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Abstract
We consider the problem of minimizing a convex function over a convex set given access only to an
evaluation oracle for the function and a membership oracle for the set. We give a simple algorithm
which solves this problem with Õ(n2) oracle calls and Õ(n3) additional arithmetic operations.
Using this result, we obtain more efficient reductions among the five basic oracles for convex sets
and functions defined by Grötschel et al. (1988).1

Keywords: Optimization, Membership, Separation, Violation, Validity, Subgradient

1. Summary

Minimizing a convex function over a convex set is a fundamental problem with many applications.
The problem stands at the forefront of polynomial-time tractability and its study has lead to the de-
velopment of numerous general algorithmic techniques. In recent years, improvements to important
special cases (e.g., maxflow) have been closely related to ideas and improvements for the general
problem (Christiano et al., 2011; Sherman, 2013; Madry, 2013; Kelner et al., 2014; Lee et al., 2013;
Lee and Sidford, 2014, 2015; Lee et al., 2015; Sherman, 2017).

Here we consider the very general setting where the objective function and feasible region are
both presented only as oracles that can be queried, specifically an evaluation oracle for the function
and a membership oracle for the set. We study the problem of minimizing a convex function over
a convex set provided only these oracles as well as bounds 0 < r < R and a point x0 ∈ K s.t.
B(x0, r) ⊆ K ⊆ B(x0, R) where B(x0, r) is the ball of radius r centered at x0 ∈ Rn.

It is well-known that with a stronger separation oracle for the set (and subgradient oracle for
the function), this problem can be solved with Õ(n) oracle queries using any of Vaidya (1996);
Bertsimas and Vempala (2004); Lee et al. (2015) or with Õ(n2) queries by the classic ellipsoid
algorithm Grötschel et al. (1988). Moreover, it is known that the problem can be solved with only
evaluation and membership oracles through reductions shown by Grötschel, Lovasz and Schrijver in
their classic book Grötschel et al. (1988). However, the reduction in Grötschel et al. (1988) appears
to take at least n10 calls to the membership oracle. This has been improved using the random walk
method and simulated annealing to n4.5 Kalai and Vempala (2006); Lovász and Vempala (2006)

1. Extended abstract. Full version appears as [arXiv:1706.07357]

c© 2018 Y.T. Lee, A. Sidford & S.S. Vempala.



OPTIMIZATION WITH ORACLES

and Abernethy and Hazan (2016) provides further improvements of up to a factor of
√
n for more

structured convex sets.
Our main result in this paper is an algorithm that minimizes a convex function over a convex

set using only Õ(n2) membership and evaluation queries. Interestingly, we obtain this result by
first showing that we can implement a separation oracle for a convex set and a subgradient ora-
cle for a function using only Õ(n) membership queries and then using the known reduction from
optimization to separation. We state the result informally below.

Theorem 1 LetK be a convex set specified by a membership oracle, a point x0 ∈ Rn, and numbers
0 < r < R such that B(x0, r) ⊆ K ⊆ B(x0, R). For any convex function f given by an evaluation
oracle and ε > 0, there is a randomized algorithm that computes a point z ∈ B(K, ε) such that

f(z) ≤ min
x∈K

f(x) + ε

(
max
x∈K

f(x)−min
x∈K

f(x)

)
with constant probability using O(n2 logO(1)(nRεr )) calls to the membership oracle and evaluation
oracle and O(n3 logO(1)(nRεr )) total arithmetic operations.

See the full version for the formal statement, proofs, comparison to prior work, and further
consequences of this result.
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