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Abstract
High-dimensional settings, where the data dimension (d) far exceeds the number of observations (n),
are common in many statistical and machine learning applications. Methods based on `1-relaxation,
such as Lasso, are very popular for sparse recovery in these settings. Restricted Eigenvalue (RE)
condition is among the weakest, and hence the most general, condition in literature imposed on
the Gram matrix that guarantees nice statistical properties for the Lasso estimator. It is hence
natural to ask: what families of matrices satisfy the RE condition? Following a line of work in
this area (Raskutti et al., 2010; Rudelson and Zhou, 2013; Sivakumar et al., 2015; Oliveira, 2016;
Lecué and Mendelson, 2017), we construct a new broad ensemble of dependent random design
matrices that have an explicit RE bound. Our construction starts with a fixed (deterministic) matrix
X ∈ Rn×d satisfying a simple stable rank condition, and we show that a matrix drawn from the
distribution XΦ>Φ, where Φ ∈ Rm×d is a subgaussian random matrix, with high probability,
satisfies the RE condition. This construction allows incorporating a fixed matrix that has an easily
verifiable condition into the design process, and allows for generation of compressed design matrices
that have a lower storage requirement than a standard design matrix. We give two applications of this
construction to sparse linear regression problems, including one to a compressed sparse regression
setting where the regression algorithm only has access to a compressed representation of a fixed
design matrix X .

1. Introduction

A high dimensional setting, where the number of features (d) is much larger than the number of
observations (n) appears commonly in statistics and signal processing, for example, in regression,
covariance selection on Gaussian graphical models, signal reconstruction, and sparse approximation.
Consider a simple setting where we try to recover θ?, given (M,y), satisfying the following linear
model:

y = Mθ? + w. (1)

Here y ∈ Rn is the vector of noisy observations, M ∈ Rn×d is the design matrix, and w ∈ Rn is an
unknown noise vector. In the setting of d� n, the model is unidentifiable and it is not meaningful
to estimate θ? ∈ Rd. However, many machine learning and statistical applications, exhibit special
structure that can lead to an identifiable model. In particular, in many settings, the vector θ? is sparse.
Given such a problem, the most direct approach would be to seek an exact sparse minimizer of the
∗ Partially supported by NSF grant, DMS-1464514.
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least-squares cost, ‖y−Mθ‖2, thereby obtaining an `0-based estimator. However, since this problem
is non-convex, a standard approach is to replace the `0-constraint with its `1-norm which is the basis
for methods such as Lasso (Tibshirani, 1996) and Dantzig selector (Candes et al., 2007). There
is now a well-developed theory of what conditions on the design matrix M are needed for these
`1-based relaxations to succeed. The general idea is that M needs to behave sufficiently nicely in a
sense that it satisfies certain incoherence conditions. One popular notion of incoherence is Restricted
Isometry Property (RIP) that states for all k-sparse sets T ⊂ {1, . . . , d} (|T | = k), the matrix M
restricted to the columns from T acts as an almost isometry (Candes and Tao, 2005). In the past
decade, few variants of the RIP notion for exact and approximate recovery of θ?, under the noiseless
and noisy setting, have also been proposed (we refer to reader to the books by (Eldar and Kutyniok,
2012; Hastie et al., 2015) for more details).

For the Lasso and Dantzig selector, Bickel et al. (2009) formulated the restricted eigenvalue (RE)
condition and showed that it is among the weakest,1 and hence the most general, condition imposed
on the Gram matrix that guarantees meaningful recovery. Informally, the RE condition on a matrixM
involves lower bounds on ‖Mθ‖ that hold uniformly over an appropriately defined subset of sparse
vectors (see Definition 1 for a formal statement). A natural question is then: for what ensembles of
design matrices does the restricted eigenvalue condition hold (say, with high probability)? Standard
constructions satisfying the RE condition are based on i.i.d. random matrices, independent draws
from a set of uncorrelated basis functions, additive combinatorics, or coding-theoretic techniques
(see, e.g., (Mendelson et al., 2008; Adamczak et al., 2011; Rudelson and Vershynin, 2008; Bourgain
et al., 2011; Cheraghchi, 2011) and references therein). While these constructions are well-suited
for certain compressive sensing tasks, where we have control over the design matrix, it may not
be appropriate for statistical inference problems such as sparse linear regression, where the design
matrix is not under control of the “experimenter”. For example, it is common that the different
columns (covariates) of the design matrix are correlated with one other, and in practice `1-norm
methods such as Lasso seem to perform well even in these settings. This has motivated recent work
in understanding RE properties for a more realistic class of random design matrices (Raskutti et al.,
2010; Rudelson and Zhou, 2013; Sivakumar et al., 2015; Oliveira, 2016; Lecué and Mendelson,
2017). Our paper continues this line of work.

We start with this simple question: can we incorporate a fixed (deterministic) matrix while
constructing a family of matrices satisfying the RE condition? In this paper, we answer this question
in affirmative by presenting a construction that starts with any deterministic matrix X ∈ Rn×d,
satisfying a very mild easy to check condition, and generates a distribution of matrices centered at X ,
such that a matrix drawn from this distribution with high probability satisfies the RE condition. More
formally, we show that given X , the random matrix XΦ>Φ, where Φ ∈ Rm×d is a i.i.d. subgaussian
random matrix, satisfies the RE condition with high probability.2 All we need is that the stable rank
of X is not “too small”. Stable rank of a matrix X (denoted by sr(X)), defined as the squared ratio
of Frobenius and spectral norms of X , is a commonly used robust surrogate to usual matrix rank in
linear algebra. We start with an informal statement of our main result which shows, that under some
mild conditions on X , with high probability XΦ>Φ satisfies the restricted eigenvalue property with
a parameter value of ‖X‖2F /nmk.

1. In particular (Bickel et al., 2009) show that the RE condition is a relaxation of the RIP condition under suitable choices
of parameters involved in both of them.

2. We overload notation and use XΦ>Φ to represent both a random sample and its distribution.
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Informal Theorem [See Theorem 5, Corollary 7] Let X be a fixed n× d matrix with stable rank
greater than m. Let Ψ be an m× d subgaussian matrix with i.i.d. entries and let Φ = Ψ/

√
m, then

for any k such that m & k2, with high probability,

inf
S⊂[d],|S|=k,θ∈C(S)

‖XΦ>Φθ‖2

n‖θ‖2
≥
‖X‖2F
nmk

, (2)

where C(S) is the set of vectors θ ∈ Rd that satisfy the cone constraint, C(S) = {θ : ‖θSco‖1 ≤
3‖θS‖1} and θS , θSco represents the subvector of θ confined to coordinates S and {1, . . . , d} \ S.

The stable rank is independent of the coordinate system, unlike RE which is tied to a concrete
coordinate structure. The randomness of Φ is what makes the required condition on X coordinate
independent. The above proof is challenging because applying standard concentration tools directly
do not give strong enough probability estimates on this quantity for a fixed θ to successfully apply an
ε-net argument. To overcome this problem, we develop an orthogonal projection idea that allows us
to decouple dependencies and reduce the problem to a state that is amenable to an application of an
ε-net argument. Throughout the proof, we rely on the Hanson-Wright inequality and several of its
consequences.

Some Key Features of this Construction. We now note some interesting features of the family
of random matrices generated by our construction. Firstly, observe that the entries in a matrix
Z = XΦ>Φ are highly correlated with E[Z] = X . Given any matrix X , its stable rank can be
computed easily. This is an important advantage while designing RE matrices, as this makes the
construction process verifiable, i.e., with high probability we can generate a matrix that satisfies
an explicit restricted eigenvalue parameter bound. Note that in general, checking whether a matrix
satisfies the RE condition is a NP-hard problem (Dobriban and Fan, 2016). To date, the main routes
for constructing design matrices with an explicit restricted eigenvalue bound have been via taking
i.i.d. random ensembles (under different moment or tail assumptions) or constructions through
coding-theoretic techniques (such as expander codes (De Castro, 2014)), both of which generate
family of matrices whose assumptions are not always reasonable for machine learning applications.
To the best of our knowledge, this is the first construction of a very broad family of (correlated)
random matrices that starts with an easy to check condition on the deterministic core. Previous
constructions of other such broad family of correlated random designs, such as (Raskutti et al.,
2010; Rudelson and Zhou, 2013), require the deterministic matrix to also satisfy some suitable RE
condition (more discussion in Section 1.1), thus running into the above mentioned verifiability issues.

An additional salient feature is that the matrix Z can be stored using onlyO(m(n+d)) = O(md)
words of memory as the factorization pair (XΦ>,Φ). This means that compared to a standard n× d
design matrix which needs O(nd) words of memory (with n generally being much greater than
m), the design matrices coming out of this construction have a “compressed” representation. This
property is useful when working with large design matrices in presence of memory constraints.

Applications to Sparse Linear Regression. We will give two applications of this result in sparse
linear regression. Consider the linear regression model in (1). A popular approach for solving a
(traditional) sparse linear regression problem is the Lasso technique of `1-penalized regression. Lasso
minimizes the usual mean squared error loss penalized with (a multiple of) the `1-norm of θ. The
consistency properties of the Lasso estimator under various measurements of performance (such as
prediction error, parameter error, support recovery) are now well-understood, see e.g., (Bickel et al.,
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2009; Wainwright, 2009). We consider the following Lasso problem, defined on the pair (Z,y),
where Z = XΦ>Φ.

θcomp ∈ argminθ∈Rd
1

n
‖y − Zθ‖2 + λ‖θ‖1 = argminθ∈Rd

1

n
(yi − 〈Φxi,Φθ〉)2 + λ‖θ‖1.

For brevity, in the following discussion, we make some simplifying assumptions and omit dependence
on all but key variables. The ith row in X (x>i ) represent the covariates for the ith observation and
y = (y1, . . . , yn). The results stated below all are high probability bounds.

(1) Parameter bound with design matrix Z. Our first application is for the linear model y = Zθ? +
w. In this setting, we have a random design matrix. Here, the RE result on Z leads to a parameter
error bound: ‖θcomp−θ?‖ = O(

√
mk3/2/‖X‖F ), assuming w is an i.i.d. subgaussian noise vector

(see Proposition 12). While this result follows from a simple instantiation of the standard Lasso
analysis framework, the result shows that there exists a new broad class of random design matrices
for which Lasso succeeds in getting a consistent estimate of θ? (when ‖X‖F = ω(

√
mk3/2)). A

similar analysis can also be carried for the Dantzig selector based on the results of (Bickel et al.,
2009) (omitted here).

