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Abstract
We present new minimax results that concisely capture the relative benefits of source and target

labeled data, under covariate-shift. Namely, we show that, in general classification settings, the
benefits of target labels are controlled by a transfer-exponent γ that encodes how singular Q is
locally w.r.t. P , and interestingly allows situations where transfer did not seem possible under
previous insights. In fact, our new minimax analysis – in terms of γ – reveals a continuum of
regimes ranging from situations where target labels have little benefit, to regimes where target
labels dramatically improve classification. We then show that a recently proposed semi-supervised
procedure can be extended to adapt to unknown γ, and therefore requests target labels only when
beneficial, while achieving nearly minimax transfer rates.
Keywords: Transfer learning, covariate-shift, nonparametric classification, nearest-neighbors.

Extended Abstract

Introduction

The goal in transfer learning is to improve prediction on a target distributionQ by harnessing labeled
data coming from a source distribution P . Much of theoretical work in transfer learning concerns
understanding the fundamental limitations of transfer, and in particular, proper ways of capturing
relatedness between source P and target Q. Here we consider the common covariate-shift setting
for classification, where it is assumed that conditional distributions PY |X and QY |X remain the
same, while marginals PX , QX are different but somewhat related.

We consider general nonparametric settings that capture a range of easy to difficult classifica-
tion under Q, through standard smoothness and noise conditions (see e.g. Audibert and Tsybakov
(2007)). Our aim is then to understand which relation between marginals PX and QX control the
rates of transfer, and in particular, control the relative benefits between source and target data in
achieving low error under Q. A basic intuition, present in previous work, is that transfer is easiest
when P assigns sufficient mass to regions of considerable Q-mass. Here, we formalize this intu-
ition through a new asymmetric notion, the transfer-exponent γ, that parametrizes the behavior of
ball-mass ratios QX(B(x, r))/PX(B(x, r)) as a function of the radius r, namely, that these ratios
behave like r−γ . The notion of γ can be interpreted, roughly, as capturing how close to singular Q
is with respect to P , as it shifts mass into regions of low P mass.
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We show the pertinence of our parametrization by establishing tight minimax upper and lower
bounds in terms of γ, under standard nonparametric conditions. The notion of γ is thus shown to
encode a continuum of regimes between easy and hard transfer, and interestingly, reveals situations
where transfer is possible (even at fast rates) despite P and Q seeming unrelated under previous
notions of relatedness. As an example, γ remains well defined even when Q is singular w.r.t. P
(e.g. Q puts mass on lower-dimensional structures) – in which case common notions of density-
ratio and information-theoretic divergences (KL or Renyi) fail to exist, and common extensions of
total-variation can be too large to characterize transfer.

Finally, we show that a recently proposed semi-supervised procedure can be extended to adapt
to unknown γ, and therefore requests target labels only when beneficial, while achieving nearly
minimax transfer rates.

Related Work

Many insightful notions of relatedness are present in the literature on transfer and related problems.
A first line of work considers refinements of total-variation which encode changes in classifica-

tion error from P to Q (restricted to a hypothesis class H). The most common such measures are
the so-called dA-divergence (Ben-David et al., 2010a,b; Germain et al., 2013) and Y-discrepancy
(Mansour et al., 2009a; Mohri and Medina, 2012; Cortes et al.). These notions are the first to cap-
ture – through differences in mass over space – the intuition that transfer is easiest when P has
sufficient mass in regions of substantial Q-mass. Typical excess-error bounds on classifiers learned
from source (and some or no target) data are of the form op(1) + C · divergence(P,Q). In other
words, transfer seems impossible when these divergences are large; however, we show that there
are ranges of reasonable situations (0 ≤ γ < ∞) where fast transfer is possible even when such
divergences are large. Furthermore, while such divergences are symmetric, the notion of γ is not,
thus capturing the fact that transfer might be easy from P to Q but not from Q to P .

Another prominent line or work, which has led to many practical procedures, considers so-
called density-ratios fQ/fP or more generally, Radon-Nikodym derivatives dQ/dP , as a way to
capture the similarity between P and Q (Quionero-Candela et al., 2009; Sugiyama et al., 2012).
It is often assumed in such work that dQ/dP is bounded, which corresponds to assuming γ = 0.
Typical excess-error bounds are dominated by the estimation rates for dQ/dP (see e.g. rates for
α-Hölder dQ/dP , α→ 0, in Kpotufe (2017)), which unfortunately could be arbitrarily higher than
the minimax rates we establish for the boundary case with γ = 0.

