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Abstract
We study the problem of detecting the presence of a single unknown spike in a rectangular data
matrix, in a high-dimensional regime where the spike has fixed strength and the aspect ratio of
the matrix converges to a finite limit. This setup includes Johnstone’s spiked covariance model.
We analyze the likelihood ratio of the spiked model against an “all noise” null model of reference,
and show it has asymptotically Gaussian fluctuations in a region below—but in general not up
to—the so-called BBP threshold from random matrix theory. Our result parallels earlier findings
of Onatski et al. (2013) and Johnstone and Onatski (2015) for spherical spikes. We present a
probabilistic approach capable of treating generic product priors. In particular, sparsity in the spike
is allowed. Our approach operates through the principle of the cavity method from spin-glass
theory. The question of the maximal parameter region where asymptotic normality is expected to
hold is left open. This region, not necessarily given by BBP, is shaped by the prior in a non-trivial
way. We conjecture that this is the entire paramagnetic phase of an associated spin-glass model,
and is defined by the vanishing of the replica-symmetric solution of Lesieur et al. (2015a).
Keywords: Spiked random matrix models, hypothesis testing, likelihood ratio fluctuations, spin
glasses, replica symmetry, the cavity method.

1. Introduction

The problem of detecting a signal of low-rank structure buried inside a large noise matrix has re-
ceived enormous attention in the past decade. Prominent examples of this problem include the
so-called spiked or deformed ensembles from random matrix theory (Péché, 2014). It is particularly
interesting to study such problems in the high-dimensional setting where the signal strength is com-
parable to the noise. This models practical situations in modern data analysis where one wishes to
make more complex inferences about a fainter signal as the amount of data accrues. In this paper
we are concerned with the problem of testing the presence of a single weak spike in the data against
an “all-noise” null hypothesis of reference.

Concretely we consider the observation of an N ×M matrix of the form

Y =

√
β

N
uv> + W , (1)

where u and v are unknown factors and W is a matrix with i.i.d. noise entries, and we want to
test whether β > 0 or β = 0. We will assume the noise is standard Gaussian. The parameter β
represents the strength of the spike, and we assume a high-dimensional setting where M/N → α.
The case u = v and W symmetric is referred to as the spiked Wigner model. When the factors
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are independent, model (1) can be viewed as a linear model with additive noise and scalar random
design:

yj = βvju + wj ,

with 1 ≤ j ≤ M , β =
√
β/N . Assuming vj has zero mean and unit variance, this is a model of

spiked covariance: the mean of the empirical covariance matrix Σ̂ = 1
M

∑M
j=1 yjy

>
j is a rank-one

perturbation of the identity: IN + β
Nuu>.

The introduction of a particular spiked covariance model by Johnstone (2001)—one correspond-
ing to the special case vj ∼ N (0, 1)—has provided the foundations for a rich theory of Principal
Component Analysis (PCA), in which the performance of several important tests and estimators
is by now well understood (see, e.g., Ledoit and Wolf, 2002; Paul, 2007; Nadler, 2008; Johnstone
and Lu, 2009; Amini and Wainwright, 2009; Berthet and Rigollet, 2013; Dobriban, 2017). Parallel
developments in random matrix theory have unveiled the existence of sharp transition phenomena
in the behavior of the spectrum of the data matrix, where for a spike of strength above a certain
spectral threshold, the top eigenvalue separates from the remaining eigenvalues which are packed
together in a “bulk” and thus indicates the presence of the spike; below this threshold, the top eigen-
value converges to the edge of the bulk. See Péché (2006); Féral and Péché (2007); Capitaine et al.
(2009); Benaych-Georges and Nadakuditi (2011, 2012) for results on low-rank deformations of
Wigner matrices, and Baik et al. (2005); Baik and Silverstein (2006); Bai and Yao (2012, 2008) for
results on spiked covariance models. More recently, an intense research effort has been undertaken
to pin down the fundamental limits for both estimating and detecting the spike.

In a series of papers (Korada and Macris, 2009; Krzakala et al., 2016; Barbier et al., 2016;
Deshpande et al., 2016; Lelarge and Miolane, 2017; Miolane, 2017), the error of the Bayes-optimal
estimator has been completely characterized for additive low-rank models with a separable (prod-
uct) prior on the spike. In particular, these papers confirm an interesting phenomenon discovered
by Lesieur et al. (2015a,b), based on plausible but non-rigorous arguments: for certain priors on
the spike, estimation becomes possible—although computationally expensive—below the spectral
threshold β = 1. More precisely, the posterior mean overlaps with the spike in regions where the
top eigenvector is orthogonal to it. Lesieur et al. (2017) provides a full account of these phase tran-
sitions in a myriad of interesting situations, the majority of which still await rigorous treatment. As
for the testing problem, Onatski et al. (2013, 2014) and Johnstone and Onatski (2015) considered
the spiked covariance model for a uniformly distributed unit norm spike, and studied the asymp-
totics of the likelihood ratio (LR) of a spiked alternative against a spherical null. They showed that
the log-LR is asymptotically Gaussian below the spectral threshold αβ2 = 1 (which in this setting
is known as the BBP threshold, after Baik et al., 2005), while it is divergent above it.

However their proof is intrinsically tied to the assumption of a spherical prior. Indeed, by
rotational symmetry of the model, the LR depends only on the spectrum, the joint distribution of
which is available in closed form. A representation of the LR in terms of a contour integral is then
possible (in the single spike case), which can then be analyzed via the method of steepest descent.
In a similar but unrelated effort, Baik and Lee (2016, 2017a,b) studied the fluctuations of the free
energy of spherical, symmetric and bipartite versions of the Sherrington–Kirkpatrick (SK) model.
This free energy coincides with the log-LR associated with the model (1) for a choice of parameters.
The sphericity assumption is again key to their analysis, and both approaches require the execution
of very delicate asymptotics and appeal to advanced results from random matrix theory.
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In this paper we consider the case of separable priors: we assume that the entries of u and v
are independent and identically distributed from base priors Pu and Pv, respectively, both having
bounded support1. We prove fluctuation results for the log-LR in this setting with entirely different
methods than used for spherical priors. The tools we use come from the mathematical theory of
spin glasses (see Talagrand, 2011a,b). These techniques were successfully used in (El Alaoui et al.,
2017) to prove similar results in the spiked Wigner model.

Let us further mention that the region of parameters (α, β) we are able to cover with our proof
method is optimal when (and only when) Pu and Pv are both symmetric Rademacher. In Section 6,
we formulate a conjecture on the maximal region in which the log-LR has asymptotically Gaussian
fluctuations. This region is of course below the BBP threshold, but does not extend up to it in
general.

2. Main results

Throughout this paper, we assume that the priors Pu and Pv have zero mean, unit variance, and
supports bounded in radius by Ku and Kv respectively. Let Pβ be the probability distribution of the
matrix Y as per (1). Define L(·;β) to be the likelihood ratio, or Radon-Nikodym derivative of Pβ
with respect to P0:

L(·;β) ≡
dPβ
dP0

.

For a fixed Y ∈ RN×M , by conditioning on u and v, we can write

L(Y ;β) =

∫
exp

(∑
i,j

√
β

N
Yijuivj −

β

2N
u2
i v

2
j

)
dP⊗Nu (u)dP⊗Mv (v).

Our main contribution is the following asymptotic distributional result.

Theorem 1 Let α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1. Then in the limit N →∞ and M/N → α,

logL(Y ;β) N
(
±1

4
log
(
1− αβ2

)
,−1

2
log
(
1− αβ2

))
,

where “ ” denotes convergence in distribution. The sign of the mean is + under the null Y ∼ P0

and − under the alternative Y ∼ Pβ .

We mention that fluctuations of this sort were first proved by Aizenman et al. (1987) in a seminal
paper in the context of the SK model. A consequence of either one of the above statements and Le
Cam’s first lemma (Van der Vaart, 2000, Lemma 6.4) is the mutual contiguity2 between the null and
the spiked alternative:

Corollary 2 For K4
uK

4
vαβ

2 < 1, the families of distributions P0 and Pβ (indexed by M,N ) are
mutually contiguous in the limit N →∞, M/N → α.