(2) Sparse linear regression with compressed features. Our second application is a variant of sparse
linear regression. We start with a linear model y = Xθ? + w, where X is a fixed matrix and w is
an i.i.d. subgaussian noise vector (so in this case, we have fixed design X). However, we assume
that the regression algorithm has access to only (Φx1, y1), . . . , (Φxn, yn), which is the compressed
representation of the original covariate-response pairs (x1, y1), . . . , (xn, yn).3 Random projections
are a class of extremely popular technique for dimensionality reduction (compression), where
the original high-dimensional data is projected onto a lower-dimensional subspace using some
appropriately chosen random matrix Φ. A motivating scenario for this setting is as follows (see
the illustration in Figure 1). Consider a distributed data setting, where n devices each generating
its own covariate-response pair is communicating to a central server (cloud). If d is large then
communicating xi ∈ Rd is communication expensive. A natural scheme here is that the server
chooses and announces a single random projection matrix Φ, and every input point xi can be
compressed and sent as Φxi to the server. Such a scheme can be applied locally (i.e., on each xi
independent of the other), and reduces the overall communication by a factor of d/m.4 Now the
goal of the server is to solve the regression problem for the original linear model (y = Xθ? + w)
but from the available compressed representation. Firstly, since the xi’s are unavailable, it is a
priori unclear how sparse linear regression performs in this setting. Secondly, just with a stable rank
condition onX a parameter error bound on θ?, that requires a stronger RE like assumption (Raskutti
et al., 2011), is ruled out. In this fixed design setting, we investigate (in-sample) prediction error
bounds, and show that θcomp (which can be estimated from the compressed representation) satisfies
‖Xθcomp −Xθ?‖2/n = O(‖X‖2Fk3/2/nm) (see Proposition 13). In this case, our use of the RE
slightly differs from the standard use of RE in Lasso analysis. We first bound ‖Zθcomp − Zθ?‖

3. Note that given Φxi it is not possible to accurately infer xi without some strong (sparsity-like) assumptions on xi.
More discussion on this is provided in Section 3.2.

4. We ignore the cost of communicating Φ to devices, which can be achieved using various techniques such as one-to-all
broadcasting. In a practical implementation, Φ will be generated by a pseudorandom generator initialized by some
seed, so by just communicating the seed we can regenerate Φ at each device. Also, with some small degradation in the
parameters, the same Φ can be used in a situation where we have to repeatedly solve different sparse linear regression
problem instances.
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Figure 1: A distributed data setting, where n devices generating (x1, y1), . . . , (xn, yn) are sending
a compressed representation (Φx1, y1), . . . , (Φxn, yn) to the cloud server, which then
computes the regression parameter.

using the Lasso analysis framework, and then use the RE bound on Z to relate that to a bound on
‖Xθcomp −Xθ?‖.

1.1. Related Work

Restricted Eigenvalue Bound. Matrices that satisfy the restricted isometry (or restricted eigenvalue)
property have many interesting applications in high-dimensional statistics and compressed sensing.
However, there is no known way to generate them deterministically for a large range of sparsity
levels k (some of best constructions here include (Bourgain et al., 2011; Bandeira et al., 2017, 2016)),
and additionally as discussed above these constructions lead to family of matrices that are not always
reasonable for applications such as linear regression. Interestingly though, it is easy to generate large
matrices satisfying the RIP property (and therefore RE) for a wide range of sparsity levels through
i.i.d. random design. In statistics and machine learning, one common assumption is that the design
matrix is generated randomly by a mechanism which is not under control of the experimenter, and
these matrices generally have dependent entries. One may enquire whether such random ensembles
will typically satisfy restricted eigenvalue properties. This problem was first addressed for Gaussian
ensembles by (Raskutti et al., 2010) and then for subgaussian and bounded-coordinate ensembles
by (Rudelson and Zhou, 2013). In particular, these results have established RE bounds for random
matrices with subgaussian rows and non-trivial covariance structure, as well as random matrices with
independent rows and uniformly bounded entries. Recent papers (Sivakumar et al., 2015; Oliveira,
2016; Lecué and Mendelson, 2017) have developed variants of these bounds under different moment
or tail assumptions. The closest relation to our work is the result by (Rudelson and Zhou, 2013), who
showed that for a deterministic matrix X satisfying the RE condition, the matrix ΦX satisfies the RE
condition too (with a weaker RE parameter), where the rows of Φ are isotropic random vectors. Note
that, unlike the result in (Rudelson and Zhou, 2013), we have a simple polynomial time checkable
stable rank condition on our deterministic matrix X .
Applications to Sparse Linear Regression. Lasso, is the most widely studied scheme for sparse
linear regression. There has been a large and rapidly growing body of literature for Lasso and
its variants which include theoretical explorations of its behavior and computationally efficient
procedures for solving it. We refer the reader to the recent book by (Hastie et al., 2015) for a detailed
survey about developments here. For applications of our RE bound to sparse linear regression, we
draw on this rich literature studying theoretical properties of Lasso.

Zhou et al. (2009) considered sparse linear regression in a setting where the covariate matrix X is
pre-multiplied by a Gaussian random projection matrix to generate a reduced set of new datapoints in

5



KASIVISWANATHAN RUDELSON

d-dimensions. They provide a convergence analysis of the Lasso estimator built from this compressed
dataset. This setting is however different from ours, as we consider reducing the dimensionality of
each covariate vector. In a high-dimensional setting, with d� n, reducing the dimensionality seems
intuitively the more desirable way of achieving compression.

A recent area of research is that of distributed sparse linear regression where the dataset is
assumed to the distributed across multiple machines. (Lee et al., 2015) showed that if the data is “not
too” distributed, and for the random design case, average of individual Lasso estimators properly
debiased converges to θ? at almost the same rate as the centralized Lasso estimator. We are not aware
of a direct connection between this work and our setting.

There is also a long line of work in using Johnson-Lindenstrauss style transforms with linear
regression where the goal is to achieve computational efficiency (see the survey by Woodruff (2014)).
Additionally, with random projections and (non-sparse) linear regression, there is a line of work,
known as compressed linear regression (Maillard and Munos, 2009; Fard et al., 2012; Kabán, 2014),
where the goal is to output some ϑ̂ in the projected space (and not in the original Rd space) that
minimizes the expected excess prediction risk. Note that in general, lifting ϑ̂ to the original space
is not possible, as ϑ̂ may not lie close to a projection of a sparse vector in Rd. Since our goal is to
output θcomp in the original space and our focus is on sparse linear regression, the results from these
compressed linear regression papers are also not directly relevant for us.

1.2. Preliminaries

Notation. We denote [n] = {1, . . . , n}. For a set S ⊆ [d], Sco denotes its complement set. Vectors
are in column-wise fashion, denoted by boldface letters. For a vector v, v> denotes its transpose,
‖v‖p it’s `p-norm, and supp(v) its support. We use ej ∈ Rd to denote the standard basis vector with
jth entry set to 1. For a matrix M , ‖M‖ denotes its spectral norm which equals its largest singular
value, and ‖M‖F its Frobenius norm. Id represents the d× d identity matrix. For a vector x and set
of indices S, let xS be the vector formed by the entries in x whose indices are in S, and similarly,
XS is the matrix formed by columns of X whose indices are in S. The d-dimensional unit ball
in `p-norm centered at origin is denoted by Bd

p . The Euclidean sphere in Rd centered at origin is
denoted by Sd−1. We call a vector a ∈ Rd, k-sparse, if it has at most k non-zero entries. Denote by
Σk the set of all vectors a ∈ Bd

2 with support size at most k: Σk = {a ∈ Bd
2 : |supp(a)| ≤ k}.

Throughout this paper, we assume covariate-response pairs come from some domain X × Y
where X ⊂ Rd and Y ⊂ R. In Appendix A, we also review a few additional concepts related to
sparse linear regression, ε-nets, and subgaussian random variables.

RE and Sparse Linear Regression. In the following, we consider the linear model: y = Mθ? +w.
For a set S ⊂ [d], let us define a cone set C(S) as:

C(S) = {θ ∈ Rd : ‖θSco‖1 ≤ 3‖θS‖1}.

Restricted eigenvalue is a mild condition on the covariate matrix that is sufficient for estimating
θ? in a noisy linear model setup.5

5. Given that we observe only a noisy version of the product Mθ?, it is then difficult to distinguish θ? from other sparse
vectors. Thus, it is natural to impose a RE condition if the goal is to produce an estimate θ̃ such that ‖θ? − θ̃‖ is small.
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Definition 1 (Restricted Eigenvalue (Bickel et al., 2009)) A matrix M ∈ Rn×d satisfies the re-
stricted eigenvalue (RE) condition with parameter ξ if,

inf
S⊂[d],|S|=k,θ∈C(S)

‖Mθ‖2

n
≥ ξ‖θ‖2.

Restricted eigenvalue is in fact a special case of a general property of loss functions, known as the
restricted strong convexity, which imposes a type of strong convexity condition for some subset of
vectors (Negahban et al., 2012). We now state a well-known result in sparse linear regression that
provides a bound on the Lasso error, based on the linear observation model y = Mθ? + w.

Theorem 2 ((Bickel et al., 2009)) Let y = Mθ? + w for a noise vector w ∈ Rn and θ? is k-
sparse. Let λ ≥ 2‖M>w‖∞/n. Suppose M satisfies the restricted eigenvalue condition with
parameter ξ > 0, then any optimal minimizer, θ̃ ∈ argminθ∈Rd

1
n‖y −Mθ‖2 + λ‖θ‖1, satisfies:

‖θ̃ − θ?‖ ≤ 3
√
kλ/ξ.

Remark 3 [A Note on Assumptions] While the above RE condition is common for analyzing the
`2-error of the Lasso estimator, stronger conditions are used for achieving the stronger guarantee of
consistent support selection (Wainwright, 2009). These include mutual incoherence and minimum
eigenvalue conditions on M , and minimum signal value condition on θ?. These conditions are known
to be highly restrictive in practice (Tibshirani and Wasserman, 2015) and are not studied in this
paper.

2. Restricted Eigenvalue from Stable Rank

The main result of this paper is to show that the RE condition holds with high probability for systems
of random design matrices of a general nature. In particular, we consider design matrices of the
form: Z = XΦ>Φ, where X is a fixed matrix and Φ ∈ Rm×d is a subgaussian random matrix. Note
that the entries of Z are highly correlated. This construction provides a neat way of incorporating
a fixed matrix X into the design of a RE matrix, and also has the advantage that storing Z (as the
factorization pair (XΦ>,Φ)) takes only O(md) words of space, compared to storing a standard
design matrix which typically requires O(nd) words of space. In the next section, we will discuss
few applications of this result to sparse linear regression problems.

