∣ ≤ Nh ≤ d .
Now, since xM 6= xMkM , and i = M , we have d ≤ |xi−ciki|2 by definition so that∣∣∣∣∣∣εM + cM

∑
j<i, xj∈(0,kjcj ]

εj/cj

∣∣∣∣∣∣ ≤ |xi − ciki|/2 =
|xi − yi|

2
.
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Now, recalling equation (6) we have

sign(x′i − y′i) = sign

xi − yi +

εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj


= sign(xi − yi),

where in the last line we have used
∣∣∣εM + cM

∑
j<i, xj∈(0,kjcj ] εj/cj

∣∣∣ ≤ |xi−yi|
2 . Therefore, we

have

|x′i − y′i| = sign(x′i − y′i)(x′i − y′i)

= sign(xi − yi)

xi − yi + εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj


= |xi − yi|+ sign(xi − yi)

εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj

 .

Case 3 (i > M ):
Since k′i = 0 by inductive hypothesis, we must have y′i = 0 as desired. Further, observe that

as observed in the beginning of the proof, ki = 0 for all i > M as well so that we have yi = 0.
Finally, if xi > 0, we have xi + εi ≥ xi/2 > 0 since |εi| ≤ q ≤ xi/2 so that sign(x′i) = sign(xi).
Therefore, we can conclude

|y′i − x′i| = |x′i| =
{
|xi| − εi xi ≤ 0
|xi|+ εi xi > 0

.

Since yi = 0, |xi| = |yi − xi| and this is the desired form for |y′i − x′i|.
This concludes the induction.

From the expression for |y′i − x′i| we see that if g is given by

gi =


−1 xi ≤ 0
1 xi > kici
sign(xM − yM ) cMci xi ∈ (0, kici], xM 6= kMcM
cM
ci

xi ∈ (0, kici], xM = kMcM

then SW (x + ε) = SW (x) + 〈g, ε〉. Finally, observe that our perturbation xδ has the property
sign((xδ)M − yM ) = 1 if xM = kMyM to prove the Proposition.

Appendix F. Proof of Theorem 7

We re-state Theorem 7 below for reference:
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Theorem 7 Let A be an online linear optimization algorithm that outputs wt in response to gt.
Suppose W is a convex closed set of diameter D. Suppose A guarantees for all t and v̊:

t∑
i=1

〈g̃i, wi − v̊〉 ≤ ε+ ‖̊v‖A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln
(
‖̊v‖2tC
ε2

+ 1
))

+B‖̊v‖ ln
(
‖̊v‖tC
ε + 1

)
,

for constants A, B and C and ε independent of t. Then for all ẘ ∈W , Algorithm 6 guarantees

RT (ẘ) ≤
T∑
t=1

〈gt, xt − ẘ〉 ≤ O
(√

VT (ẘ) ln TD
ε ln(T ) + ln DT

ε ln(T ) + ε

)
,

where VT (ẘ) := ‖x0 − ẘ‖2 +
∑T

t=1 ‖g̃t‖2?‖xt − ẘ‖2 ≤ D2 +
∑T

t=1 ‖gt‖2?‖xt − ẘ‖2.

Proof For any t, consider the random vector Xt that takes value xi for i ≤ t with probability
proportional to ‖g̃i‖2? and value x0 with probability proportional to 1. Make the following defini-
tions/observations:

1. Zt := 1 +
∑t

i=1 ‖g̃i‖2? for all t, so that

VT (ẘ) = ‖x0 − ẘ‖2 +
T∑
t=1

‖g̃t‖2?‖xt − ẘ‖2 = ZTE[‖XT − ẘ‖2] .

2. xT = E[XT ] =
x0+

∑T
t=1 ‖g̃t‖2?xt

1+
∑T

t=1 ‖g̃t‖2?
.

3. σ2
t :=

‖xt−x0‖2+
∑t

i=1 ‖g̃i‖2?‖xi−xt‖2
Zt

so that σ2
t = E[‖Xt − xt‖2], and σ2

TZT = ‖x0 − xT ‖2 +∑T
t=1 ‖g̃t‖2?‖xt − xT ‖2.