1. Boundedness is required for technical reasons. This unfortunately rules out the case where one factor is Gaussian.
2. Two sequences of probability measures (Pn) and (Qn) defined on the same (sequence of) measurable space(s) are

said to be mutually contiguous if Pn(An) → 0 is equivalent to Qn(An) → 0 as n → ∞ for every sequence of
measurable sets (An).
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Contiguity implies impossibility of strong detection: there exists no test that, upon observing a
random matrix Y with the promise that it is sampled either from P0 or Pβ , can tell which is the case
with asymptotic certainty in this regime. We also mention that contiguity can be proved through
the second-moment method and its conditional variants, as was done by Montanari et al. (2015);
Perry et al. (2016); Banks et al. (2017) for closely related models. However, identifying the right
event on which to condition in order to tame the second moment of L is a matter of a case-by-case
deliberation. Study of the fluctuations of the log-LR appears to provide a more systematic route:
the logarithm has a smoothing effect that kills the wild (but rare) events that otherwise dominate in
the second moment. This being said, our result is optimal only in one special case:

When Pu and Pv are symmetric Rademacher, Ku = Kv = 1, and Theorem 1 covers the entire
(α, β) region where such fluctuations hold. Indeed, for αβ2 > 1, one can distinguish Pβ from P0

by looking at the top eigenvalue of the empirical covariance matrix Y Y > (Benaych-Georges and
Nadakuditi, 2012). So the conclusion of Theorem 1 cannot hold in light of the above contiguity
argument. Beyond this special case, our result is not expected to be optimal.

Limits of weak detection Since contiguity implies that testing errors are inevitable, it is natural
to aim for tests T : RN×M 7→ {0, 1} that minimize the sum of the Type-I and Type-II errors:

err(T ) = P0 (T (Y ) = 1) + Pβ (T (Y ) = 0) .

By the Neyman-Pearson lemma, the test minimizing the above error is the likelihood ratio test that
rejects the null iff L(Y ;β) > 1. The optimal error is thus

err∗M,N (β) = P0 (logL(Y ;β) > 0) + Pβ (logL(Y ;β) ≤ 0) = 1−DTV(Pβ,P0).

The symmetry of the means under the null and the alternative in Theorem 1 implies that the above
Type-I and Type-II errors are equal, and that the total error has a limit:

Corollary 3 For α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1,

lim
N→∞
M/N→α

err∗M,N (β) = 1− lim
N→∞
M/N→α

DTV(Pβ,P0) = erfc

(
1

4

√
− log (1− αβ2)

)
,

where erfc(x) = 2√
π

∫∞
x e−t

2
dt is the complementary error function.

Furthermore, our proof of Theorem 1 allows us obtain the convergence of the mean (actually, all
moments of logL) under Pβ , which corresponds to the Kullback-Liebler divergence of Pβ to P0:

Proposition 4 For all α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1,

lim
N→∞
M/N→α

DKL(Pβ,P0) = −1

4
log
(
1− αβ2

)
.

3. Replicas, overlaps, Gibbs measures and Nishimori

A crucial component of the proof involves understanding the convergence properties of certain over-
laps between “replicas.” To embark on the argument let us introduce some important notation and
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terminology. Let H : RN+M → R be the (random) function, which we refer to as a Hamiltonian,
defined as

−H(u,v) =
∑
i,j

√
β

N
Yijuivj −

β

2N
u2
i v

2
j , (2)

where Y = (Yij) comes from Pβ or P0. Letting ρ denote the product measure P⊗Nu ⊗ P⊗Mv , we
have

L(Y ;β) =

∫
e−H(u,v)dρ(u,v).

Let us define the Gibbs average of a function f : (RN+M )n 7→ R of n replica pairs (u(l),v(l))nl=1

with respect to the Hamiltonian H as

〈f〉 =

∫
f
∏n
l=1 e

−H(u(l),v(l))dρ(u(l),v(l))(∫
e−H(u,v)dρ(u,v)

)n . (3)

This is the mean of f with respect to the posterior distribution of (u,v) given Y : Pβ(·|Y )⊗n. We
interpret the replicas as random and independent draws from this posterior. When Y ∼ Pβ we also
allow f to depend on the spike pair (u∗,v∗). For two different replicas (u(l),v(l)) and (u(l′),v(l′))
(l′ is allowed to take the value ∗) we denote the overlaps of the u and v parts, both normalized by
N , as

Ru
l,l′ =

1

N

N∑
i=1

u
(l)
i u

(l′)
i and Rv

l,l′ =
1

N

M∑
j=1

v
(l)
j v

(l′)
j .

3.1. The Nishimori property under Pβ
Let’s perform the following experiment:

1. Construct u∗ ∈ RN and v∗ ∈ RM by independently drawing their coordinates from Pu and
Pv respectively.

2. Construct Y =
√

β
Nu∗v∗> + W , where Wij ∼ N (0, 1) are all independent. (Y is dis-

tributed according to Pβ .)

3. Draw n+ 1 independent random vector pairs, (u(l),v(l))n+1
l=1 , from Pβ((u,v) ∈ ·|Y ).

By the tower property of expectations, the following equality of joint laws holds(
Y , (u(1),v(1)), · · · , (u(n+1),v(n+1))

)
d
=
(
Y , (u(1),v(1)), · · · , (u(n),v(n)), (u∗,v∗)

)
. (4)

(See Proposition 15 in Lelarge and Miolane, 2017). This in particular implies that under the al-
ternative Pβ , the overlaps (Ru

1,∗, R
v
1,∗) between replica and spike pairs have the same distribution

as the overlaps (Ru
1,2, R

v
1,2) between two replica pairs. This is a very important property of the

planted (spiked) model, which is usually named after Nishimori (2001) (see Chapter 4). It allows
for manipulations that are not possible under the null. For instance, to prove the convergence of the
overlap between two replicas, E〈(Ru

1,2)2〉 → 0, it suffices to prove E〈(Ru
1,∗)

2〉 → 0 since the two
quantities are equal. The latter turns out to be a much easier task.
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3.2. Overlap decay implies super-concentration

Let us now explain how the behavior of the overlaps is related to the fluctuations of logL. For
concreteness we consider the null model as an example. Let Y ∼ P0, i.e., Yij ∼ N (0, 1) all
independent. The log-likelihood ratio, seen as a function of Y , is a differentiable function, and

d

dYij
logL(Y ;β) =

√
β

N
〈uivj〉.

By the Gaussian Poincaré inequality, we can bound the variance by the norm of the gradient as

E
[
(logL− E logL)2

]
≤ E

[
‖∇ logL‖2`2

]
= βN E〈Ru

1,2R
v
1,2〉.

The last equality follows from the fact 〈uivj〉2 = 〈u(1)
i v

(1)
j u

(2)
i v

(2)
j 〉. Since our priors have bounded

support, we can already bound Ru
1,2R

v
1,2 by M

NK
2
uK

2
v, and we deduce that the variance is O(N).

In fact, by the Maurey-Pisier inequality (Pisier, 1986, Theorem 2.2), we can control the moment
generating function of logL by that of N〈Ru

1,2R
v
1,2〉. This implies sub-Gaussian concentration of

the former. Observe now that if the quantity E〈Ru
1,2R

v
1,2〉 decays, then the much stronger result

var(logL) = O(N) holds. This behavior of unusually small variance is often referred to as “super-
concentration.” See Chatterjee (2014) for more on this topic. In our case, not only does E〈Ru

1,2R
v
1,2〉

decay when α and β are sufficiently small, but it does so at a rate of 1/N so that N E〈Ru
1,2R

v
1,2〉

converges to a finite limit, and var(logL) is constant. This is a first reason why Theorem 1 should
be expected: if anything, the fluctuations must be of constant order.

4. Proof of Theorem 1

It suffices to prove the fluctuations under one of the hypotheses. Fluctuations under the remaining
one comes for free as a consequence of Le Cam’s third lemma (or more specifically, the Portmanteau
theorem Van der Vaart, 2000, Theorem 6.6). For the reader’s convenience, we present this argument
in Appendix A. We choose to treat the planted case Y ∼ Pβ . The reason is that we are able to
achieve control on the overlaps and show their concentration under the alternative in a wider region
of parameters (α, β) than under the null. This is ultimately due to the Nishimori property (4).

We will show the convergence of the characteristic function of logL to that of a Gaussian. Let
µ = −1

4 log(1 − αβ2), σ2 = −1
2 log(1 − αβ2), and let φ be the characteristic function of the

Gaussian distribution N (µ, σ2): for s ∈ R and i2 = −1, let φ(s) = exp{isµ − σ2

2 s
2}. The

following is a more quantitative convergence result that implies Theroem 1.

Theorem 5 Let s ∈ R and α, β ≥ 0. There exists K = K(s, α, β,Ku,Kv) < ∞ such that for
M,N sufficiently large and M = αN +O(

√
N), the following holds. If αβ2K4

uK
4
v < 1, then∣∣∣EPβ

[
eis logL(Y ;β)

]
− φ(s)

∣∣∣ ≤ K√
N
.

Remark: The condition M = αN + O(
√
N) is assumed only for convenience in order to obtain

the rate 1/
√
N in the convergence of the characteristic function. A close inspection of the proof

reveals that it can be relaxed to M/N → α modulo a loss of the convergence rate.

6



DETECTION LIMITS IN SPIKED MODELS

Our approach is to show that the function

φN (β) = EPβ

[
eis logL(Y ;β)

]
(for s ∈ R fixed) is an approximate solution to a differential equation whose solution is the charac-
teristic function of the Gaussian.