We start with the definition of stable rank (denoted by sr()) of a matrix X .

sr(X) = ‖X‖2F / ‖X‖
2 .

Stable rank cannot exceed the usual rank. The stable rank is a more robust notion than the usual rank
because it is largely unaffected by tiny singular values. In Appendix D we provide a detailed compar-
ison between these stable rank and restricted eigenvalue. Unsurprisingly, the picture that emerges is
that stable rank is in fact a less restrictive condition.6 Throughout this section, C,C1, c, c1, . . . denote
positive constants which may depend on the subgaussian norm of the entries of the involved matrices.

We will work with a slightly modified (and a more general) definition of restricted eigenvalue
that we state here.

6. In that a RE bound implies a non-trivial stable rank bound, whereas the other direction does not always hold.
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Definition 4 Let M be an n× d matrix, and let k < d, α > 0. Define

RE(M,k, α) = inf
‖Mz‖
‖zJ‖

,

where zJ is the coordinate projection of z to RJ , and the infimum is taken over all sets J ⊂ [d], |J | =
k and all z ∈ Rm \ {0} satisfying

‖zJco‖1 ≤ α ‖zJ‖1 .

Note that α = 3 in Definition 1. Also given RE(M,k, α), we can get a lower bound on ξ in
Definition 1 as ξ ≥ RE(M,k, 3)2/k. Our primary result in this section establishes a lower bound
on RE(XΦ>Φ, k, α). The proof assumes a stable rank condition on X that we define below. The
randomness of Φ makes the required condition onX coordinate independent, unlike the RE condition
which is tied to a concrete coordinate structure in Rd.

Theorem 5 Let m,n, d ∈ N, m ≤ n ≤ d, and let X be a fixed n× d matrix satisfying

Stable Rank Condition : 2 ≤ m ≤ sr(X)/2.

Let Ψ = (Ψij) be anm×d random matrix with independent entries such that E[Ψij ] = 0, E[Ψ2
ij ] = 1,

and ‖Ψij‖ψ2 is bounded. Let Φ = Ψ/
√
m. Let β ∈ (0, 1). Then for any k ∈ N, α > 0 such that

1 ≤ α
√
k ≤

√
cm

k log d+ log(2/β)

the matrix XΦ>Φ satisfies:

RE(XΦ>Φ, k, α) ≥
‖X‖F
32
√
m
, with probability at least 1− β.

Remark 6 An intuitive explanation why stable rank is the correct notion here is as follows. Firstly, if
rank(XΦ>Φ) ≤ rank(X) ≤ k, then RE does not hold for any XΦ>Φ. And it should be the stable
rank, because adding an infinitesimally small noise does not change anything. The fact that we have
the condition m � k2 and not m � k, as this observation would suggest, is due to the model we
considered, namely to the multiplication by Φ>Φ.

Corollary 7 Let X and Ψ be matrices satisfying the conditions in Theorem 5 with

1 ≤ 3
√
k ≤

√
cm

k log d+ log(2/β)
.

Let Φ = Ψ/
√
m. Then the matrix XΦ>Φ satisfies:

inf
S⊂[d],|S|=k,θ∈C(S)

‖XΦ>Φθ‖2

n
≥
‖X‖2F‖θ‖2

1024nmk
, with probability at least 1− β.

We start with a high-level description of the proof idea. In the next section, we describe the key
technical ingredients of the proof. The complete proof is presented in Appendix B. Let ej denote the
standard basis vector with jth entry set to 1.
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Idea of the Proof of Theorem 5. We now explain the idea behind the proof of the above theorem.
Take any J ⊂ [d], |J | = k and any y ∈ Sd−1 with supp(y) ⊆ J . We wish to show that with
overwhelming probability, any x ∈ Rd with supp(x) ⊆ Jco and ‖x‖1 ≤ α ‖y‖1 ≤ α

√
k satisfies∥∥∥XΨ>Ψ(y + x)

∥∥∥ ≥ r
for some r > 0. If the probability estimate is strong enough, we would be able to run an ε-net
argument over all such y and take the union bound over all J showing that RE(XΨ>Ψ, k, α) ≥ r/2.
The condition above requires checking infinitely many x. To make the problem tractable, let us
introduce an orthogonal projection Q : Rn → Rn which we discuss more about later. Assume that
QXΨ>Ψy 6= 0, and let u be the unit vector in the direction of QXΨ>Ψy 6= 0. Then∥∥∥XΨ>Ψ(y + x)

∥∥∥ ≥ ∥∥∥QXΨ>Ψ(y + x)
∥∥∥ ≥ u>QXΨ>Ψ(y + x)

=
∥∥∥QXΨ>Ψy

∥∥∥+ u>QXΨ>Ψx

The quantity above is affine in x, so it is minimized at one of the extreme points of the set {x ∈ Rd :
supp(x) ⊆ Jco, ‖x‖1 ≤ α

√
k}, i.e., at a vector ±α

√
kej , j ∈ Jco. This observation allows us to

pass from an infinite set of x’s to a finite set.
Next, we have to establish the concentration bounds on

∥∥QXΨ>Ψy
∥∥ and u>QXΨ>Ψej .

Notice that Ψy and Ψej are independent centered (mean 0) subgaussian vectors with the unit
variance of the coordinates. If these vectors were independent of the random matrix Ψ> as well,
we would have used the Hanson-Wright inequality to derive the necessary concentration. However,
this is obviously not the case. At this moment, the projection Q comes to the rescue. The idea is to
carefully construct the projection to take care of the dependencies.

2.1. Proof of Theorem 5: Technical Ingredients

In this section, we describe some of the key technical ingredients behind the proof of Theorem 5.
The complete proof is provided in Appendix B. Throughout the proof, we use the Hanson-Wright
inequality and its corollaries to get probabilistic estimates for norms of certain matrix products (that
we discuss in Appendix B.1).
Bounds for a Fixed Vector. Our first goal will be to investigate a special case of Theorem 5. In
particular, we investigate the RE condition in Definition 4 when restricted to vectors of the kind
z = ej + x for a fixed j where j /∈ supp(x) (Proposition 10). The proof is based on two technical
lemmas that use careful conditioning arguments along with the probabilistic inequalities that can be
derived from Hanson-Wright inequality. We use conv() to denote the convex hull of a set of vectors.
In the following discussion, B and R are fixed matrices and G is a random matrix.

The following lemma bounds the small ball probability of BG>g, for a fixed matrix B, random
matrix G, and a random vector g.

Lemma 8 LetB be a fixed n×dmatrix, letG = (Gij) be anm×d random matrix with independent
entries and let g = (g1, . . . , gm) ∈ Rm be a random vector with independent entries that satisfy:
E[Gij ] = E[gj ] = 0, E[G2

ij ] = E[g2
j ] = 1, and ‖Gij‖ψ2 , ‖gj‖ψ2 are bounded. Then

Pr

[∥∥∥BG>g∥∥∥ < 1

4

√
m ‖B‖F

]
≤ 8
(

exp
(
− c sr(B)

)
+ exp(−cm)

)
.

9
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The following lemma provides a large deviation bound for a certain product form.

Lemma 9 LetB be a fixed n×dmatrix, letG = (Gij) be anm×d random matrix with independent
entries and let g1 = (g11 , . . . , g1m) ∈ Rm and g2 = (g21 , . . . , g2m) ∈ Rm be random vectors with
independent entries that satisfy: E[Gij ] = E[glj ] = 0, E[G2

ij ] = E[g2
lj

] = 1, and ‖Gij‖ψ2 , ‖glj‖ψ2

are all bounded for l ∈ {1, 2}. Assume that m ≤ sr(B). Then for any t ∈
[
0,m ‖B‖2F

]
,

Pr
[
|g>1 GB>BG>g2| ≥ t

]
≤ 10 exp

(
−c t2

m ‖B‖4F

)
.

Using Lemmas 8 and 9, we are ready to prove the following proposition. The main idea here is
to introduce an orthogonal projection matrix which lets us decouple various dependencies that appear
across various quantities.

Proposition 10 Let R be a fixed n× d matrix, and let G = (Gi,j) be an m× d random matrix with
independent entries that satisfy: E[Gij ] = 0, E[G2

ij ] = 1, and ‖Gij‖ψ2 is bounded. Assume that

2 ≤ m ≤ sr(R)/2.

Then for any s ≥ 1,

Pr

[
∃x ∈ s · conv(±e2, . . . ,±ed),

∥∥∥RG>G(e1 + x)
∥∥∥ ≤ 1

8

√
m ‖R‖F

]
≤ 2d exp

(
−cm

s2

)
.

Finishing the Proof of Theorem 5 using a Net Argument. The next theorem is the main technical
step in proving Theorem 5. Invoking this theorem with appropriate parameters gives the proof of
Theorem 5. The proof of the following theorem is based on generating an orthogonal matrix to
reduce the general case to the special case discussed in Proposition 10, and then employing an ε-net
argument.

Theorem 11 Let X be a fixed n× d matrix satisfying,

2 ≤ m ≤ sr(X)/2.

Let Ψ = (Ψij) be anm×d random matrix with independent entries such that E[Ψij ] = 0, E[Ψ2
ij ] = 1,

and ‖Ψij‖ψ2 is bounded. Let β ∈ (0, 1), and let k ∈ N. Then for any s such that

1 ≤ s ≤
√

cm

k log d+ log(2/β)
,

Pr[∃I ⊂ [d] with |I| = k,∃y ∈ Sd−1 with supp(y) ⊆ I, ∃x ∈ s · conv(±ei, i /∈ I),∥∥∥XΨ>Ψ(y + x)
∥∥∥ ≤ 1

32

√
m ‖X‖F] ≤ β.

Note that the condition s ≥ 1 in the formulation of the theorem implicitly sets a lower bound on β
and an upper bound on k. We now have all the ingredients to complete the proof of Theorem 5.

10
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Proof [Proof of Theorem 5] Assume that the complement of the event described in Theorem 11
occurs. Namely, assume that

∀I ⊂ [d] with |I| = k, ∀y ∈ Sd−1 with supp(y) ⊆ I, ∀x ∈ s · conv(±ei, i /∈ I)∥∥∥XΨ>Ψ(y + x)
∥∥∥ ≥ 1

32

√
m ‖X‖F .

If s satisfies the condition of this theorem, then the event above occurs with probability at least 1− β.
Pick any I ⊂ [d] |I| = k and any z ∈ Rd \ {0} with

‖zIco‖1 ≤ α ‖zI‖1 .

Without loss of generality, we may assume that y = zI ∈ Sd−1. Then, ‖y‖1 ≤
√
k, and so

‖zIco‖1 ≤ α
√
k. Theorem 5 now follows from Theorem 11 applied with s = α

√
k and by plugging

Φ = Ψ/
√
m.