To prove the theorem, we are going to show for any ẘ ∈W ,

RT (ẘ) ≤ O

[√
ZT ‖ẘ − xT ‖2 ln

TD

ε2
+ ln

DT

ε
ln(T ) +

√
ZTσ2

T ln
TD

ε
log(T )

]
, (7)

which implies the desired bound by a bias-variance decomposition: ZT ‖ẘ − xT ‖2 + ZTσ
2
T =

ZTE[‖XT − ẘ‖2] = VT (ẘ).
Observe that, by triangle inequality and the definition of dual norm, 〈gt, z〉 + ‖gt‖?SW (z) ≥

〈gt, x〉 for all z and x ∈ ΠW (z), with equality when z ∈W . Hence, we have

〈gt, xt − ẘ〉 ≤ 〈gt, zt − ẘ〉+ ‖gt‖?SW (zt)− ‖gt‖?SW (ẘ) ≤ 〈g̃t, zt − ẘ〉, (8)

for all ẘ ∈ W , where in the last inequality we used Proposition 1. Using this inequality with the
regret guarantee of A, we have

RT (ẘ) ≤
T∑
t=1

〈gt, xt − ẘ〉 ≤
T∑
t=1

〈g̃t, zt − ẘ〉 =
T∑
t=1

〈g̃t, wt − (ẘ − xT )〉+

T∑
t=1

〈g̃t, xt−1 − xT 〉

≤ O

‖ẘ − xT ‖
√√√√ T∑

t=1

‖g̃t‖2? ln
‖ẘ − xT ‖T

ε2
+ ‖ẘ − xT ‖ ln

‖ẘ − xT ‖T
ε

+ ε+
T∑
t=1

〈g̃t, xt−1 − xT 〉

= O

(√
ZT ‖ẘ − xT ‖2 ln

DT

ε2
+D ln

DT

ε

)
+ ε+

T∑
t=1

〈g̃t, xt−1 − xT 〉 .
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Note that the first term is exactly what we want, so we only have to upper bound the second one.
This is readily done through Lemma 22 that immediately gives us the stated result.

Lemma 22 Under the hypotheses of Theorem 7, we have

T∑
t=1

〈g̃t, xt−1 − xT 〉 ≤M
√
ZTσT

√
1 + lnZT +K(1 + lnZT ),

where M = A

√
1 + ln

(
2D2TC

ε2
+ 3TC

)
and K = 1 +B ln

(∑T
t=1 ‖gt‖?DTC

ε + 2TC
)

.

Proof We have that

t∑
i=1

〈g̃i, xi−1 − xt〉 −
t−1∑
i=1

〈g̃i, xi−1 − xt−1〉 =

〈
t∑
i=1

g̃i, xt−1 − xt

〉
.

The telescoping sum gives us

T∑
t=1

〈g̃t, xt−1 − xT 〉 =

T∑
t=1

〈
t∑
i=1

g̃i, xt−1 − xt

〉
≤

T∑
t=1

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

‖xt−1 − xt‖ .

So in order to bound
∑T

t=1〈g̃t, xt−1 − xT 〉, it suffices to bound
∥∥∑t

i=1 g̃i
∥∥
?
‖xt−1 − xt‖ by a

sufficiently small value. First we will tackle
∥∥∑t

i=1 g̃i
∥∥. To do this we recall our regret bound for

A. Analogous to (8), we have

〈gt, xt〉 ≥ 〈gt, zt〉+ ‖gt‖?SW (zt) + 〈g̃t, xt − zt〉
〈g̃t, zt〉 ≥ 〈gt, zt − xt〉+ ‖gt‖?‖zt − xt‖+ 〈g̃t, xt〉

≥ 〈g̃t, xt〉 .

Therefore, for any X ∈ R we have:

t∑
i=1

− ‖g̃i‖?D +

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

≤
t∑
i=1

〈g̃i, xi − xi−1〉+

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

≤
t∑
i=1

〈g̃i, zi − xi−1〉+

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

=
t∑
i=1

〈g̃i, wi〉+

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

≤ ε+ |X|A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln

(
|X|2tC
ε2

+ 1

))
+B|X| ln

(
|X|tC

ε
+ 1

)
,
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where in the first inequality we have used the fact that the domain is bounded.
Dividing by X and solving for

∥∥∑t
i=1 g̃i

∥∥
?
, we have∥∥∥∥∥

t∑
i=1

g̃i

∥∥∥∥∥
?

≤ ε

X
+A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln

(
|X|2tC
ε2

+ 1

))
+B ln

(
|X|tC

ε
+ 1

)
+

∑t
i=1 ‖g̃i‖?D
X

.

Set X = ε+
∑t

i=1 ‖g̃i‖?D and over-approximate to conclude:∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

≤ 1 +A

√√√√ t∑
i=1

‖g̃i‖2?

(
1 + ln

(
2D2

(∑t
i=1 ‖g̃i‖?