Lemma 6 For all β ≥ 0, it holds that

d

dβ
φN (β) =

is− s2

2
N E

[〈
Ru

1,2R
v
1,2

〉
eis logL

]
. (5)

Proof Since Y ∼ Pβ , we can rewrite the Hamiltonian (2) as

−H(u,v) =
∑
i,j

√
β

N
Yijuivj −

β

2N
u2
i v

2
j ,

=
∑
i,j

√
β

N
Wijuivj +

β

N
uivju

∗
i v
∗
j −

β

2N
u2
i v

2
j .

We take a derivative with respect to β:

d

dβ
φN (β) = isE

[〈
−dH

dβ

〉
eis logL

]
= is

∑
i,j

(
1

2
√
βN

E
[
Wij 〈uivj〉 eis logL

]
− 1

2N
E
[〈
u2
i v

2
j

〉
eis logL

])
+ is

1

N

∑
i,j

E
[〈
uivju

∗
i v
∗
j

〉
eis logL

]
.

The last term is equal to isN E[〈Ru
1,∗R

v
1,∗〉eis logL]. As for the first term, since Wij

ind.∼ N (0, 1) , we
use Gaussian integration by parts to obtain

E
[
Wij 〈uivj〉 eis logL

]
= E

[
d

dWij

(
〈uivj〉 eis logL

)]
=

√
β

N

(
E
[〈
u2
i v

2
j

〉
eis logL

]
− E

[
〈uivj〉2 eis logL

]
+ isE

[
〈uivj〉2 eis logL

])
.

Regrouping terms, we get

d

dβ
φN (β) = −isN

2
E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
+ isN E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
(6)

+ (is)2N

2
E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
.

The first and third terms in (6) contain overlaps between two replicas while the middle term contains
an overlap between one replica and the spike vectors. By the Nishimori property (4), we can replace
the spike by a second replica in the overlaps in the middle term, and this finishes the proof.
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A heuristic argument Let us now heuristically examine what should happen. A rigorous argu-
ment will be presented shortly. If the quantity N〈Ru

1,2R
v
1,2〉 concentrates very strongly about some

deterministic value θ = θ(α, β), we would expect that the Gibbs averages in (5) would behave
approximately independently from logL, and we would obtain the following differential equation

d

dβ
φN (β) ' 1

2

(
is− s2

)
θφN (β).

Since φN (0) = 1, one obtains φN (β) ' exp{1
2(is − s2)

∫ β
0 θdβ′} by integrating over β, and the

result would follow. The concentration assumption we used is commonly referred to as replica-
symmetry or the replica-symmetric ansatz in the statistical physics literature. Most of the difficulty
of the proof lies in showing rigorously that replica symmetry indeed holds.

Sign symmetry between Pβ and P0 One can execute the same argument under the null model.
Since there is no planted term in the Hamiltonian, the analogue of (6) one obtains does not contain
the middle term. Hence the differential equation one obtains is

d

dβ
φN (β) ' 1

2

(
−is− s2

)
θφN (β).

This is one way to interpret the sign symmetry of the means of the limiting Gaussians under the null
and the alternative: the interaction of one replica with the planted spike under the planted model
accounts for twice the contribution of the interaction between two independent replicas, and this
flips the sign of the mean.

We now replace the above heuristic with a rigorous statement. Recall that Y ∼ Pβ .

Proposition 7 For s ∈ R and α, β ≥ 0 such that αβ2K4
uK

4
v < 1, there exist a constant K =

K(s, α, β,Ku,Kv) <∞ such that

N E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
=

αβ

1− αβ2
E
[
eis logL

]
+ δ,

where |δ| ≤ K/
√
N . Moreover, K, seen as a function of β, is bounded on any interval [0, β′] when

αβ′2K4
uK

4
v < 1.

Taking s = 0, we see that θ = αβ
1−αβ2 . Proposition 7 vindicates replica symmetry, and its proof

occupies the majority of the rest of the manuscript.

Proof of Theorem 5. Plugging the results of Proposition 7 in the derivative computed in Lemma 6,
we obtain

d

dβ
φN (β) =

(
is− s2

2

αβ

1− αβ2

)
φN (β) + δ,

where |δ| ≤ K√
N

max{|s|, s2}, and K is the constant from Proposition 7. Integrating w.r.t. β we
obtain

|φN (β)− φ(s)| ≤ K ′√
N
,

where K ′ depends on α, β, s and Ku,Kv, and K ′ <∞ as long as αβ2K4
uK

4
v < 1. �

Let us prove in passing the convergence of the KL divergence between the null and alternative.
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Proof of Proposition 4. Similarly to the computation of the derivative of φN , we can obtain

d

dβ
EPβ logL(Y ;β) = −N

2
E
〈
Ru

1,2R
v
1,2

〉
+N E

〈
Ru

1,∗R
v
1,∗
〉

=
N

2
E
〈
Ru

1,2R
v
1,2

〉
,

where the last line follows by the Nishimori property. By Proposition 7 with s = 0, this derivative
is K/

√
N away from 1

2
αβ

1−αβ2 . Integration and boundedness of K finishes the proof. �

5. Overlap convergence

The question of overlap convergence is purely a spin glass problem. We will use the machinery
developed by Talagrand to solve it. In particular, a crucial use is made of the cavity method and
Guerra’s interpolation scheme. In this section, we present the main underlying ideas. The arguments
are technically involved (but conceptually simple) so we delay their full execution to the Appendix.
We refer to Talagrand (2007) for a leisurely high-level introduction to these ideas.

5.1. Sketch of proof of Proposition 7

The basic idea is to show that the quantities of interest approximately obey a self-consistent (or
self-bounding) property, the error terms of which can be controlled. This approach will be used at
different stages of the proof. We will show that

N E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
= αβ E

[
eis logL

]
+ αβ2N E

[〈
Ru

1,2R
v
1,2

〉
eis logL

]
+ δ,

where δ is the error term. This will be achieved in two steps. We first prove

N E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
= Nβ E

[〈
(Rv

1,2)2
〉
eis logL

]
+ δ, (7)

via a cavity on N , i.e., by isolating the effect of the last variable uN on the rest of the variables. We
then show

N E
[〈

(Rv
1,2)2

〉
eis logL

]
=
M

N
E
[
eis logL

]
+Mβ E

[〈
Ru

1,2R
v
1,2

〉
eis logL

]
+ δ, (8)

via a cavity on M , i.e., isolating the effect of vM . In the arguments leading to (7) and (8), we
accumulate error terms that are proportional to the third moments of the overlaps:

δ . N E
〈
|Ru

1,2|3
〉

+N E
〈
|Rv

1,2|3
〉
, (9)

where we hide constants depending on α and β. These cavity equations impose only a mild restric-
tion on the parameters so that our bounds go in the right direction, namely that αβ2 < 1. This is
about to change. We prove that δ = O(1/

√
N) with methods that impose the stronger restrictions

on (α, β) that ultimately appear in the final result.

5.2. Convergence in the planted model: from crude estimates to optimal rates

We prove overlap convergence under the alternative. Let Y ∼ Pβ .

Proposition 8 For all α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1, there exists K = K(α, β) < ∞ such
that

E
〈
(Ru

1,2)4
〉
∨ E

〈
(Rv

1,2)4
〉
≤ K

N2
.

9
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The proof proceeds as follows. We use the cavity method to show the following self-consistency
equations:

E
〈
(Ru

1,2)4
〉

= αβ2 E
〈
(Ru

1,2)4
〉

+Mu + δu, (10)

E
〈
(Rv

1,2)4
〉

= αβ2 E
〈
(Rv

1,2)4
〉

+Mv + δv, (11)

where |Mu|, |Mv| are bounded by sums of expectations of monomials of degree five in the overlaps
Ru and Rv:

|Mu| .
∑
a,b,c,d

E
〈∣∣(Ru

1,2)3Ru
a,bR

u
c,d

∣∣〉+ E
〈∣∣(Ru

1,2)3Rv
a,bR

v
c,d

∣∣〉 ,
|Mv| .

∑
a,b,c,d

E
〈∣∣(Rv

1,2)3Rv
a,bR

v
c,d

∣∣〉+ E
〈∣∣(Rv

1,2)3Ru
a,bR

u
c,d

∣∣〉 ,
where the sum is over a finite number of combinations (a, b, c, d), and

δu .
1

N
E
〈
(Ru

1,2)2
〉

+O
( 1

N2

)
, δv .

1

N
E
〈
(Rv

1,2)2
〉

+O
( 1

N2

)
.