3. Applications to Sparse Linear Regression

We now discuss some applications of our RE bound to the setting of sparse linear regression. We
consider two different problems: (a) first one involves a standard regression setting with Z = XΦ>Φ
acting as a design matrix, and the goal is to estimate the sparse θ? from a noisy linear model of
observations (b) second one is a variant of sparse linear regression, where the algorithm has access
not to the individual covariates, but rather only to a randomly projected version of them, and the
goal is to minimize (in-sample) prediction error. Missing details from this section are collected in
Appendix C.

3.1. Application 1: Bounding the `2-error with Random Design Z = XΦ>Φ

Consider the linear model y = Zθ? + w, where w is an i.i.d. subgaussian noise. The following
proposition establishes a `2-error bound on estimating θ?, using the standard Lasso analysis frame-
work from Theorem 2. This result shows that `1-relaxations succeed in estimating θ? even for certain
dependent design matrices, partially justifying an observation commonly noticed in practice of Lasso
succeeding even when the entries of the design matrix has dependencies. We work with a Lasso
formulation defined on the pair (Z,y);

θcomp ∈ argminθ∈Rd
1

n
‖y − Zθ‖2 + λ‖θ‖1 = argminθ∈Rd

1

n
(yi − 〈Φxi,Φθ〉)2 + λ‖θ‖1. (3)

The following proposition states the convergence bound of θcomp to θ? under this linear model. The
probability in this case is over both the noise realization w and the randomness in Φ.

Proposition 12 Let X be a deterministic matrix and Φ be a random matrix satisfying the conditions
of Theorem 5. Consider the linear model y = XΦ>Φθ? + w where the entries of the noise vector
w = (w1, . . . , wn) are independent centered subgaussians with ‖wi‖ψ2 ≤ σ. Let K > 0 be any
constant, and let dm−K ≤ β < 1. Then θcomp ∈ argminθ∈Rd2 ‖y−XΦ>Φθ‖2/n+λ‖θ1‖ with λ =

Θ(σ ‖X‖F /n
√
m), satisfies with probability at least 1−β: ‖θcomp−θ?‖ = O

(
σ
√
mk3/2/‖X‖F

)
.

11
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3.2. Application 2: Sparse Linear Regression with Compressed Features

In this section, we use the results from Section 2 on a sparse linear regression in a model where the
regression algorithm only gets access to a compressed representation of the xi’s in the form of Φxi’s,
and not to xi’s.7 As discussed in Section 1, these compressed representations of the xi’s are easier
to communicate in a distributed data setting and also reduces the storage requirements as we work
with the compressed data. Consider the linear model y = Xθ? + w, where X is some deterministic
matrix and w is subgaussian noise. Note that this is a fixed design setting (unlike the application in
Section 3.1).

Since the linear model is y = Xθ?+w, and we only assume a rather weak stable rank assumption
onX , getting an error bound on θ? is ruled out because as shown by (Raskutti et al., 2011) a condition
closely related to restricted eigenvalue is needed for any parameter recovery method.8 Therefore,
in this section, we measure the performance in terms of minimizing mean-squared (in-sample)
prediction error. Given (Φx1, y1), . . . , (Φxn, yn), the goal is to output θ ∈ Rd that has a relatively
low prediction error ‖Xθ − Xθ?‖2/n. In a matrix-vector form, (Φx1, y1), . . . , (Φxn, yn) can be
represented as (XΦ>,y). Now in a traditional sparse linear regression setting (with access to
(x1, y1), . . . , (xn, yn)) this minimization can be performed without any assumptions on the design
matrix X (with faster convergence bounds possible under the RE assumption) (Bickel et al., 2009).
However, under the compressed setup, a priori it is unclear whether this seemingly simpler problem
can even be solved consistently.

A first idea given only Φxi’s will be to: (a) for all i, construct x̂i, an approximation to xi from Φxi,
(b) use the Lasso formulation on the resulting (x̂i, yi)’s. This idea, however, is problematic because
good reconstruction of xi’s from Φxi’s will require some strong (sparsity-like) assumptions on the
structure of the xi’s, that is generally untrue. Another idea will be to construct an estimator ϑ̂ ∈ Rm
in the projected space say by minimizing the squared loss between y and XΦ>ϑ (over ϑ ∈ Rm).
This minimization would correspond to a different linear model: y = XΦ>ϑ? + ŵ. Since the true
linear model is y = Xθ? + w, this would mean the new noise vector ŵ = (Xθ? −XΦ>ϑ?) + w is
no longer i.i.d. subgaussian. For bounding the prediction error (which in this case means bounding
the norm of the difference between XΦ>ϑ̂ and Xθ?) this could be problematic. Additionally, given
ϑ̂, lifting it to Rd is problematic as ϑ̂ may not be close to a projection of a sparse vector in Rd. We
overcome these hurdles by working with a Lasso formulation defined on the pair (Z = XΦ>Φ,y)
as in (3). Again define: θcomp ∈ argminθ∈Rd ‖y − XΦ>Φθ‖2/n + λ‖θ‖1. Our basic idea is to
establish a bound on ‖Zθcomp − Zθ?‖, with the error vector (θcomp − θ?) satisfying the cone set
condition, and then using the RE bound on Z to relate ‖Zθcomp − Zθ?‖ and ‖Xθcomp −Xθ?‖. We
get the following result in this compressed feature setting.

Proposition 13 9 Let X be a deterministic matrix and Φ be a Gaussian random matrix satisfying
the conditions of Theorem 5. Consider the linear model y = Xθ? + w where the entries of the
noise vector w = (w1, . . . , wn) are independent centered subgaussians with ‖wi‖ψ2 ≤ σ and
θ? ∈ Sd−1. Let K > 0 be any constant, and let dm−K ≤ β < 1. Then θcomp ∈ argminθ∈Bd2 ‖y −

7. Throughout this section, we will assume that Φ is known to the algorithm.
8. One simple illustration of why a stable rank condition on X is not enough for parameter recovery, is that sr(X) ≥ m

(for some m) does not rule Xθ? = 0, which means y = w implying y provides no information about θ?, making any
recovery of θ? impossible.

9. We assume that the algorithm has an estimate of ‖X‖F (a good upper bound suffices). This is easy achievable
in the distributed data setting described in Section 1 (Figure 1), as each device i in addition to (Φxi, yi) can also
communicate ‖xi‖ to the server.

12
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XΦ>Φθ‖2/n+ λ‖θ1‖ with λ = Θ(σ‖X‖F logm/n
√
m+ ‖X‖2F/nm), satisfies with probability

at least 1− β:

1

n
‖Xθcomp −Xθ?‖2 = O

(
σ‖X‖Fk3/2 logm

n
√
m

+
‖X‖2Fk3/2

nm

)
.

Remark 14 For small σ, the dominant term in the error bound in Proposition 13 is the ‖X‖2Fk3/2/nm
term. If we set, m = sr(X)/2, then ‖X‖2Fk3/2/nm = 2‖X‖2k3/2/n, and therefore in this case we
get a consistent prediction if ‖X‖ = o(

√
n/k3/4).
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Appendix A. Additional Preliminaries

Background on Sparse Linear Regression. If the linear model y = Mθ? + w, where M ∈ Rn×d
is high-dimensional in nature, meaning that the number of observations n is substantially smaller than
d, then it is easy to see that without further constraints on θ?, the statistical model y = Mθ?+w is not
identifiable. This is because (even when w = 0), there are many vectors θ? that are consistent with
the observations y and M . This identifiability concern may be eliminated by imposing some type of
sparsity assumption on the regression vector θ?. Typically, θ? is k-sparse for k � d. Disregarding
computational cost, the most direct approach to estimating a k-sparse θ in the linear regression model
would be solving a quadratic optimization problem with an `0-constraint:

θsparse ∈ argminθ∈Σk

1

n
‖y −Mθ‖2. (4)

Lasso Regression. Since (4) leads to a non-convex problem, a natural alternative is obtained by
replacing the `0-constraint with its tightest convex relaxation, the `1-norm. This leads to the popular
Lasso regression, defined as,

Lasso Regression (penalized form): θLasso ∈ argminθ∈Rd
1

n

n∑
i=1

‖y −Mθ‖2.+ λ‖θ‖1,

for some choice λ > 0.
The consistency properties of Lasso are well-understood. Under a variety of mild assumptions

on the instance, the Lasso estimator (θLasso) is known to converge to the sparse θ? in the `2-norm.
Under stronger assumptions (such as mutual incoherence, minimum eigenvalue, and minimum signal
condition) on the instance, it is also known that θLasso will have the same support as θ?. We refer the
reader to the recent book (Hastie et al., 2015) for a detailed survey of developments in this area.

Background on ε-Nets. Consider a subset T of Rd, and let ε > 0. A ε-net of T is a subset N ⊆ T
such that for every x ∈ T , there exists a y ∈ N such that ‖x− y‖ ≤ ε.

Proposition 15 (Volumetric Estimate) Let T be a subset of Bd
2 and let ε > 0. Then there exists

an ε-net N of T of cardinality at most (1 + 2/ε)d. For any ε ≤ 1, this can be simplified as
(1 + 2/ε)d ≤ (3/ε)d.
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Background on Subgaussian Random Variables. Subgaussian random variables are a wide class
of random variables, which contains in particular the standard normal, Bernoulli, and all bounded
random variables.

Definition 16 (Subgaussian Random Variable) We call a random variable x ∈ R subgaussian if
there exists a constant C > 0 if Pr[|x| > t] ≤ 2 exp(−t2/C2) for all t > 0.

Definition 17 (Norm of a Subgaussian Random Variable) The ψ2-norm of a subgaussian ran-
dom variable x ∈ R, denoted by ‖x‖ψ2 is: ‖x‖ψ2 = inf

{
t > 0 : E[exp(|x|2/t2)] ≤ 2

}
.

Note that the ψ2 condition on a scalar random variable x is equivalent to the subgaussian tail decay
of x.

Appendix B. Complete Proof of Theorem 5

In this section, we provide the complete proof of our RE bound for the random matrix XΦ>Φ. In
Section B.1, we use the Hanson-Wright theorem and its corollaries to get probabilistic estimates for
norms of certain matrix products. In Section B.2, we prove Theorem 5 for a fixed vector of a special
form. We finish the proof in Section B.3.

B.1. Hanson-Wright Preliminaries

We start by establishing probability estimates for the spectral and Frobenius norms for certain matrix
products. The results in this section form the basic building blocks that are used throughout the
proof. An important tool used here is the Hanson-Wright inequality and its several consequences.
Hanson-Wright inequality establishes the concentration of a quadratic form of independent centered
subgaussian random variables. An original (slightly weaker) version of this inequality was first
proved in (Hanson and Wright, 1971).

