Efficient Convex Optimization with Membership Oracles

Yin Tat Lee
University of Washington
YINTAT@UW.EDU

Aaron Sidford
Stanford University
SIDFORD@STANFORD.EDU

Santosh S. Vempala
Georgia Tech
VEMPALA@GATECH.EDU

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract

We consider the problem of minimizing a convex function over a convex set given access only to an evaluation oracle for the function and a membership oracle for the set. We give a simple algorithm which solves this problem with $\tilde{O}(n^2)$ oracle calls and $\tilde{O}(n^3)$ additional arithmetic operations. Using this result, we obtain more efficient reductions among the five basic oracles for convex sets and functions defined by Grötschel et al. (1988).\footnote{Extended abstract. Full version appears as [arXiv:1706.07357]}

Keywords: Optimization, Membership, Separation, Violation, Validity, Subgradient

1. Summary

Minimizing a convex function over a convex set is a fundamental problem with many applications. The problem stands at the forefront of polynomial-time tractability and its study has lead to the development of numerous general algorithmic techniques. In recent years, improvements to important special cases (e.g., maxflow) have been closely related to ideas and improvements for the general problem (Christiano et al., 2011; Sherman, 2013; Madry, 2013; Kelner et al., 2014; Lee et al., 2013; Lee and Sidford, 2014, 2015; Lee et al., 2015; Sherman, 2017).

Here we consider the very general setting where the objective function and feasible region are both presented only as oracles that can be queried, specifically an evaluation oracle for the function and a membership oracle for the set. We study the problem of minimizing a convex function over a convex set provided only these oracles as well as bounds $0 < r < R$ and a point $x_0 \in K$ s.t. $B(x_0, r) \subseteq K \subseteq B(x_0, R)$ where $B(x_0, r)$ is the ball of radius r centered at $x_0 \in \mathbb{R}^n$.

It is well-known that with a stronger separation oracle for the set (and subgradient oracle for the function), this problem can be solved with $\tilde{O}(n)$ oracle queries using any of Vaidya (1996); Bertsimas and Vempala (2004); Lee et al. (2015) or with $\tilde{O}(n^2)$ queries by the classic ellipsoid algorithm Grötschel et al. (1988). Moreover, it is known that the problem can be solved with only evaluation and membership oracles through reductions shown by Grötschel, Lovasz and Schrijver in their classic book Grötschel et al. (1988). However, the reduction in Grötschel et al. (1988) appears to take at least n^{10} calls to the membership oracle. This has been improved using the random walk method and simulated annealing to $n^{1.5}$ Kalai and Vempala (2006); Lovász and Vempala (2006)
and Abernethy and Hazan (2016) provides further improvements of up to a factor of \(\sqrt{n} \) for more structured convex sets.

Our main result in this paper is an algorithm that minimizes a convex function over a convex set using only \(\tilde{O}(n^2) \) membership and evaluation queries. Interestingly, we obtain this result by first showing that we can implement a separation oracle for a convex set and a subgradient oracle for a function using only \(\tilde{O}(n) \) membership queries and then using the known reduction from optimization to separation. We state the result informally below.

Theorem 1 Let \(K \) be a convex set specified by a membership oracle, a point \(x_0 \in \mathbb{R}^n \), and numbers \(0 < r < R \) such that \(B(x_0, r) \subseteq K \subseteq B(x_0, R) \). For any convex function \(f \) given by an evaluation oracle and \(\epsilon > 0 \), there is a randomized algorithm that computes a point \(z \in B(K, \epsilon) \) such that

\[
f(z) \leq \min_{x \in K} f(x) + \epsilon \left(\max_{x \in K} f(x) - \min_{x \in K} f(x) \right)
\]

with constant probability using \(O(n^2 \log^{O(1)}(\frac{nR}{\epsilon r})) \) calls to the membership oracle and evaluation oracle and \(O(n^3 \log^{O(1)}(\frac{nR}{\epsilon r})) \) total arithmetic operations.

See the full version for the formal statement, proofs, comparison to prior work, and further consequences of this result.

Acknowledgments

The authors thank Sebastien Bubeck, Ben Cousins, Sham M. Kakade and Ravi Kannan for helpful discussions, and Yan Kit Chim for making the illustrations. Finally, we thank Xiaodi Wu for pointing out some typos in a previous version of the paper.

References