These results hold for all α, β ≥ 0. From here, further progress is unlikely unless one has a priori
knowledge that the overlaps are unlikely to be large, so that the fifth-order terms do not overwhelm
the main terms. More precisely, suppose that we are able to prove the following crude bound on the
overlaps: for ε > 0, there is K = K(ε, α, β) > 0 such that

E
〈
1
{∣∣Ru

1,2

∣∣ ≥ ε}〉 ∨ E
〈
1
{∣∣Rv

1,2

∣∣ ≥ ε}〉 ≤ Ke−N/K . (12)

Then the fifth-order terms can be controlled by fourth-order terms as follows:

E
〈∣∣(Ru

1,2)3Rv
a,bR

v
c,d

∣∣〉 ≤ εE 〈∣∣(Ru
1,2)3Rv

a,b

∣∣〉+K6
uK

4
vKe

−N/K

≤ εM +Ke−N/K ,

where M = E〈(Ru
1,2)4〉 ∨ E〈(Rv

1,2)4〉, and the last step is by Hölder’s inequality. This way, Mu

and Mv are controlled. Now it remains to control δu and δv. We could re-execute the cavity
argument on the second moment instead of the fourth, and this would allow us to obtain E〈(Ru

1,2)2〉∨
E〈(Rv

1,2)2〉 ≤ K/N . We instead use a shorter argument based on an elegant quadratic replica
coupling technique of Guerra and Toninelli (2002) to prove this. This is presented in Appendix D.1.
Plugging these estimates into (10) and (11), we obtain

E
〈
(Ru

1,2)4
〉
≤ αβ2 E

〈
(Ru

1,2)4
〉

+KεM + δ′,

E
〈
(Rv

1,2)4
〉
≤ αβ2 E

〈
(Rv

1,2)4
〉

+KεM + δ′,

where δ′ ≤ K/N2 +Ke−N/K , and this implies the desired result for ε sufficiently small.
The a priori bound (12) is proved via an interpolation argument at fixed overlap, combined with

concentration of measure, and is presented in Appendices D.2 and D.3. These arguments impose a
restriction on the parameters (α, β) that shows up in the final result. Finally, Proposition 8 allow us
to conclude (via Jensen’s inequality) that the error term δ displayed in (9) is bounded by K/

√
N .

10
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6. Discussion

The limiting factor in our approach to prove LR fluctuations is the need for precise non-asymptotic
control of moments of the overlaps Ru

1,2 and Rv
1,2 under the expected Gibbs measure E〈·〉. We

were able to reach this level of control only in a restricted regime. This is due to the failure of
our approach to prove the crude estimate (12) in a larger region. In this section, we formulate a
conjecture on the largest region where these fluctuations and overlap decay should occur. In one
sentence, this should be the entire annealed or paramagnetic region of the model, as dictated by the
vanishing of its replica-symmetric (RS) formula. We shall now be more precise.

Let z ∼ N (0, 1), u∗ ∼ Pu and v∗ ∼ Pv all independent. Define

ψu(r) := Eu∗,z log

∫
exp

(√
rzu+ ruu∗ − r

2
u2
)

dPu(u),

ψv(r) := Ev∗,z log

∫
exp

(√
rzv + rvv∗ − r

2
v2
)

dPv(v).

Moreover, define the RS potential as

F (α, β, qu, qv) := ψu(βqv) + αψv(βqu)− βquqv
2

.

and finally define the RS formula as

φRS(α, β) := sup
qv≥0

inf
qu≥0

F (α, β, qu, qv).

It was argued by Lesieur et al. (2015a) based on the plausibility of the replica-symmetric ansatz,
and then proved by Miolane (2017), that in the limit N → ∞,M/N → α, 1

N EPβ logL(Y ;β) →
φRS(α, β) for all α, β ≥ 0. (See also Barbier et al., 2017, for results in a more general setup.) Of
course, by change of measure and Jensen’s inequality,

EPβ logL(Y ;β) = EP0 L(Y ;β) logL(Y ;β) ≥ 0,

for all M,N ; therefore φRS is always nonnegative. Let

Γ = {(α, β) ∈ R+ : φRS(α, β) = 0} .

It is not hard to prove the following lemma by analyzing the stability of (0, 0) as a stationary
point of the RS potential:

Lemma 9 Γ ⊆ {(α, β) ∈ R+ : αβ2 ≤ 1}.

This lemma tells us (unsurprisingly) that Γ is entirely below the BBP threshold. The inclusion
may or may not be strict depending on the priors Pu and Pv. For instance, there is equality of the
above sets if Pu and Pv are symmetric Rademacher and/or Gaussian respectively. One case of strict
inclusion is when Pv is GaussianN (0, 1) and Pu is a sparse Rademacher prior, ρ2δ1/

√
ρ+(1−ρ)δ0+

ρ
2δ−1/

√
ρ, for sufficiently small ρ (e.g., ρ = .04). This is a canonical model for sparse principal

component analysis. In this case, there is a region of parameters below the BBP threshold where
the posterior mean E[u∗|Y ] (= 〈u〉 in our notation) has a non-trivial overlap with the spike u∗,
while the top eigenvector of the empirical covariance matrix Y Y > is orthogonal to it. Estimation
becomes impossible only in the region Γ, so the following conjecture is highly plausible:

11
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Conjecture 10 Let Γ′ be the interior of Γ. For all (α, β) ∈ Γ′,

logL(Y , β) N
(
±1

4
log(1− αβ2),−1

2
log(1− αβ2)

)
,

where the plus sign holds under the null P0 and the minus sign under the alternative Pβ .

Our conjecture is formulated only in the interior of Γ; this is not a superfluous condition since
diverging behavior may appear at the boundary. Moreover, this conjecture is about the maximal
region in which such fluctuations can take place. This is not difficult to show. By (sub-Gaussian)
concentration of the normalized likelihood ratio, we have for ε > 0

Pβ
( 1

N
logL(Y ;β)− φRS(α, β) ≤ −ε

)
−→ 0,

whereK = K(α, β) <∞. This already shows that logLmust grow withN under the alternative if
φRS > 0. As for the behavior under the null, the same sub-Gaussian concentration holds (although
the expectation is not known, see Question 1):

P0

( 1

N
logL(Y ;β)− 1

N
EP0 logL(Y ;β) ≥ ε

)
−→ 0.

We do however know that the above expectation is non-positive, by Jensen’s inequality. Therefore
if (α, β) are such that φRS > 0, one can distinguish Pβ from P0 with asymptotic certainty by testing
whether 1

N logL(Y ;β) is above or below (say) 1
2φRS(α, β). This implies that Pβ and P0 are not

contiguous outside Γ. This—short of proving that logL grows in the negative direction with N—
shows that the fluctuations cannot be of the above form under the null, since this would contradict
Le Cam’s first lemma.

The difficulty we encountered in our attempts to prove the above conjecture is a loss of control
over the overlaps Ru

1,2 and Rv
1,2 near the boundary of the set Γ. The interpolation bound at fixed

overlap (between a replica and the spike) we used under the alternative Pβ is vacuous beyond the
region αβ2 < (KuKv)−4. It is possible that the latter bound could be marginally improved by
more careful analysis, but this is unlikely to yield the optimal result since no information about
φRS is used in the proof. One can imagine refining this technique by constraining two replicas and
using an interpolation with broken replica-symmetry, in the spirit of the “2D” Guerra-Talagrand
bound (Guerra, 2003; Talagrand, 2011b). Although this strategy is successful in the symmetric
model where u = v it is not at all obvious why such an interpolation bound should be true in the
bipartite case: in the analysis, certain terms that are hard to control have a sign in the symmetric
case, hence they can be dropped to obtain a bound. This is no longer true (or at least not obviously
so) in the bipartite case.

Another interesting question concerns the LR asymptotics under the null, outside Γ. While
under the alternative Pβ , the normalized log-likelihood ratio converges to the RS formula φRS for
all (α, β), no such simple formula is expected to hold under the null. Even the existence of a limit
seems to be unknown.

Question 1 Does 1
N EP0 logL(Y ;β) have a limit for all (α, β)? If so, what is its value?

We refer to Barra et al. (2011, 2014) and Auffinger and Chen (2014) for some progress on the
replica-symmetric phase, and Panchenko (2015) for progress on the related problem of the “multi-
species” SK model at all temperatures.
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Springer, 2017a.

Jinho Baik and Ji Oon Lee. Free energy of bipartite spherical Sherrington–Kirkpatrick model. arXiv
preprint arXiv:1711.06364, 2017b.

Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked
population models. Journal of Multivariate Analysis, 97(6):1382–1408, 2006.

Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for
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IEEE International Symposium on Information Theory (ISIT), pages 1635–1639. IEEE, 2015b.

Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Constrained low-rank matrix estima-
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Appendix A. Fluctuation equivalence

We explain in this appendix how the fluctuation result under Pβ implies the corresponding fluctua-
tion result under P0. This is a consequence of the Portmanteau characterization of convergence in
distribution. The argument can be made in the other direction as well. Assume that

logL(Y ;β) N (µ, σ2),

for Y ∼ Pβ , where µ = 1
2σ

2. By the Portmanteau theorem (Van der Vaart, 2000, Lemma 2.2), this
is equivalent to the assertion

lim inf EPβ [f(logL)] ≥ E [f(Z)] , (13)

where Z ∼ N (µ, σ2) for all nonnegative continuous functions f : R 7→ R+. On the other hand, by
a change of measure (and absolute continuity of P0 w.r.t Pβ), we have that for such an f ,

EP0 [f(logL)] = EPβ

[
dP0

dPβ
f(logL)

]
= EPβ

[
e− logLf(logL)

]
.

The function g : x 7→ e−xf(x) is still nonnegative continuous, so by (13), we have

lim inf EP0 [f(logL)] ≥ E
[
e−Zf(Z)

]
. (14)

Since µ = 1
2σ

2,

E
[
e−Zf(Z)

]
=

∫
f(x)e−xe−(x−µ)2/2σ2 dx√

2πσ2
=

∫
f(x)e−(x+µ)2/2σ2 dx√

2πσ2
= E

[
f(Z ′)

]
,

where Z ′ ∼ N (−µ, σ2). Since (14) is valid for every nonnegative continuous f , the result

logL(Y ;β) N (−µ, σ2)

under P0 follows.

16



DETECTION LIMITS IN SPIKED MODELS

Appendix B. Notation and useful lemmas

We make repeated use of interpolation arguments in our proofs. In this section, we state a few
elementary lemmas we subsequently invoke several times. We denote the overlaps between replicas
when the last variables are deleted by a superscript “− ” :

Ru−
l,l′ =

1

N

N−1∑
i=1

u
(l)
i u

(l′)
i and Rv−

l,l′ =
1

N

M−1∑
j=1

v
(l)
j v

(l′)
j .

If {Ht : t ∈ [0, 1]} is a generic family of random Hamiltonians, we let 〈·〉t be the corresponding
Gibbs average, and νt(f) = E 〈f〉t, where the expectation is over the randomness of Ht. We will
often write ν for ν1.

In our executions of the cavity method, we use interpolations that isolate one last variable (either
uN or vM ) from the rest of the system. Taking the first case an example, we consider

−Ht(u,v) =
N−1∑
i=1

M∑
j=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+

M∑
j=1

√
βt

N
WNjuNvj +

βt

N
uNu

∗
Nvjv

∗
j −

βt

2N
u2
Nv

2
j .

Lemma 11 Let f be a function of n replicas (u(l),v(l))1≤l≤n. Then

d

dt
νt(f) =

β

2

∑
1≤l 6=l′≤n

νt(R
v
l,l′u

(l)u(l′)f)− β

2
n

n∑
l=1

νt(R
v
l,n+1u

(l)u(n+1)f)

+ βn
n∑
l=1

νt(R
v
l,∗u

(l)u∗f)− βnνt(Rv
n+1,∗u

(n+1)u∗f)

+ β
n(n+ 1)

2
νt(R

v
n+1,n+2u

(n+1)u(n+2)f).

Proof This is a simple computation based on Gaussian integration by parts, similarly to Lemma 5.

The next lemma allows us to control interpolated averages by averages at time 1.

Lemma 12 Let f be a nonnegative function of n replicas (u(l),v(l))1≤l≤n. Then for all t ∈ [0, 1]

νt(f) ≤ K(n, α, β)ν(f).

Proof This is a consequence of Lemma 11, boundedness of the variables ui and vj , and Grönwall’s
lemma.

It is clear that Lemma 12 also holds if we switch the roles of u and v and extract vM instead (so
that νt is defined accordingly).
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Appendix C. Proof of Proposition 7

We make use of two interpolation arguments; the first one extracts the last variable uN from the
system, and the second one extracts vM . This allows to establish the self-consistency equations (7)
and (8). We will assume decay of the forth moments of the overlaps, i.e., we assume Proposition 8
(which we prove in Appendix D), and this allows us the prove that the error terms emerging from
the cavity method converge to zero. Recall that the Nishimori property implies

E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
= E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
.

As it turns out, it is more convenient to work with the right-hand side.

C.1. Cavity on N

By symmetry of the u variables, we have

E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
= E

[〈
u

(1)
N u∗NR

v
1,∗

〉
eis logL

]
.

Now we consider the interpolating Hamiltonian

−Ht(u,v) =

N−1∑
i=1

M∑
j=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+
M∑
j=1

√
βt

N
WNjuNvj +

βt

N
uNu

∗
Nvjv

∗
j −

βt

2N
u2
Nv

2
j ,

and let 〈·〉t be the associated Gibbs average. We let

X(t) = exp
(
is log

∫
e−Ht(u,v)dρ(u,v)

)
,

and
ϕ(t) = N E

[〈
u

(1)
N u∗NR

v
1,∗

〉
t
X(t)

]
.

Observe that ϕ(1) is the quantity we seek to analyze. We will use the following Taylor expansion:∣∣ϕ(1)− ϕ(0)− ϕ′(0)
∣∣ ≤ sup

0≤t≤1
|ϕ′′(t)|,

to approximate ϕ(1) by ϕ(0) +ϕ′(0). Since Pu is centered, we have ϕ(0) = 0. With a computation
similar to the one leading to Lemma 6, the time derivative ϕ′(t) is a sum of terms of the form

Nβ E
[〈
u

(1)
N u∗Nu

(a)
N u

(b)
N Rv

1,∗R
v
a,b

〉
t
X(t)

]
,

for (a, b) ∈ {(1, ∗), (2, ∗), (1, 2), (2, 3)}. At t = 0 all terms vanish expect when (a, b) = (1, ∗) and
we get

ϕ′(0) = Nβ E
[〈

(Rv
1,∗)

2
〉

0
X(0)

]
.
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Now we wish to replace the time index t = 0 in the above quantity by the time index t = 1.
Similarly to ϕ, the derivative of the function t 7→ Nβ E[〈(Rv

1,∗)
2〉tX(t)], is a sum of terms of the

form
Nβ2 E

[〈
u

(a)
N u

(b)
N (Rv

1,∗)
2Rv

a,b

〉
t
X(t)

]
.

By boundedness of the u variables and Hölder’s inequality, this is bounded by

Nβ2K4
u E
[〈∣∣(Rv

1,∗)
2Rv

a,b

∣∣〉
t

]
≤ Nβ2K4

u E
[〈
|Rv

1,∗|3
〉
t

]
≤ Nβ2K4

uK E
[〈
|Rv

1,∗|3
〉]

≤ Kβ2

√
N
,

where the second bound is by Lemma 12, and the last bound is a consequence of Proposition 8 (and
Jensen’s inequality). Therefore∣∣ϕ′(0)−Nβ E

[〈
(Rv

1,∗)
2
〉
X(1)

]∣∣ ≤ K√
N
.

Similarly, we control the second derivative ϕ′′. This can be written as a finite sum of terms of the
form

Nβ2 E
[〈
u

(1)
N u∗Nu

(a)
N u

(b)
N u

(c)
N u

(d)
N Rv

1,∗R
v
a,bR

v
c,d

〉
t
X(t)

]
,

which are bounded in the same way by

Nβ2K6
u E
[〈∣∣Rv

1,∗R
v
a,bR

v
c,d

∣∣〉
t

]
≤ β2K6

u
K√
N
.

Therefore |ϕ′′| ≤ K/
√
N . We end up with

N E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
= Nβ E

[〈
(Rv

1,∗)
2
〉
eis logL

]
+ δ, (15)

where |δ| ≤ K/
√
N whenever (α, β) satisfy the conditions of Proposition 8.

C.2. Cavity on M

By symmetry of the v variables,

N E
[〈

(Rv
1,∗)

2
〉
eis logL

]
= M E

[〈
v

(1)
M v∗MR

v
1,∗

〉
eis logL

]
=
M

N
E
[〈

(v
(1)
M v∗M )2

〉
eis logL

]
+M E

[〈
v

(1)
M v∗MR

v−
1,∗

〉
eis logL

]
.

Now we execute the same argument as above with the roles of u and v flipped to prove that

E
[〈

(v
(1)
M v∗M )2

〉
eis logL

]
= E

[
eis logL

]
+ δ,

and
M E

[〈
v

(1)
M v∗MR

v−
1,∗

〉
eis logL

]
= Mβ E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
+ δ,

19



DETECTION LIMITS IN SPIKED MODELS

where |δ| ≤ K(M/N3/2 ∨ 1/
√
N). Here we use the interpolating Hamiltonian

−Ht(u,v) =
M−1∑
j=1

N∑
i=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+

N∑
i=1

√
βt

N
WiMuivM +

βt

N
uiu
∗
i vMv

∗
M −

βt

2N
u2
i v

2
M ,

and similarly define the random variableX(t) = exp
(
is log

∫
e−Ht(u,v)dρ(u,v)

)
. After executing

the argument, we obtain

N E
[〈

(Rv
1,∗)

2
〉
eis logL

]
=
M

N
E
[
eis logL

]
+Mβ E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
+ δ. (16)

From (15) and (16), we obtain

N E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
=
M

N
β E

[
eis logL

]
+Mβ2 E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
+ δ,

where |δ| ≤ K(M/N3/2 ∨ 1/
√
N). For M = αN +O(

√
N), we arrive at

N E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
=

αβ

1− αβ2
E
[
eis logL

]
+ δ,

with |δ| ≤ K/
√
N , and this finishes the proof.