Theorem 18 (Hanson-Wright Inequality (Rudelson and Vershynin, 2013)) Let x = (x1, . . . , xn)
∈ Rn be a random vector with independent components xi which satisfy E[xi] = 0 and ‖xi‖ψ2 is
bounded. Let A be an n× n matrix. Then, for every t ≥ 0,

Pr
[∣∣∣x>Ax− E[x>Ax]

∣∣∣ > t
]
≤ 2 exp

(
− cmin

( t2

‖A‖2F
,
t

‖A‖

))
.

Besides the theorem itself, we need several corollaries.

Corollary 19 (Spectral Norm of the Product) Let B be a fixed n× d matrix, and let G = (Gij)
be an m × d random matrix with independent entries that satisfy: E[Gij ] = 0, E[G2

ij ] = 1, and
‖Gij‖ψ2 is bounded. Then for any s, t ≥ 1,

Pr
[∥∥∥BG>∥∥∥ > C(s ‖B‖F + t

√
m ‖B‖)

]
≤ 2 exp(−s2 sr(B)− t2m)

and

Pr

[∥∥∥BG>∥∥∥ < 1

2
‖B‖F

]
≤ 2 exp(−c sr(B)).
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Corollary 19 can be found in (Rudelson and Vershynin, 2013). Assuming that m ≤ sr(B), we can
rewrite the above inequalities as

Pr

[
1

2
‖B‖F <

∥∥∥BG>∥∥∥ < C ‖B‖F
]
≥ 1− 2 exp(−c sr(B)). (5)

Applying this corollary in the case m = 1, we obtain a small ball probability estimate for the image
of a subgaussian vector. The small ball probability bounds the probability ‖Bg‖ is small for a fixed
matrix B and a subgaussian vector g.

Corollary 20 (Concentration for the Norm of a Vector) Let B be a fixed n × d matrix, and let
g = (g1, . . . , gd) ∈ Rd be a random vector with independent entries that satisfy E[gj ] = 0, E[g2

j ] = 1,
and ‖gj‖ψ2 is bounded. Then

Pr

[
1

2
‖B‖F < ‖Bg‖ < C ‖B‖F

]
≥ 1− 2 exp(−c sr(B)).

Using this inequality, we can easily derive a small ball probability estimate for the Frobenius
norm.

Corollary 21 (Frobenius Norm of the Product) Let B be a fixed n× d matrix, and let G = (Gij)
be an m × d random matrix with independent entries that satisfy: E[Gij ] = 0, E[G2

ij ] = 1, and
‖Gij‖ψ2 is bounded. Then

Pr

[
1

2

√
m ‖B‖F <

∥∥∥BG>∥∥∥
F
< C
√
m ‖B‖F

]
≥ 1− 2 exp(−c sr(B)).

Proof Denote the rows of G by γ1, . . . , γm. Then,

∥∥∥BG>∥∥∥
F

=

 m∑
j=1

‖Bγj‖2
1/2

.

The right-hand side can be interpreted as the Euclidean norm of the image of the vector γ̃ ∈ Rdm
obtained by concatenation of the vectors γ1, . . . , γm under the nm × dm block-diagonal matrix

B̃ = diag(B, . . . , B). The result follows from the Corollary 20, since
∥∥∥B̃∥∥∥2

F
= m ‖B‖2F implying∥∥∥B̃∥∥∥

F
=
√
m ‖B‖F.

We will need a similar estimate for the Frobenius norm of the triple product of the form GHG>,
where H is a positive semidefinite matrix. Let tr() denote the trace of a matrix.

Corollary 22 (Frobenius norm of the Triple Product) Let H be a fixed d× d symmetric positive
semidefinite matrix, and let G = (Gij) be an m× d random matrix with independent entries that
satisfy: E[Gij ] = 0, E[G2

ij ] = 1, and ‖Gij‖ψ2 is bounded. If m ≤ tr(H)/ ‖H‖, then

Pr
[∥∥∥GHG>∥∥∥

F
≥ C
√
m · tr(H)

]
≤ 4 exp

(
−ctr(H)

‖H‖

)
.
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Proof Let H1/2 be the square root of the matrix H . Since tr(H) =
∥∥H1/2

∥∥2

F
, the assumption of

the corollary reads m ≤ sr(H1/2). By Corollary 20,

Pr
[∥∥∥H1/2G>

∥∥∥ ≥ C ∥∥∥H1/2
∥∥∥

F

]
≤ 2 exp(−c sr(H1/2)).

Similarly, Corollary 21 implies

Pr[
∥∥∥H1/2G>

∥∥∥
F
≥ C
√
m
∥∥∥H1/2

∥∥∥
F
] ≤ 2 exp(−c sr(H1/2)).

As
∥∥GHG>∥∥

F
≤
∥∥H1/2G>

∥∥
F
·
∥∥H1/2G>

∥∥, we have

Pr

[∥∥∥GHG>∥∥∥
F
≥ C
√
m ·

∥∥∥H1/2
∥∥∥2

F

]
≤ 4 exp(−c sr(H1/2)) = 4 exp

(
−ctr(H)

‖H‖

)
,

which completes the proof.

B.2. Bounds for a Fixed Vector

In this section, our goal will be to investigate a special case of Theorem 5. In particular, we investigate
the RE condition in Definition 4 when restricted to vectors of the kind z = ej + x for a fixed j
where j /∈ supp(x) (Proposition 25). The proof is based on two technical lemmas that use careful
conditioning arguments along with the probabilistic inequalities established in the previous section.
We use conv() and span() to denote the convex hull and span of a set of vectors. We use Ker() to
denote the kernel of a matrix.

The following lemma bounds the small ball probability of BG>g, for a fixed matrix B, random
matrix G, and a random vector g.

Lemma 23 (Restated Lemma 8) Let B be a fixed n × d matrix, let G = (Gij) be an m × d
random matrix with independent entries and let g = (g1, . . . , gm) ∈ Rm be a random vector with
independent entries that satisfy: E[Gij ] = E[gj ] = 0, E[G2

ij ] = E[g2
j ] = 1, and ‖Gij‖ψ2 , ‖gj‖ψ2 are

bounded. Then

Pr

[∥∥∥BG>g∥∥∥ < 1

4

√
m ‖B‖F

]
≤ 8
(

exp
(
− c sr(B)

)
+ exp(−cm)

)
.

Proof Conditioning on G and applying Corollary 20, we obtain

Pr

[∥∥∥BG>g∥∥∥ ≤ 1

2

∥∥∥BG>∥∥∥
F
| G
]
≤ 2 exp(−c sr(BG>)).

Define the events ΩF and Ωop as in Corollary 22:

ΩF =

{
G :

∥∥∥BG>∥∥∥
F
≥ 1

2

√
m ‖B‖F

}
Ωop =

{
G :

∥∥∥BG>∥∥∥ ≤ C(‖B‖F +
√
m ‖B‖)

}

18
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Let Ωco
F and Ωco

op denote the complement of these events respectively. Then by Corollaries 21 and 19,

Pr

[∥∥∥BG>g∥∥∥ ≤ 1

4

√
m ‖B‖F

]
≤ Pr

[∥∥∥BG>g∥∥∥ ≤ 1

2

∥∥∥BG>∥∥∥
F
| G ∈ ΩF ∩ Ωop

]
+ Pr [Ωco

F ] + Pr
[
Ωco
op

]
≤ 2 exp

(
−c

m ‖B‖2F
‖B‖2F +m ‖B‖2

)
+ 4 exp(−c sr(B))

≤ 8
(

exp
(
− c sr(B)

)
+ exp(−cm)

)
.

The following lemma provides a large deviation bound for a certain product form.

Lemma 24 (Restated Lemma 9) LetB be a fixed n×d matrix, letG = (Gij) be anm×d random
matrix with independent entries and let g1 = (g11 , . . . , g1m) ∈ Rm and g2 = (g21 , . . . , g2m) ∈ Rm
be random vectors with independent entries that satisfy: E[Gij ] = E[glj ] = 0, E[G2

ij ] = E[g2
lj

] = 1,
and ‖Gij‖ψ2 , ‖glj‖ψ2 are all bounded for l ∈ {1, 2}. Assume that m ≤ sr(B). Then for any

t ∈
[
0,m ‖B‖2F

]
,

Pr
[
|g>1 GB>BG>g2| ≥ t

]
≤ 10 exp

(
−c t2

m ‖B‖4F

)
.

Proof Define the vector g ∈ R2m and the 2m× 2m matrix Γ by

g =

(
g1

g2

)
, Γ =

(
0 GB>BG>

GB>BG> 0

)
.

Condition on G. By Theorem 18, for any t ≥ 0,

Pr
[
|g>Γg| > t

]
≤ 2 exp

[
− cmin

( t2

‖Γ‖2F
,
t

‖Γ‖

)]
.

Note that ‖Γ‖ =
∥∥GB>BG>∥∥ =

∥∥BG>∥∥2. Let ΩF and Ωop be the events defined by

ΩF =
{
G :

∥∥GB>BG>∥∥
F
≤ C

(
m
∥∥B>B∥∥

F
+
√
m · tr(B>B)

)}
,

Ωop =
{
G : 1

4 ‖B‖
2
F ≤

∥∥GB>BG>∥∥ ≤ C ‖B‖2F} .
Again, let Ωco

F and Ωco
op denote the complement events. For any G ∈ ΩF,

‖Γ‖2F ≤ Cm · tr(B
>B)2 = C ′m ‖B‖4F .

Notice that
tr(B>B)

‖B>B‖
= sr(B).
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Finally, combining this with Corollary 22, and (5), we obtain

Pr
[
|g>1 GB>BG>g2| ≥ t

]
≤ 2 exp

[
− cmin

( t2

m ‖B‖4F
,

t

‖B‖2F

)]
+ Pr [Ωco

F ] + Pr
[
Ωco
op

]
≤ 4 exp

(
−c t2

m ‖B‖4F

)
+ 6 exp(−c sr(B))

for any t ∈
[
0,m ‖B‖2F

]
. Since m ≤ sr(B), the first term in the right-hand side dominates the

second one, and the proof is complete.

Using Lemmas 23 and 24, we are ready to prove the following proposition. The main idea here
is to introduce an orthogonal projection matrix which lets us decouple various dependencies that
appear across various quantities.

Proposition 25 (Restated Proposition 10) Let R be a fixed n×d matrix, and let G = (Gi,j) be an
m× d random matrix with independent entries that satisfy: E[Gij ] = 0, E[G2

ij ] = 1, and ‖Gij‖ψ2

is bounded. Assume that
2 ≤ m ≤ sr(R)/2.