Finally, another line of work instead considers information-theoretic measures such as KL-
divergence or Renyi divergence (Sugiyama et al., 2008; Mansour et al., 2009b). In particular, such
divergences are closer in spirit to our notion of transfer-exponent γ (viewing γ as roughly charac-
terizing the log of mass-ratios between), but are also undefined in typical scenarios with structured
data where QX might be singular w.r.t. PX .

Result Overview

Our first results consider transfer settings where the learner has access to nP labeled samples drawn
from P and nQ labeled samples drawn from Q, where typically nP � nQ. The label Y is assumed
in {0, 1}, while the input X belongs to a compact metric space X .

We work under common smoothness and low noise conditions, namely, we assume the regres-
sion function η(x) .= E[Y |X = x] to be α–Hölder, and also that QX (0 < |η(X)− 1/2| ≤ t) . tβ
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(see e.g. Audibert and Tsybakov (2007)). A transfer exponent is then defined, roughly, as any
quantity γ that satisfies:

∀x,∀ small r, PX(B(x, r)) & QX(B(x, r)) · rγ .

Two main distributional regimes are considered, which capture the difficulty of vanilla classifi-
cation underQX . The first regime, (DM) (for doubling measure), roughly assumes thatQX behaves
like a uniform measure on its support (this is the most common assumption in nonparametric clas-
sification, and is sometimes termed the strong-density assumption). The second regime, (BCN) (for
bounded covering number), allows for general QX and is most difficult with slower rates. Both
regimes introduce a parameter d that might be viewed as a notion of dimension of the marginal QX .

For exact definitions we refer the reader to the archived version of this work (Kpotufe and
Martinet, 2018)).

Our minimax rates are then of the following form.

Theorem 1 (Sketch) Call T(DM) (resp. T(BCN)) the class of all the tuples (P,Q) under (DM) (resp.
(BCN)) regime. Let T ∈ {T(DM), T(BCN)}, we have then:

inf
ĥ

sup
(P,Q)∈T

E[EQ(ĥ)] �
(
n
d0/(d0+γ/α)
P + nQ

)−(β+1)/d0
,

where EQ represents the excess error, the infimum is taken over all classifiers ĥ learned on the data,
the expectation is taken w.r.t. the data, d0 = 2+d/α when T = T(DM), and d0 = 2+β+d/α when
T = T(BCN).

Our upper-bounds are established with a generic k-NN classifier defined over the combined
source and target sample. In particular, our results imply new convergence rates of independent in-
terest for vanilla k-NN under the BCN regime, which complements recent developments on vanilla
k-NN (Samworth et al., 2012; Chaudhuri and Dasgupta, 2014; Shalev-Shwartz and Ben-David,
2014; Gadat et al., 2014). On the other hand, our lower-bounds are established over any learner
with access to both source and target samples, and interestingly, which is also allowed access to
infinite unlabeled source and target data (i.e., full knowledge of PX and QX ). In other words, the
above rates cannot be improved (beyond constants) with access to unlabeled data, which is often an
important consideration in practice given the cost of target labels (Huang et al., 2007; Ben-David
and Urner, 2012).

Finally, we address semi-supervised situations where the learner has access to nQ unlabeled
target data, along with nP labeled source data, and is allowed to request (as few as possible) target
labels in order to improve classification (Saha et al., 2011; Chen et al., 2011; Chattopadhyay et al.,
2013). An early theoretical treatment of this can be found in (Yang et al., 2013), but which however
considers a transfer setting with fixed marginal but varying conditionals (labeling functions). For
our setting of covariate-shift, we build on a recent approach of Berlind and Urner (2015) which
constructs so-called k-2k covers, to help limit label requests to regions of low P mass. In this work,
we show a strategy for choosing k from data (building on so-called Lepski’s method (Lepski and
Spokoiny, 1997)), so as to nearly attain the above minimax rates with no a priori knowledge of
distributional parameters, nor of γ. Furthermore, labeling complexity is shown to be controlled by
unknown γ, i.e. the resulting approach requests labels only when useful, as controlled by γ and
relative sample sizes nP , nQ.
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