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Abstract
We study the sample complexity of learning neural networks, by providing new bounds on their
Rademacher complexity assuming norm constraints on the parameter matrix of each layer. Com-
pared to previous work, these complexity bounds have improved dependence on the network depth,
and under some additional assumptions, are fully independent of the network size (both depth and
width). These results are derived using some novel techniques, which may be of independent inter-
est1.
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One of the major challenges involving neural networks is explaining their ability to generalize
well, even if they are very large and have the potential to overfit the training data (Neyshabur et al.,
2014; Zhang et al., 2016). Learning theory teaches us that this must be due to some inductive
bias, which constrains one to learn networks of specific configurations (either explicitly, e.g., via
regularization, or implicitly, via the algorithm used to train them). However, understanding the
nature of this inductive bias is still largely an open problem.

In our work, we consider whether it is possible to prove sample complexity bounds for neural
networks, which are not strongly dependent on the network size, under suitable norm constraints.
Such bounds exist for linear predictors (or equivalently, one-layer networks), but for networks with
more layers, existing results strongly depend on the number of layers, sometimes exponentially,
regardless of the norms of the parameter matrices (e.g. Anthony and Bartlett (2009); Neyshabur
et al. (2015); Bartlett et al. (2017); Neyshabur et al. (2017)). We make the following contributions:

• We show that the exponential depth dependence in Rademacher complexity-based analysis (e.g.
Neyshabur et al. (2015)) can be avoided by applying contraction to a slightly different object
than what has become standard since the work of Bartlett and Mendelson (2002). For exam-
ple, for networks with d layers, where each layer j has a parameter matrix with Frobenius
norm at most MF (j), and m i.i.d. training examples, one can prove a generalization bound

1. This paper is an extended abstract. The full version appears as arXiv preprint 1712.06541 v3
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. The technique can also be applied to other types of norm
constraints. For example, if we consider networks where the 1-norm of each row of the j-th pa-
rameter matrix is at most M(j), we attain a bound of O
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,
where n is the input dimension. Again, the dependence on d is polynomial and quite mild.

• We develop a generic technique to convert depth-dependent bounds to depth-independent bounds,
assuming some control over any Schatten norm of the parameter matrices (which includes, for
instance, the Frobenius norm and the trace norm as special cases). The key observation we utilize
is that the prediction function computed by such networks can be approximated by the composi-
tion of a shallow network and univariate Lipschitz functions. For example, again assuming that
the Frobenius norms of the layers are bounded by MF (1), . . . ,MF (d), we can further improve
the result above to
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where Γ is a lower bound on the product of the spectral norms of the parameter matrices (note
that Γ ≤

∏
j MF (j) always). Assuming that

∏
j MF (j) ≤ R for some R, this can be up-

per bounded by Õ(R
√

log(R/Γ)/
√
m), which to the best of our knowledge, is the first explicit

bound for standard neural networks which is fully size-independent, assuming only suitable norm
constraints. We also apply this technique to get a depth-independent version of the bound in
(Bartlett et al., 2017): Specifically, if we assume that the spectral norms satisfy ‖Wj‖ ≤ M(j)

for all j, and maxj
‖WT

j ‖2,1
‖Wj‖ ≤ L, then the bound in provided by Bartlett et al. (2017) becomes
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. In contrast, we show the following bound for any p ≥ 1 (ig-

noring some lower-order logarithmic factors):
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where Mp(j) is an upper bound on the Schatten p-norm of Wj , and Γ is a lower bound on∏d
j=1 ‖Wj‖. Again, by upper bounding the min by its first argument, we get a bound independent

of the depth d, assuming the norms are suitably constrained.

• We provide a lower bound, showing that for any p, the class of depth-d, width-h neural networks,
where each parameter matrix Wj has Schatten p-norm at most Mp(j), can have Rademacher
complexity of at least
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This somewhat improves on Bartlett et al. (2017, Theorem 3.6), which only showed such a result
for p = ∞ (i.e. with spectral norm control), and without the h term. For p = 2, it matches the
upper bound in Eq. (1) in terms of the norm dependencies and B. Moreover, it establishes that
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controlling the spectral norm alone (and indeed, any Schatten p-norm control with p > 2) cannot
lead to bounds independent of the size of the network.
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