Then for any s ≥ 1,

Pr

[
∃x ∈ s · conv(±e2, . . . ,±ed),

∥∥∥RG>G(e1 + x)
∥∥∥ ≤ 1

8

√
m ‖R‖F

]
≤ 2d exp

(
−cm

s2

)
.

Proof Let P1 be the orthogonal projection in Rn with Ker(P1) = span(Re1), where span() denote
the span. Assume that P1RG

>Ge1 6= 0 and set

u =
P1RG

>Ge1

‖P1RG>Ge1‖
.

Then ∥∥∥RG>G(e1 + x)
∥∥∥ ≥ ∥∥∥P1RG

>G(e1 + x)
∥∥∥ ≥ ∥∥∥P1RG

>Ge1

∥∥∥− u>P1RG
>Gx. (6)

The minimal value of this expression over x ∈ s · conv(±e2, . . . ,±ed) is attained at the extreme
points of this set. Consider x = se2 since all other extreme points are treated the same way. Since
sr(R) > 4 and by the interlacing, we have

‖P1R‖2F ≥ ‖R‖
2
F − ‖R‖

2 ≥ ‖R‖2F /2

and so, sr(P1R) ≥ (1/2) sr(R) (as ‖P1R‖ = ‖R‖).
Denote by g1 and g2 the first and the second columns of G. We have introduced P1 to ensure

that that the matrix P1RG
> is independent of g1. This allows us to replace the vector g1 by its copy

independent of G. Hence, by Lemma 23,

Pr

[∥∥∥P1RG
>Ge1

∥∥∥ < 1

4

√
m ‖R‖F

]
= Pr

[∥∥∥P1RG
>g1

∥∥∥ < 1

4

√
m ‖R‖F

]
(7)

≤ 8
(

exp
(
− c sr(R)

)
+ exp(−cm)

)
≤ 2 exp(−c′m),

20



RESTRICTED EIGENVALUE FROM STABLE RANKWITH APPLICATIONS TO SPARSE LINEAR REGRESSION

where we used that m ≤ sr(R).
The estimate of the inner product is a little more complicated. Let P2 be the orthogonal projection

with Ker(P2) = span(Re1, P1Re2). Then we can write

P1RG
>Ge1 = P2RG

>g1 + P1Re2g
>
2 g1

P1RG
>Ge2 = P2RG

>g2 + P1Re2g
>
2 g2

and therefore,

(P1RG
>Ge1)>P1RG

>Ge2 = (P2RG
>g1)>P2RG

>g2 + (P1Re2g
>
2 g1)>P1Re2g

>
2 g2.

Note that P2RG
> is independent of g1 and g2. Similarly to (10), we have

‖P2R‖2F ≥ ‖R‖
2
F − 2 ‖R‖2 ≥ ‖R‖2F /2

and so, sr(P2R) ≥ (1/2) sr(R) ≥ m. This allows us to use Lemma 24 to estimate

Pr
[
|g>1 G(P2R)>P2RG

>g2| ≥ t
]
≤ 8 exp

(
−c t2

m ‖P2R‖4F

)
(8)

for any t ∈ [0,m ‖P2R‖2F].
The estimate for the last term is straightforward as P1Re2 is deterministic. Since

∀s ≥ 0 Pr
[
|g>2 g1| > Cs

]
≤ 2 exp

(
−cs

2

m

)
+ exp(−m),

and
Pr
[
|g>2 g2| > Cm

]
≤ exp(−m),

we obtain

Pr
[
|(P1Re2g

>
2 g1)>P1Re2g

>
2 g2| ≥ sm ‖P1Re2‖2

]
≤ 2 exp

(
−cs

2

m

)
+ exp(−m)

or

Pr
[
|(P1Re2g

>
2 g1)>P1Re2g

>
2 g2| ≥ t

]
≤ 2 exp

(
−c t2

m3 ‖P1Re2‖4

)
+ exp(−m) (9)

for all t ≥ 0. Combining (8) and (9), we conclude that

Pr
[
|(P1RG

>Ge1)>P1RG
>Ge2| > t

]
≤ 2 exp

(
−c t2

m ‖R‖4F

)
+ 2 exp

(
−c t2

m3 ‖P1Re2‖4

)
+ exp(−cm)

≤ 4 exp

(
−c t2

m ‖R‖4F

)
+ exp(−cm)

for any t ∈ [0,m ‖P2R‖2F]. Here we used the inequality

m ‖P1Re2‖2 ≤ m ‖R‖2 ≤ ‖R‖2F ,
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where the last one follows from the assumption m ≤ sr(R). Taking into account the result from (7),
we see that

Pr
[
|u>P1RG

>Ge2| > τ
]
≤ 2 exp

(
−c τ2

‖R‖2F

)
+ exp(−cm),

for all τ ∈ [0, 1
8

√
m ‖R‖F]. After taking the union bound, we show that

Pr
[
∃j ≥ 2, |u>P1RG

>Gej | > τ
]
≤ 2d

(
exp

(
−c τ2

‖R‖2F

)
+ exp(−cm)

)
. (10)

Recall (6). Setting τ = 1
8s

√
m ‖R‖F with s ≥ 1, and using together (7) and (10), we conclude that

Pr

[
∃x ∈ s · conv(±e2, . . . ,±ed),

∥∥∥RG>G(e1 + x)
∥∥∥ ≤ 1

8

√
m ‖R‖F

]
≤ 2d exp

(
−cm

s2

)
,

as the second term in the right-hand side gets absorbed in the first one. The proof of the proposition
is complete.

B.3. Finishing the Proof of Theorem 5: Net Argument

The next theorem is the main technical step in proving Theorem 5. Invoking this theorem with
appropriate parameters (that we explain later in this section) gives the proof of Theorem 5. The proof
of the following theorem is based on generating an orthogonal matrix to reduce the general case to
the special case discussed in Proposition 25, and then employing an ε-net argument.

Theorem 26 (Restated Theorem 11) Let X be a fixed n× d matrix satisfying,

2 ≤ m ≤ sr(X)/2.

Let Ψ = (Ψij) be anm×d random matrix with independent entries such that E[Ψij ] = 0, E[Ψ2
ij ] = 1,

and ‖Ψij‖ψ2 is bounded. Let β ∈ (0, 1), and let k ∈ N. Then for any s such that

1 ≤ s ≤
√

cm

k log d+ log(2/β)
,

Pr[∃I ⊂ [d] with |I| = k,∃y ∈ Sd−1 with supp(y) ⊆ I, ∃x ∈ s · conv(±ei, i /∈ I),∥∥∥XΨ>Ψ(y + x)
∥∥∥ ≤ 1

32

√
m ‖X‖F] ≤ β.

Note that the condition s ≥ 1 in the formulation of the theorem implicitly sets a lower bound on β
and an upper bound on k.
Proof Fix the set I with |I| = k. For instance, consider I = [k] ⊂ [d]. Fix also a point y ∈ Sk−1.
Define the subspace E ⊂ Rd as

E = span(y, ej , j > k).
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Note that the vectors y and ej , j > k form an orthonormal basis of E. Let PE : Rd → E be matrix
of the orthogonal projection onto E with respect to this basis and the standard basis in Rd. Then P>E
is the matrix of the embedding of E into Rd.

Let Q : Rn → Rn be the orthogonal projection with Ker(Q) = XE⊥, where E⊥ represents the
orthogonal complement of E. Then for any z ∈ E,∥∥∥XΨ>Ψz

∥∥∥ ≥ ∥∥∥QXΨ>Ψz
∥∥∥ . (11)

We can represent the restriction of the linear operator QXΨ>Ψ to E as the following composition
of linear operators:

E
P>E→ Rd Ψ→ Rm Ψ>→ Rd PE→ E

P>E→ Rd X→ Rn Q→ Rn.

Since ‖y‖ = 1 and supp(y) ⊆ [k], them×(d−k+1) matrixG = ΨP>E in the basis {y, ej , j > k}
has centered subgaussian entries of unit variance. Denote R = QXP>E . Then by the interlacing

‖X‖2F ≥ ‖R‖
2
F ≥ ‖X‖

2
F − 2k ‖X‖2 ≥ 1

2
‖X‖2F ,

since by the assumptions on k and X , k ≤ m/8 ≤ sr(X)/16. This implies

sr(R) ≥ 1

2
sr(X) ≥ m.

Applying Proposition 25 to the matrices G,R, with y playing the role of e1, and taking into
account (11), we obtain

Pr

[
∃x ∈ s · conv(±ej j > k),

∥∥∥XΨ>Ψ(y + x)
∥∥∥ ≤ 1

16

√
m ‖X‖F

]
≤ 2d exp

(
−cm

s2

)
for any s ≥ 1.

In the rest of the proof, we employ the net argument. Since Ψ is a subgaussian random matrix,∥∥∥XΨ>Ψ
∥∥∥ ≤ ∥∥∥XΨ>

∥∥∥ · ‖Ψ‖ ≤ C ′(‖X‖F +
√
m ‖X‖) · C ′′(

√
d+
√
m)

≤ C
√
d ‖X‖F

with probability at least 1− exp(−m), where we used Corollary 19. Let ε > 0 be a number to be
chosen later, and (by Proposition 15) let N ⊂ Sk−1 be an ε-net of cardinality

|N | ≤
(

3

ε

)k
.

Assume that for any y ∈ N , and for any x ∈ s · conv(±ej j > k),∥∥∥XΨ>Ψ(y + x)
∥∥∥ ≥ 1

16

√
m ‖X‖F .

Assume also that
∥∥XΨ>Ψ

∥∥ ≤ C√d ‖X‖F. Let z ∈ Sk−1, and chose y ∈ N such that ‖z− y‖ < ε.
Then setting ε = c

√
m/d for an appropriately small constant c > 0, we obtain∥∥∥XΨ>Ψ(z + x)

∥∥∥ ≥ ∥∥∥XΨ>Ψ(y + x)
∥∥∥− ∥∥∥XΨ>Ψ

∥∥∥ · ‖z− y‖ ≥ 1

32

√
m ‖X‖F .
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Thus,

Pr

[
∃y ∈ Sk−1, ∃x ∈ s · conv(±ei, i > k),

∥∥∥XΨ>Ψ(y + x)
∥∥∥ ≤ 1

32

√
m ‖Ψ‖F

]
≤ |N | · 2d exp

(
−cm

s2

)
+ exp(−m)

≤ 2 exp

(
−cm

s2
+ k log

(
C
√
d√
m

))
.