Appendix D. Proof of Proposition 8

This section is about overlap convergence in the planted model. As explained in the main text,
the proof is in several steps. We first present a proof of convergence of the second moment of
the overlaps that does not rely on the cavity method, but on a quadratic replica coupling scheme
of Guerra and Toninelli (2002). Then we present the interpolation argument as a fixed overlap that
will allow us to prove the crude convergence bound (12) on the overlaps. Finally we execute a round
of the cavity method to prove convergence of the fourth moment of the overlaps.

D.1. Convergence of the second moment

Proposition 13 For all α, β such that K4
uK

4
vαβ

2 < 1, there exists K = K(α, β) <∞ such that

E
〈
(Ru

1,∗)
2
〉
∨ E

〈
(Rv

1,∗)
2
〉
≤ K

N2
.

Of course, by the Nishimori property, this is also a statement about the overlaps between two inde-
pendent replicas.
Proof Let σu and σv be the sub-Gaussian parameters of Pu and Pv respectively. We since Pu and
Pv have unit variance, we have 1 ≤ σ2

u ≤ K2
u and similarly for Pv.

We start with the u-overlap. Let us define the function

Φu(λ) =
1

N
E log

∫
exp

(
−H(u,v) +

λ

2
N(Ru

1,∗)
2

)
dρ(u,v).
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The outer expectation is on Y ∼ Pβ (or equivalently on u∗, v∗ and W independently). A simple
inspection shows that the above function is convex and increasing in λ, and

Φ′u(0) =
1

2
E
〈
(Ru

1,∗)
2
〉
.

The convexity then implies for all λ ≥ 0,

λ

2
E
〈
(Ru

1,∗)
2
〉
≤ Φu(λ)− Φu(0).

Of course Φu(0) = 1
N EPβ logL(Y ;β) ≥ 0 by Jensen’s inequality, so it remains to upper bound

Φu(λ). To this end we consider the interpolation

Φu(λ, t) =
1

N
E log

∫
exp

(
−Ht(u,v) +

λ

2
N(Ru

1,∗)
2

)
dρ(u,v),

where

−Ht(u,v) =
∑
i,j

√
βt

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

βt

2N
u2
i v

2
j .

Notice that the planted (middle) term in the Hamiltonian is left unaltered. The time derivative is

∂tΦu(λ, t) = −β
2
E
〈
(Ru

1,2)2
〉
λ,t
≤ 0,

where 〈·〉λ,t is the Gibbs average w.r.t −Ht(u,v) + λ
2N(Ru

1,∗)
2. Therefore

Φu(λ) ≤ Φu(λ, 0) =
1

N
E log

∫
exp

(
βNRu

1,∗R
v
1,∗ +

λ

2
N(Ru

1,∗)
2

)
dρ(u,v)

≤ 1

N
E log

∫
exp

(
αβ2σ2

vv̂ + λ

2
N(Ru

1,∗)
2

)
dP⊗Nu (u),

where we have used the sub-Gaussianity of Pv, and let v̂ = 1
M

∑M
j=1 v

∗2
j . (Here, we have abused

notation and let α = M
N . This will not cause any problems.) Next we introduce an independent r.v.

g ∼ N (0, 1), exchange integrals by Fubini’s theorem, and continue:

1

N
E logEg

[∫
exp

(√
(αβ2σ2

vv̂ + λ)NRu
1,∗g

)
dP⊗Nu (u)

]
≤ 1

N
E logEg

[
exp

(
αβ2σ2

vv̂ + λ

2
σ2
uûg

2

)]
,

where we use the sub-Gaussianity of Pu, and let û = 1
N

∑N
i=1 u

∗2
i . We bound û and v̂ by K2

u and
K2
v respectively and integrate on g to obtain the upper bound

Φu(λ) ≤ − 1

2N
log
(
1− (αβ2σ2

vK
2
v + λ)σ2

uK
2
u

)
,

valid as long as (αβ2σ2
vK

2
v + λ)σ2

uK
2
u < 1. Letting λ = (1− αβ2σ2

vK
2
vσ

2
uK

2
u)/(2σ2

uK
2
u) > 0, we

obtain

E
〈
(Ru

1,∗)
2
〉
≤ K(α, β)

N
,
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with K(α, β) = 2σ2
uK

2
u log((1−αβ2σ2

vK
2
vσ

2
uK

2
u )/2)

(1−αβ2σ2
vK

2
vσ

2
uK

2
u )

.
We use the exact same argument for the v-overlaps. We define Φv(λ) in the same way by

replacing the quadratic term λ
2N(Ru

1,∗)
2 by λ

2N(Rv
1,∗)

2 and obtain

Φv(λ) ≤ − 1

2N
log
(
1− (β2σ2

uK
2
u + λ)ασ2

vK
2
v

)
.

We choose λ = (1− αβ2σ2
vK

2
vσ

2
uK

2
u)/(2ασ2

vK
2
v) and use the same convexity argument to obtain

E
〈
(Rv

1,∗)
2
〉
≤ K ′(α, β)

N
,

with K ′(α, β) = 2ασ2
vK

2
v log((1−αβ2σ2

vK
2
vσ

2
uK

2
u )/2)

(1−αβ2σ2
vK

2
vσ

2
uK

2
u )

.

D.2. Interpolation bound at fixed overlap

In this section we present and prove an interpolation bound on the free energy of a subpopulation of
configurations having a fixed overlap with the planted spike (u∗,v∗). This is a key step in proving
the crude bound (12).

Proposition 14 Fix u∗ ∈ RN ,v∗ ∈ RM with ‖u∗‖2`2 /N ≤ K2
u and ‖v∗‖2`2 /M ≤ K2

v. Let
α = M

N and ∆ = αβ2σ2
uσ

2
vK

2
uK

2
v − 1. For m ∈ R \ {0}, ε ≥ 0, let Au be the event

Au =

{
Ru

1,∗ ∈ [m,m+ ε) if m > 0,

Ru
1,∗ ∈ (m− ε,m] if m < 0.

Define Av similarly. We have

1

N
E log

∫
1(Au)e−H(u,v)dρ(u,v) ≤ ∆

2σ2
uK

2
u
m2 + αβK2

vε, (17)

and
1

N
E log

∫
1(Av)e−H(u,v)dρ(u,v) ≤ ∆

2ασ2
vK

2
v
m2 + βK2

uε. (18)

The expectation E is over the Gaussian disorder W .

Proof We only prove (17). The bound (18) follows by flipping the roles of u and v. We consider
the interpolating Hamiltonian

−Ht(u,v) =
∑
i,j

√
βt

N
Wijuivj +

βt

N
uiu
∗
i vjv

∗
j −

βt

2N
u2
i v

2
j +

M∑
j=1

(1− t)βmvjv∗j ,

and let
ϕ(t) =

1

N
E log

∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−Ht(u,v)dρ(u,v).

We have
ϕ′(t) = −β

2
E
〈
Ru

1,2R
v
1,2

〉
t
+ β E

〈
Ru

1,∗R
v
1,∗
〉
t
− βmE

〈
Rv

1,∗
〉
t
.
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The first term in the above expression is ≤ 0, and since the overlap Ru
1,∗ is constrained to be close

to m we have
∣∣∣E〈(Ru

1,∗ −m)Rv
1,∗

〉
t

∣∣∣ ≤ αK2
vε. So ϕ′(t) ≤ αK2

vε. Moreover, the variables u and
v decouple at t = 0 and one can write

ϕ(1) ≤ 1

N
log Pr (Au) +

1

N

M∑
j=1

logEv
[
eβmvv

∗
j

]
+K2

vε.

By sub-Gaussianity of the prior Pv we have Ev
[
eβmvv

∗
j

]
≤ eβ

2σ2
vm

2v∗2j /2. On the other hand, for a
fixed parameter γ of the same sign as m, we have

1

N
log Pr (Au) ≤ −γm+

1

N

N∑
i=1

logEu[eγuu
∗
i ] ≤ −γm+

1

2N

N∑
i=1

u∗2i σ
2
uγ

2.

The last inequality uses sub-Gaussianity of Pu. We minimize this quadratic w.r.t γ and obtain

ϕ(1) ≤ − m2

2σ2
uû

+
M

2N
β2σ2

vv̂m
2 + αK2

vε,

where û = 1
N

∑N
i=1 u

∗2
i and v̂ = 1

M

∑M
j=1 v

∗2
j . We upper bound the latter two numbers by K2

u and
K2
v respectively.