)2
tC

ε2
+ 3tC

))

+B ln

(∑t
i=1 ‖g̃i‖?DtC

ε
+ 2tC

)

≤M

√√√√ t∑
i=1

‖g̃i‖2? +K .

With this in hand, we have

T∑
t=1

〈g̃t, xt−1−xT 〉 ≤
T∑
t=1

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

‖xt−1−xt‖ ≤M
T∑
t=1

√√√√ t∑
i=1

‖g̃i‖2?‖xt−1−xt‖+K
T∑
t=1

‖xt−1−xt‖ .

(9)
Now, we relate ‖xt − xt−1‖ to ‖xt − xt‖:

xt−1−xt = xt−1−
Zt−1xt−1 + ‖g̃t‖2?xt

Zt
=
‖g̃t‖2?
Zt

(xt−1−xt) =
‖g̃t‖2?
Zt

(xt−xt)+
‖g̃t‖2?
Zt

(xt−1−xt),

that implies
Zt(xt−1 − xt) = ‖g̃t‖2?(xt − xt) + ‖g̃t‖2?(xt−1 − xt),

that is

xt−1 − xt =
‖g̃t‖2?
Zt−1

(xt − xt) . (10)

Hence, we have

M

T∑
t=1

√√√√ t∑
i=1

‖g̃i‖2?‖xt − xt−1‖ ≤M
T∑
t=1

√
Zt
‖gt‖2?
Zt−1

‖xt − xt‖,

and

K
T∑
t=1

‖xt − xt−1‖ ≤ K
T∑
t=1

‖gt‖2?
Zt−1

‖xt − xt‖ ≤ KD
T∑
t=1

‖gt‖2?
Zt−1

.

Using Cauchy–Schwarz inequality, we have

M

T∑
t=1

√
Zt
‖gt‖2?
Zt−1

‖xt − xt‖ ≤M

√√√√ T∑
t=1

‖g̃t‖2?
Zt−1

√√√√ T∑
t=1

Zt
Zt−1

‖g̃t‖2?‖xt − xt‖2 .
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So, putting together the last inequalities, we have

T∑
t=1

〈g̃t, xt−1 − xT 〉 ≤M

√√√√ T∑
t=1

‖g̃t‖2?
Zt−1

√√√√ T∑
t=1

Zt
Zt−1

‖g̃t‖2?‖xt − xt‖2 +KD
T∑
t=1

‖gt‖2?
Zt−1

.

We now focus on the the term
∑T

t=1
‖gt‖2?
Zt−1

that is easily bounded:

T∑
t=1

‖gt‖2?
Zt−1

=
T∑
t=1

(
‖g̃t‖2?
Zt

+
‖g̃t‖2?
Zt−1

− ‖g̃t‖
2
?

Zt

)

≤
T∑
t=1

(
‖g̃t‖2?
Zt

+
1

Zt−1
− 1

Zt

)

≤ 1

Z0
+

T∑
t=1

‖g̃t‖2?
Zt

≤ 1

Z0
+ log

ZT
Z0

= 1 + lnZT ,

where in the last inequality we used the well-known inequality
∑T

t=1
at

a0+
∑t

i=1 ai
≤ ln(1+

∑T
t=1 at
a0

), ∀at ≥
0.

To upper bound the term
∑T

t=1
Zt
Zt−1
‖g̃t‖2?‖xt − xt‖2, observe that

σ2
TZT = ‖x0 − xT ‖2 +

T∑
t=1

‖g̃t‖2?‖xt − xT ‖2

= ‖x0 − xT ‖2 +
T−1∑
t=1

‖g̃t‖2?‖xt − xT ‖2 + ‖g̃T ‖2?‖xT − xT ‖2

= ZT−1(σ2
T−1 + ‖xT − xT−1‖2) + ‖g̃T ‖2?‖xT − xT ‖2

= ZT−1σ
2
T−1 + ‖g̃T ‖2?

(
1 +
‖g̃T ‖2?
ZT−1

)
‖xT − xT ‖2

= ZT−1σ
2
T−1 + ‖g̃T ‖2?

ZT
ZT−1

‖xT − xT ‖2,

where the third equality comes from bias-variance decomposition and the fourth one comes from (10).
Hence, we have

T∑
t=1

Zt
Zt−1

‖g̃t‖2?‖xt − xt‖2 =

T∑
t=1

(σ2
tZt − σ2

t−1Zt−1) ≤ σ2
TZT .

Putting all together, we have the stated bound.
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