It remains to take the union bound over all possible supports of y. It yields,

Pr

[
∃I ⊂ [d] with |I| = k, ∃y ∈ Sd−1 with supp(y) ⊆ I, ∃x ∈ s · conv(±ei, i /∈ I),∥∥∥XΨ>Ψ(y + x)

∥∥∥ ≤ 1

32

√
m ‖Ψ‖F

]
≤
(
d

k

)
· 2 exp

(
−cm

s2
+ k log

(
C
√
d√
m

))

≤ 2 exp

(
−cm

s2
+
k

2
log

(
Cd2

mk

))
.

The last quantity is smaller than β provided that10

1 ≤ s ≤
√

cm

k log d+ log(2/β)
.

This completes the proof of the theorem.

Using the above result, we can finish the proof of Theorem 5 as shown in Section 2.

Appendix C. Missing Details from Section 3

We provide missing details from Section 3. For brevity, we will say that the event which holds with
probability at least 1−O(m−K) occurs with a large probability.

Proposition 27 (Restated Proposition 12) Let X be a deterministic matrix and Φ be a random
matrix satisfying the conditions of Theorem 5. Consider the linear model y = XΦ>Φθ? + w
where the entries of the noise vector w = (w1, . . . , wn) are independent centered subgaussians with
‖wi‖ψ2 ≤ σ. Let K > 0 be any constant, and let dm−K ≤ β < 1. Then θcomp ∈ argminθ∈Rd2 ‖y −
XΦ>Φθ‖2/n+ λ‖θ1‖ with λ = Θ(σ ‖X‖F /n

√
m), satisfies with probability at least 1− β:

‖θcomp − θ?‖ = O

(
σ
√
mk3/2

‖X‖F

)
.

10. Here we ignored smaller order terms assuming d2 � mk. If this does not hold, one can obtain a slightly better
estimate.
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Proof We use the framework of Theorem 2 to bound ‖θcomp − θ?‖. The matrix of interest is now
XΦ>Φ. Our first aim will be to bound

∥∥Φ>ΦX>w
∥∥
∞ that is used to set λ in Theorem 2. Take any

u ∈ Sd−1. Then conditioning on Φ, with a large probability,

|u>Φ>ΦX>w| ≤ Cσ
∥∥∥u>Φ>ΦX>

∥∥∥
2
.

Applying the Hanson-Wright inequality, we can show that with a large probability with respect to Φ,∥∥∥u>Φ>ΦX>
∥∥∥

2
≤ C
‖X‖F√
m

.

The estimate for
∥∥Φ>ΦX>w

∥∥
∞ follows by combining two previous inequalities and using the union

bound for u = ej , j ∈ [d] as before. We get that probability at least 1−O(dm−K) (≥ 1−O(β)),∥∥∥Φ>ΦX>w
∥∥∥
∞

= O

(
σ
‖X‖F√
m

)
.

Plugging this bound into Theorem 2 along with the RE bound from Corollary 7 gives the claimed
result.

C.1. Missing Details from Section 3.2

In this section, we provide missing details from Section 3.2 where we considered sparse linear
regression with compressed features. Following the same notation. We start with the following
inequality:

1

n
‖y − Zθcomp‖2 + λ‖θcomp‖1 ≤

1

n
‖y − Zθ?‖2 + λ‖θ?‖1.

Rearranging this gives

1

n
(‖Zθcomp‖2 − ‖Zθ?‖2) ≤ 2

n
y>(Zθcomp − Zθ?) + λ(‖θ?‖1 − ‖θcomp‖1)

and plugging in w̃ = y − Zθ? (i.e., w̃ = (X − Z)θ? + w),

1

n
‖Zθcomp − Zθ?‖2 ≤ 2

n
w̃>(Zθcomp − Zθ?) + λ(‖θ?‖1 − ‖θcomp‖1).

Rearranging the terms, we get,

1

n
‖Zθcomp − Zθ?‖2 ≤ 2

n
〈Z>w̃, θcomp − θ?〉+ λ(‖θ?‖1 − ‖θcomp‖1).

Adding and subtracting 2〈E[Z>w̃], θcomp − θ?〉/n on the right-hand side gives,

1

n
‖Zθcomp−Zθ?‖2 ≤ 2

n
〈Z>w̃−E[Z>w̃], θcomp−θ?〉+ 2

n
〈E[Z>w̃], θcomp−θ?〉+λ(‖θ?‖1−‖θcomp‖1).

By applying Hölder’s inequality,

1

n
‖Zθcomp−Zθ?‖2 ≤ 2

n
‖Z>w̃−E[Z>w̃]‖∞‖θcomp−θ?‖1+

2

n
‖E[Z>w̃]‖‖θ?−θcomp‖+λ(‖θ?‖1−‖θcomp‖1).

(12)
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The following lemma establishes a bound on ‖Z>w̃ − E[Z>w̃]‖∞. For simplicity, we focus on
Gaussian random matrices Φ, the extension of the lemma to a more general class of subgaussian
random matrices is possible, but omitted here. Also w.l.o.g. we assume that θ? ∈ Sd−1. The proof
involves careful analysis of the projections of Z>(X − Z)θ? onto θ? and a vector in its orthogonal
direction.

Lemma 28 LetX be an n×dmatrix. Let Ψ be anm×d standard Gaussian matrix with independent
entries, and let Φ = Ψ/

√
m. Let Z = XΦ>Φ. Let w = (w1, . . . , wn) ∈ Rn be a vector with

independent centered coordinates having ‖wj‖ψ2
≤ σ. Let θ? ∈ Sd−1.

w̃ = (X − Z)θ? + w.

Assume that sr(X) ≥ m. Then

E[Z>w̃] = −
‖X‖2F
m

θ? · (1 + δ),

where δ depends on θ? and |δ| ≤ 1/m. and for any K > 0, with probability at least 1−O(dm−K),

∥∥∥Z>w̃ − E[Z>w̃]
∥∥∥
∞
≤ C logm

(
‖X‖2F
m3/2

+ σ
‖X‖F√
m

)

with a constant C depending on K.

Proof Assume first that θ? = e1. We will remove this assumption later. Set

z := Φ>ΦX>(X −XΦ>Φ)e1.

To estimate z we consider projections of z on e1 and on a vector v ∈ Sd−1 orthogonal to e1

separately. For brevity, we will say that the event which holds with probability at least 1−O(m−K)
occurs with a large probability.

Step 1 We will show that

E[e>1 z] = −
‖X‖2F
m

· (1 + δ), (13)

where |δ| ≤ 1/m and with a large probability,

|e>1 z− E[e>1 z]| ≤ C logm
‖X‖2F
m3/2

.

We will start with estimating e>1 z. To this end, denote Ψ = (υ1 G) and X = (f1 Y ) separating the
first column in each matrix. Then

e>1 z =
1

m
υ>1 (υ1 G)X>f1 ·

(
1− 1

m
υ>1 υ1

)
− 1

m2
υ>1 (υ1 G)X>Y G>υ1

=: A+B.
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Let us estimate A first. By Gaussian concentration, with a large probability, for a constant (indepen-
dent of the parameters) C,

|1− 1

m
υ>1 υ1| ≤ C

1√
m
.

Hence, ∣∣∣∣ 1

m
(υ>1 υ1)f>1 f1

(
1

m
− υ>1 υ1

)∣∣∣∣ ≤ C 1√
m
‖f1‖22 ≤ C

1

m3/2
‖X‖2F ,

where we used sr(X) ≥ m in the last inequality. Also, conditioning on G, we also have that with
large probability ∣∣∣∣ 1

m
υ>1 GY

>f1

(
1− 1

m
υ>1 υ1

)∣∣∣∣ ≤ Cm−3/2
√

logm
∥∥∥GY >f1∥∥∥

2
.

By Corollary 21,
Pr
[∥∥∥GY >f1∥∥∥

2
≥ C
√
m
∥∥∥Y >f1∥∥∥

2

]
≤ exp(−m),

so with a large probability,∣∣∣∣ 1

m
υ>1 GY

>f1 ·
(

1− 1

m
υ>1 υ1

)∣∣∣∣ ≤ Cm−1
√

logm
∥∥∥Y >f1∥∥∥

2
≤ Cm−3/2

√
logm ‖X‖2F .

Summarizing, we proved that with a large probability,

|A| ≤ Cm−3/2
√

logm ‖X‖2F .

We move to estimating B. Denote

B = − 1

m2
(υ>1 υ1)f>1 Y G

>υ1 −
1

m2
υ>1 GY

>Y G>υ1 =: B1 +B2.

Then E[B1] = 0 and

E[B2] = − 1

m2
E[υ>1 GY

>Y G>υ1] = − 1

m2
tr(E[GY >Y G>])

= − 1

m
tr(Y >Y ) = −

‖Y ‖2F
m

.

Note that by assumption on sr(X),

‖X‖2F − ‖Y ‖
2
F = ‖f1‖22 ≤

1

m
‖X‖2F ,

which yields (13) with the required bound on δ.
Now, let us bound the deviation of B from its expectation. Arguing as above, we conclude that

with a large probability,

|B1| ≤ Cm−1/2
√

logm
∥∥∥f>1 Y ∥∥∥

2
≤ Cm−3/2

√
logm ‖X‖2F .

Also, conditioning on G, with a large probability,∣∣∣υ>1 GY >Y G>υ1 − E[υ>1 GY
>Y G>υ1 | G]

∣∣∣ ≤ C√logm
∥∥∥GY >Y G>∥∥∥

F
. (14)
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Using the Hanson-Wright inequality as in Corollary 22, we conclude that with a large probability,∥∥∥GY >Y G>∥∥∥
F
≤ Cm

√
logm

∥∥∥Y >Y ∥∥∥
F

+ C
√
m tr(Y >Y ) ≤ C

√
m
√

logm ‖X‖2F (15)

since m
∥∥Y >Y ∥∥

F
≤ m ‖Y ‖ · ‖Y ‖F ≤

√
m ‖X‖2F ≤

√
m ‖X‖2F . The measure concentration with

respect to the Gaussian matrix G yields that with a large probability∣∣∣E[υ>1 GY
>Y G>υ1 | G]− E[υ>1 GY

>Y G>υ1]
∣∣∣ ≤ Cm∥∥∥Y >Y ∥∥∥

F
≤ C
√
m ‖X‖2F . (16)

Combining (14), (15), and (16) shows that with a large probability,

|B2 − E[B2]| ≤ Cm−3/2 logm ‖X‖2F .

This together with the bounds on A and B1 obtained above completes the proof of Step 1.

Step 2 Let v ∈ Sd−1, v>e1 = 0. Then E[v>z] = 0 and with a large probability,

|v>z| ≤ Cm−3/2 logm ‖X‖2F .