D.3. Overlap concentration (proof of (12))

Here we prove convergence of the overlaps to zero in probability. We first state a useful and standard
result of concentration of measure.

Lemma 15 Let Y =
√

β
Nu∗v∗> + W , where the planted vectors u∗ and v∗ are fixed, and

Wij ∼ N (0, 1). For a Borel set A ⊂ RM+N , let

Z =

∫
A
e−H(u,v)dρ(u,v).

We have for every t ≥ 0,

Pr (|logZ − E logZ| ≥ Nt) ≤ 2e
− Nt2

2βK2
uK

2
v .

(Here Pr and E are conditional on u∗ and v∗.)

Proof We simply observe that the function W 7→ logZ is Lipschitz with constant
√
NβαK2

uK
2
v.

The result follows from concentration of Lipschitz functions of Gaussian r.v.’s (this is the Borell-
Tsirelson-Ibragimov-Sudakov inequality; see Boucheron et al., 2013, Theorem 5.6).

Proposition 16 Let α, β such that αβ2σ2
uσ

2
vK

2
uK

2
v < 1, and ε > 0. There exist constants c =

c(ε, α, β,Ku,Kv) > 0 and K = K(Ku,Kv) > 0 such that

E
〈
1{|Ru

1,∗| ≥ ε}
〉
∨ E

〈
1{|Rv

1,∗| ≥ ε}
〉
≤ K

ε2
e−cN .

23



DETECTION LIMITS IN SPIKED MODELS

Proof We only prove the assertion for the u-overlap since the argument is strictly the same for the
v-overlap.

For ε, ε′ > 0, we can write the decomposition

E
〈
1{
∣∣Ru

1,∗
∣∣ ≥ ε′}〉 =

∑
l≥0

E
〈
1{Ru

1,∗ − ε′ ∈ [lε, (l + 1)ε)}
〉

+
∑
l≥0

E
〈
1{−Ru

1,∗ + ε′ ∈ [lε, (l + 1)ε)}
〉
,

where the integer index l ranges over a finite set of size ≤ K/ε. We only treat the generic term in
the first sum; the second sum can be handled similarly. Fix m > 0, ε > 0. We have

E
〈
1{Ru

1,∗ ∈ [m,m+ ε)}
〉

= E

[∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−H(u,v)dρ(u,v)∫
e−H(u,v)dρ(u,v)

]
. (19)

Let
A =

1

N
EW log

∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−H(u,v)dρ(u,v),

and
B =

1

N
EW log

∫
e−H(u,v)dρ(u,v).

By concentration over the Gaussian disorder, Lemma 15, for any u ≥ 0, we simultaneously have

1

N
log

∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−H(u,v)dρ(u,v)−A ≤ u,

and
1

N
log

∫
e−H(u,v)dρ(u,v)−B ≥ −u,

with probability at least 1 − 4e−Nu
2/(2βK2

uK
2
v ). On the complement event we simply upper bound

the fraction (19) by 1. Therefore, we have

E
〈
1{Ru

1,∗ ∈ [m,m+ ε)}
〉
≤ Eu∗,v∗

[
eN(A−B+2u)

]
+ 4e−Nu

2/(2βK2
uK

2
v ).

By Proposition 14 we have A ≤ ∆
2σ2

uK
2
u
m2 + αβK2

vε deterministically over u∗ and v∗. Now it

remains to control Eu∗,v∗
[
e−NB

]
.

Lemma 17 We have Eu∗,v∗
[
e−NB

]
≤ 2e−N Eu∗,v∗ [B].

Moreover, observe that

Eu∗,v∗ [B] =
1

N
E log

∫
e−H(u,v)dρ(u,v)

=
1

N
EPβ logL(Y ;β)

=
1

N
EP0 L(Y ;β) logL(Y ;β) ≥ 0.
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Positivity is obtained by Jensen’s inequality and convexity of x 7→ x log x. In view of the above,
Lemma 17 means that the random variable B is “essentially” positive. Therefore,

E
〈
1{Ru

1,∗ ∈ [m,m+ ε)}
〉
≤ 2eN(δ+2u) + 4e−Nu

2/(2βK2
uK

2
v ),

where δ = ∆
2σ2

uK
2
u
m2+αβK2

vε. We let u = −δ/3 ≥ 0, andm = ε′+lε. Since ∆ < 0, ∆m2 ≤ ∆ε′2.

Now we let ε = − ∆
4αβσ2

uK
2
uK

2
v
ε′2 so that δ ≤ 3∆

4σ2
uK

2
u
ε′2 < 0.

Proof of Lemma 17. We abbreviate Eu∗,v∗ by E. We have

E
[
eN(E[B]−B)

]
=

∫ +∞

−∞
et Pr (N(E[B]−B) ≥ t) dt ≤ 1 +

∫ +∞

0
et Pr (N(E[B]−B) ≥ t) dt.

Now we bound the lower tail probability. The r.v. B, seen as a function of the vector [u∗|v∗] ∈
RN+M is jointly convex (the Hessian can be easily shown to be positive semi-definite), and Lips-

chitz with constant βKuKv

√
αK2

u+α2K2
v

N with respect to the `2 norm. Under the above conditions, a
bound on the lower tail of deviation ofB is available; this is (one side of) Talagrand’s inequality (see
Boucheron et al., 2013, Theorem 7.12). Therefore, we have for all t ≥ 0

Pr (B − E[B] ≤ −t) ≤ e−Nt2/2K2
,

where K2 = αβ2K2
uK

2
v(K2

u + αK2
v). Thus,

E
[
eN(E[B]−B)

]
≤ 1 +

∫ +∞

0
ete−t

2/(2NK2)dt

= 1 +K
√
NeNK

2/2

∫ +∞

K
√
N
e−t

2/2dt

≤ 2.

The last inequality is a restatement of the fact Pr(g ≥ t) ≤ e−t
2/2

√
2πt

where g ∼ N (0, 1). �

D.4. Convergence of the fourth moment

In this section we prove that for all α, β such that αβ2σ2
uσ

2
vK

2
uK

2
v < 1, we have

E
〈
(Ru

1,2)4
〉
∨ E

〈
(Rv

1,2)4
〉
≤ K(α, β)

N2
.

We proceed as follows. Let

M = max
{
E
〈
(Ru

1,2)4
〉
,E
〈
(Rv

1,2)4
〉}
.

We prove that for ε > 0, the following self-boundedness properties hold:

E
〈
(Ru

1,2)4
〉
≤ αβ2 E

〈
(Ru

1,2)4
〉

+KεM + δ, (20)

E
〈
(Rv

1,2)4
〉
≤ αβ2 E

〈
(Rv

1,2)4
〉

+KεM + δ, (21)
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where δ ≤ K/N2 + K/ε2e−c(ε)N . This implies the desired result by letting ε be sufficiently small
(e.g., ε = (1−αβ2)/2). We prove (20) and (21) using the cavity method, i.e. by isolating the effect
of the last variables uN and vM , one at a time. We prove (20) in full detail, then briefly highlight
how (21) is obtained in a similar way.

By symmetry between the u variables, we have

E
〈
(Ru

1,∗)
4
〉

= E
〈
u

(1)
N u∗N (Ru

1,∗)
3
〉

= E
〈
u

(1)
N u∗N

(
Ru−

1,∗ +
1

N
u

(1)
N u∗N

)3
〉
.

Expanding the term
(
Ru−

1,∗ + 1
N u

(1)
N u∗N

)3 we obtain

E
〈
(Ru

1,∗)
4
〉
≤ E

〈
u

(1)
N u∗N (Ru−

1,∗)
3
〉

+
K4
u

N
E
〈

(Ru−
1,∗)

2
〉

+
K6
u

N2
E
〈∣∣Ru−

1,∗
∣∣〉+

K8
u

N3
. (22)

We have already proved convergence of the second moment (Proposition 13), hence E〈(Ru−
1,∗)

2〉 ≤
K/N and E〈|Ru−

1,∗ |〉 ≤ K/
√
N . Now we need to control the leading term involving (Ru−

1,∗)
3. The

next proposition shows that this quantity can be related back to (Ru
1,∗)

4, plus additional higher-order
terms. This is is achieved through the cavity method.