The equality E[v>z] = 0 follows from independence of Φe1 and Φv (recall that we assumed
that the matrix Ψ is Gaussian). To prove the concentration, we can use rotation invariance of the
Gaussian distribution. More precisely, the matrix Φ is distributed like ΦU , where U is an orthogonal
matrix such that Ue1 = e1 and Uv = e2. Note that replacing X by XU> does not change the
Hilbert-Schmidt norm. Using these observations, we can reduce the case of a general v ⊥ e1 to
v = e2.

In the last case, we separate the first two columns of the matrices Ψ and X as we did in Step 1:

Ψ = (υ1 υ2 Λ) and X = (f1 f2 P ).

Then the inner product e>2 z can be decomposed into a sum of 9 terms containing different combi-
nations of independent random variables υ1, υ2, and Λ. The absolute value of each of these terms
does not exceed Cm−3/2 logm ‖X‖2F with a large probability. These estimates closely follow the
argument of Step 1, so we omit the details. Combining these nine estimates completes the proof of
Step 2.

Let us summarize what we proved. We have shown that in the case θ? = e1,

E[z] = −
‖X‖2F
m

· (1 + δ)e1 = −
‖X‖2F
m

· (1 + δ)θ?

and for any u ∈ Sd−1,
|u>(z− E[z])| ≤ Cm−3/2 logm ‖X‖2F .

The last inequality follows by decomposing u into its projection on e1 and the orthogonal component
and applying Steps 1 and 2 respectively to these components.

Now, we can use the invariance of the Gaussian matrix under multiplication by an orthogonal one
to remove the assumption that θ? = e1 in two last inequalities. To derive the bound for ‖z− E[z]‖∞,
we apply the last inequality with u = ej and take the union bound over j ∈ [d].
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Finally, it remains to handle the term
∥∥Φ>ΦX>w

∥∥
∞ which we do as in Proposition 12. As

before, take any u ∈ Sd−1. Then conditioning on Φ, with a large probability,

|u>Φ>ΦX>w| ≤ Cσ
∥∥∥u>Φ>ΦX>

∥∥∥
2
.

Applying the Hanson-Wright inequality, we show that with a large probability with respect to Φ,∥∥∥u>Φ>ΦX>
∥∥∥

2
≤ C
‖X‖F√
m

.

The estimate for
∥∥Φ>ΦX>w

∥∥
∞ follows by combining two previous inequalities and using the union

bound for u = ej , j ∈ [d] as before.
This completes the proof of the lemma.

Remark 29 The same argument shows that for any K > 0, with probability at least 1−O(d−K),∥∥∥Φ>ΦX>w̃ − E[Φ>ΦX>w̃]
∥∥∥
∞
≤ C log d

(
‖X‖2F
m3/2

+ σ
‖X‖F√
m

)
with a constant C depending on K.

The following proposition follows by using Lemma 28 in (12) and by setting λ appropriately (as
guided by Theorem 2) to ensure that θcomp − θ? ∈ C(S?) where S? = supp(θ?). The RE bound lets
us relate ‖Zθcomp − Zθ?‖ and ‖Xθcomp −Xθ?‖.

Proposition 30 (Restated Proposition 13) Let X be a deterministic matrix and Φ be a Gaussian
random matrix satisfying the conditions of Theorem 5. Consider the linear model y = Xθ? + w
where the entries of the noise vector w = (w1, . . . , wn) are independent centered subgaussians
with ‖wi‖ψ2 ≤ σ and θ? ∈ Sd−1. Let K > 0 be any constant, and let dm−K ≤ β < 1. Then
θcomp ∈ argminθ∈Bd2 ‖y−XΦ>Φθ‖2/n+λ‖θ1‖ with λ = Θ(σ‖X‖F logm/n

√
m+ ‖X‖2F/nm),

satisfies with probability at least 1− β:

1

n
‖Xθcomp −Xθ?‖2 = O

(
σ‖X‖Fk3/2 logm

n
√
m

+
‖X‖2Fk3/2

nm

)
.

Proof We start by restating (12).

1

n
‖Zθcomp−Zθ?‖2 ≤ 2

n
‖Z>w̃−E[Z>w̃]‖∞‖θcomp−θ?‖1+

2

n
‖E[Z>w̃]‖‖θ?−θcomp‖+λ(‖θ?‖1−‖θcomp‖1).

Applying Lemma 28 in the above equation, gives that with probability at least 1−O(dm−K),

1

n
‖Zθcomp − Zθ?‖2 ≤ C logm

n

(
‖X‖2F
m3/2

+ σ
‖X‖F√
m

)
‖θcomp − θ?‖1

+
4 ‖X‖2F
nm

‖θcomp − θ?‖1 + λ(‖θ?‖1 − ‖θcomp‖1). (17)
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For the remainder of this proof, we condition on (17) holding true. Let S? = supp(θ?). We first
argue that θ̂ := θcomp − θ? is such that θ̂ ∈ C(S?). We start by observing that:

‖θ?‖1 − ‖θcomp‖1 = ‖θ?‖1 − ‖θ? + θ̂‖1 = ‖θ?‖1 − ‖θ?S? + θ̂S?‖1 − ‖θ̂Sco
?
‖1 ≤ ‖θ̂S?‖1 − ‖θ̂Sco

?
‖1.

(18)

Set

λ ≥ 2C logm

n

(
‖X‖2F
m3/2

+ σ
‖X‖F√
m

)
+

8 ‖X‖2F
nm

.

Using this value of λ, we can observe that,

1

n
‖Zθcomp − Zθ?‖2 ≤ λ

2
‖θ̂‖1 + λ(‖θ?‖1 − ‖θcomp‖1).

From (18) and by noting ‖Zθcomp − Zθ?‖2 > 0,

0 ≤ λ

2
‖θ̂‖1 + λ(‖θ̂S?‖1 − ‖θ̂Sco

?
‖1),

implying ‖θ̂Sco
?
‖1 ≤ 3‖θ̂S?‖1, i.e., θ̂ ∈ C(S?). We can now simplify (17) as,

1

n
‖Zθ̂‖2 = O

(
‖X‖2F logm

nm3/2
+
σ‖X‖F logm

n
√
m

+
‖X‖2F
nm

)
‖θ̂‖1.

Now,

‖θ̂‖1 = ‖θ̂S?‖1 + ‖θ̂Sco
?
‖1 ≤ θ̂S?‖1 + 3‖θ̂S?‖1 ≤ 4

√
k‖θ̂S?‖ ≤ 4

√
k‖θ̂‖ ≤ 8

√
k,

as ‖θ̂‖ = ‖θcomp − θ?‖ ≤ ‖θcomp‖+ ‖θ?‖ ≤ 2.11 Plugging this in the above inequality,

1

n
‖Zθ̂‖2 = O

(
‖X‖2F

√
k logm

nm3/2
+
σ‖X‖F

√
k logm

n
√
m

+
‖X‖2F

√
k

nm

)

= O

(
σ‖X‖F

√
k logm

n
√
m

+
‖X‖2F

√
k

nm

)
.

Now by our stable rank assumption on X , ‖Xθ̂‖ = O((‖X‖F/
√
m)‖θ̂‖). Under the conditions

of Corollary 7, with probability at least 1 − β, ‖Zθ̂‖2 = Ω((‖X‖2F/mk)‖θ̂‖2). Putting these two
together gives that, ‖Xθ̂‖2 = O(k‖Zθ̂‖2).

Using this in the above bound on ‖Zθ̂‖2 = ‖Z(θcomp− θ?)‖2 gives that with probability at least
1− β, under the conditioning on (17):

1

n
‖Xθcomp −Xθ?‖2 = O

(
σ‖X‖Fk3/2 logm

n
√
m

+
‖X‖2Fk3/2

nm

)
.

Finally, we can remove the conditioning on (17). To simplify the result, assume β > dm−K .

11. Since θ? ∈ Sd−1, it suffices to define θcomp ∈ argminθ∈Bd
2
‖y − Zθ‖2/n+ λ‖θ1‖, implying that ‖θcomp‖ ≤ 1.
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Appendix D. Stable Rank vs. Restricted Eigenvalue Condition

In this section, we investigate how stable rank relates to the restricted eigenvalue (RE) condition that
is commonly used in the analysis of Lasso. The picture that emerges is the following: stable rank is a
less restrictive condition to impose on a design matrix than RE. We show this by establishing that
a RE bound on a matrix implies a non-trivial12 stable rank for that matrix, whereas other direction
does not always hold.

We first look at the case, when we have a stable rank condition on X . The RE condition (and of
course, RIP) governs the behavior of the matrix on all coordinate subspaces of a small dimension.
In this sense, a bound on the stable rank on X is much more relaxed. We now provide a simple
pedagogical example to illustrate this fact. We rely on the fact that if Xej = 0 for even one j ∈ d,
then no RE condition holds. Consider, for example the d× n matrix

X =

(
I2m 0
0 0

)
,

where I2m is the identity 2m × 2m matrix. Then, sr(X) = 2m, while the RE condition does not
hold for X . This simple example illustrates that there exist families of matrices for which a stable
rank condition (as required in Theorem 5) holds, but a RE condition is not satisfied.

To make the comparison in the other direction, we need an additional normalization of X , as
sr(X) is invariant under scaling, and RE(X, k, α) is degree 1 homogenous (in that scaling each
element in X by a factor c changes RE(X, k, α) by c). Assume that RE(X, k, α) ≥ r and define

‖X‖(k) = max
J⊂[d]
|J |=k

‖XJ‖ ≤ R.

An upper bound on ‖X‖(k) is usually applied together with a lower bound on RE(X, k, α) ≥ r in
derivation of the vector reconstruction conditions (see, e.g. (Rudelson and Zhou, 2013)). These
assumptions yield that

‖X‖F =

 d∑
j=1

‖Xej‖2
1/2

≥ r
√
d.

Also, assume for simplicity that d = kL and decompose [d] =
⋃L
l=1 Jl, where Jl ⊂ [d] are

consecutive sets of k coordinates. Let y ∈ Sd−1. Then

‖Xy‖ ≤
L∑
l=1

‖XJl‖ · ‖yJl‖ ≤

(
L∑
l=1

‖XJl‖
2

)1/2( L∑
l=1

‖yJl‖
2

)1/2

≤ R
√
L = R

√
d

k
.

Therefore, ‖X‖ ≤ R
√

d
k and so

sr(X) ≥
( r
R

)2
k.

This shows that a RE bound on X implies a non-trivial stable rank bound on X .
Putting both these directions together implies that while a RE bound always translates into stable

rank bound, the other direction does not always hold.

12. A direct numerical extension is not possible as stable rank is invariant to matrix scaling, whereas RE is not.
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