Proposition 18 For α, β ≥ 0, there exists a constant K = K(α, β,Ku,Kv) > 0 such that

E
〈
u

(1)
N u∗N (Ru−

1,∗)
3
〉

= β E
〈
(Ru

1,∗)
3Rv

1,∗
〉

+ δ1, (23)

where
|δ1| ≤ K

∑
a,b,c,d

E
〈∣∣∣(Ru−

1,∗)
3Rv

a,bR
v
c,d

∣∣∣〉 .
Moreover,

E
〈
(Ru

1,∗)
3Rv

1,∗
〉

= αβ E
〈
(Ru

1,∗)
4
〉

+ δ2, (24)

where
|δ2| ≤ K

∑
a,b,c,d

E
〈∣∣(Ru

1,∗)
3Ru

a,bR
u
c,d

∣∣〉 .
From Proposition 18 we deduce

E
〈
u

(1)
N u∗N (Ru−

1,∗)
3
〉

= αβ2 E
〈
(Ru

1,∗)
4
〉

+ δ,

where δ = δ1 + δ2. Plugging into (22), we obtain

E
〈
(Ru

1,∗)
4
〉
≤ αβ2 E

〈
(Ru

1,∗)
4
〉

+
K

N2
+ δ.

Now we need to control the error term δ, which involves monomials of degree 5 in the overlaps
Ru and Rv. This is where the a priori bound on the convergence of the overlaps, Proposition 16, is
useful. Since the overlaps are bounded, we can write for any ε > 0,

E
〈∣∣(Ru

1,∗)
3Rv

a,bR
v
c,d

∣∣〉 ≤ εE 〈∣∣(Ru
1,∗)

3Rv
a,b

∣∣〉+K6
uK

4
v E
〈
1{
∣∣Rv

c,d

∣∣ ≥ ε}〉
= εE

〈∣∣(Ru
1,∗)

3Rv
a,b

∣∣〉+K6
uK

4
v E
〈
1{
∣∣Rv

1,∗
∣∣ ≥ ε}〉 ,
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where the last line is a consequence of the Nishimori property. Now we use Hölder’s inequality on
the first term:

E
〈∣∣(Ru

1,∗)
3Rv

a,b

∣∣〉 ≤ (E 〈∣∣(Ru
1,∗)

4
∣∣〉)3/4 (E 〈∣∣(Rv

a,b

∣∣)4
〉)1/4

=
(
E
〈∣∣(Ru

1,∗)
4
∣∣〉)3/4 (E 〈∣∣(Rv

1,∗
∣∣)4
〉)1/4

≤M.

Using Proposition 16, we have E〈1{|Rv
1,∗| ≥ ε}〉 ≤ Ke−cN/ε2. Therefore,

|δ1| ≤ KεM +
K

ε2
e−cN .

It is clear that we can use the same argument to bound δ2, so we end up with

E
〈
(Ru

1,∗)
4
〉
≤ αβ2 E

〈
(Ru

1,∗)
4
〉

+
K

N2
+KεM +

K

ε2
e−cN ,

thereby proving (20). To prove (21) we use the same approach. We write

E
〈
(Rv

1,∗)
4
〉

=
M

N
E
〈
v

(1)
M v∗M (Rv

1,∗)
3
〉

= αE
〈
v

(1)
M v∗M

(
Rv−

1,∗ +
1

N
v

(1)
M v∗M

)3
〉
.

Then use an equivalent of Proposition 18 in this case, which is obtained by flipping the role of the
u and v variables:

E
〈
v

(1)
N v∗N (Rv−

1,∗)
3
〉

= β E
〈
(Rv

1,∗)
3Ru

1,∗
〉

+ δ1,

and
E
〈
(Rv

1,∗)
3Ru

1,∗
〉

= β E
〈
(Rv

1,∗)
4
〉

+ δ2,

where δ1 and δ2 are similarly bounded by expectations of monomials of degree 5 in the overlaps Ru

and Rv. These two quantities are then bounded in exactly the same way.

Proof of Proposition 18. The proof uses two interpolations; the first one decouples the variable uN
from the rest of the system and allows to obtain (23), and the second one decouples the variable vM
and allows to obtain (24). We start with the former.

Proof of (23). Consider the interpolating Hamiltonian

−Ht(u,v) =

N−1∑
i=1

M∑
j=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+
M∑
j=1

√
βt

N
WNjuNvj +

βt

N
uNu

∗
Nvjv

∗
j −

βt

2N
u2
Nv

2
j ,

and let 〈·〉t be the associated Gibbs average and νt(·) = E〈·〉t. The idea is to approximate ν1(f)

where f ≡ u(1)
N u∗N (Ru−

1,∗)
3 by ν0(f)+ν ′0(f). Of course one then has to control the second derivative,

as dictated by the Taylor approximation∣∣ν1(f)− ν0(f)− ν ′0(f)
∣∣ ≤ sup

0≤t≤1

∣∣ν ′′t (f)
∣∣ . (25)
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We see that at time t = 0, the variables uN and u∗N decouple the Hamiltonian, so

ν0(u
(1)
N u∗N (Ru−

1,∗)
3) = E[uN ]E[u∗N ]ν0((Ru−

1,∗)
3) = 0. (26)

On the other hand, by applying Lemma 11 with n = 1, we see that ν ′0(u
(1)
N u∗N (Ru−

1,∗)
3) is a sum of

a few terms of the form
ν0

(
u

(1)
N u∗Nu

(a)
N u

(b)
N (Ru−

1,∗)
3Rv

a,b

)
.

Since Pu has zero mean, all terms in which a variable u(a)
N (for any a) appears with degree 1 vanish.

We are thus left with one term where a = 1, b = ∗, and we get

ν ′0(u
(1)
N u∗N (Ru−

1,∗)
3) = β E[(u

(1)
N )2]E[(u∗N )2]ν0((Ru−

1,∗)
3Rv

1,∗) = βν0((Ru−
1,∗)

3Rv
1,∗). (27)

Moreover, we see that ν0((Ru−
1,∗)

3Rv
1,∗) = ν0((Ru

1,∗)
3Rv

1,∗) since the last variable uN has no con-
tribution under ν0. Now we are tempted to replace the average at time t = 0 by an average at time
t = 1 in the last quantity. We use Lemmas 11 and 12 to justify this. Indeed these lemmas and
boundedness of the variables uN imply∣∣ν0((Ru

1,∗)
3Rv

1,∗)− ν1((Ru
1,∗)

3Rv
1,∗)
∣∣ ≤ K(α, β)

∑
a,b

ν(
∣∣(Ru

1,∗)
3Rv

1,∗R
v
a,b)
∣∣), (28)

where (a, b) ∈ {(1, 2), (1, ∗), (2, ∗), (2, 3)}. Now we control the second derivative supt ν
′′
t (·). In

view of Lemma 11, we see that taking two derivative of νt(u
(1)
N u∗N (Ru−

1,∗)
3) creates terms of the

form
νt

(
u

(1)
N u∗Nu

(a)
N u

(b)
N u

(c)
N u

(d)
N (Ru−

1,∗)
3Rv

a,bR
v
c,d

)
,

with a larger (but finite) set of combinations (a, b, c, d). We use Lemma 12 to replace νt by ν1 and
use boundedness of variables uN to obtain the bound∣∣∣∣ sup

0≤t≤1
ν ′′t

(
u

(1)
N u∗N (Ru−

1,∗)
3)
)∣∣∣∣ ≤ K(α, β)

∑
a,b,c,d

ν
(∣∣∣(Ru−

1,∗)
3Rv

a,bR
v
c,d

∣∣∣). (29)

Now putting the bounds and estimates (25), (26), (27), (28), and (29), we obtain the desired
bound (23):∣∣∣ν(u(1)

N u∗N (Ru−
1,∗)

3
)
− βν((Ru

1,∗)
3Rv

1,∗)
∣∣∣ ≤ K(α, β)

∑
a,b,c,d

ν
(∣∣∣(Ru−

1,∗)
3Rv

a,bR
v
c,d

∣∣∣).
Proof of (24). By symmetry of the v variables we have

E
〈
(Ru

1,∗)
3Rv

1,∗
〉

=
M

N
E
〈

(Ru
1,∗)

3v
(1)
M v∗M

〉
.

Now we apply the same machinery. Consider the interpolating Hamiltonian

−Ht(u,v) =
M−1∑
j=1

N∑
i=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+

N∑
i=1

√
βt

N
WiMuivM +

βt

N
uiu
∗
i vMv

∗
M −

βt

2N
u2
i v

2
M ,
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and let 〈·〉t be the associated Gibbs average and νt(·) = E〈·〉t. The exact same argument goes
through with the roles of u and v flipped. For instance, when one takes time derivatives, terms of
the form v

(a)
M v

(b)
M Ru

a,b arise from the Hamiltonian, and one sees that

ν ′0
(
(Ru

1,∗)
3v

(1)
M v∗M

)
= βν0

(
(Ru

1,∗)
4
)
.

Thus we similarly obtain∣∣∣ν((Ru
1,∗)

3v
(1)
M v∗M

)
− βν

(
(Ru

1,∗)
4
)∣∣∣ ≤ K(α, β)

∑
a,b,c,d

ν
(∣∣∣(Ru

1,∗)
3Ru

a,bR
u
c,d

∣∣∣).
�
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