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Abstract
In phase retrieval we want to recover an unknown signal x ∈ Cd from n quadratic measurements
of the form yi = |〈ai,x〉|2 +wi where ai ∈ Cd are known sensing vectors and wi is measurement
noise. We ask the following weak recovery question: what is the minimum number of measure-
ments n needed to produce an estimator x̂(y) that is positively correlated with the signal x? We
consider the case of Gaussian vectors ai. We prove that – in the high-dimensional limit – a sharp
phase transition takes place, and we locate the threshold in the regime of vanishingly small noise.
For n ≤ d−o(d) no estimator can do significantly better than random and achieve a strictly positive
correlation. For n ≥ d + o(d) a simple spectral estimator achieves a positive correlation. Surpris-
ingly, numerical simulations with the same spectral estimator demonstrate promising performance
with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization
algorithms in phase retrieval, and our approach can boost the performance in this setting as well.

Our impossibility result is based on classical information-theory arguments. The spectral al-
gorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a
sharp characterization of the spectral properties of this random matrix using tools from free prob-
ability and generalizing a recent result by Lu and Li. Both the upper and lower bound generalize
beyond phase retrieval to measurements yi produced according to a generalized linear model. As a
byproduct of our analysis, we compare the threshold of the proposed spectral method with that of
a message passing algorithm.
Keywords: Spectral initialization, phase transition, mutual information, second moment method,
phase retrieval, free probability

In this work1, we consider the problem of recovering a signal x of dimension d, given n general-
ized linear measurements. More specifically, the measurements are drawn independently according
to the conditional distribution

yi ∼ p(y | |〈x,ai〉|), i ∈ {1, . . . , n}, (1)

where 〈·, ·〉 denotes the inner product, {ai}1≤i≤n is a set of known sensing vector, and p(· | 〈x,ai〉)
is a known probability density function. For the problem of phase retrieval, the model (1) is spe-
cialized to

yi = |〈x,ai〉|2 + wi, i ∈ {1, . . . , n} , (2)

where wi is noise.

1. Extended abstract. Full version appears as [arXiv:1708.05932, v3].
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Popular methods to solve the phase retrieval problem are based on semi-definite programming
relaxations (Candès et al., 2015a,b, 2013; Waldspurger et al., 2015). However, these algorithms
rapidly become prohibitive from a computational point of view when the dimension d of the signal
increases, which makes them impractical in most of the real-world applications. For this reason, sev-
eral algorithms have been developed in order to solve directly the non-convex least-squares problem,
including the error reduction schemes dating back to Gerchberg-Saxton and Fienup (Gerchberg,
1972; Fienup, 1982), alternating minimization (Netrapalli et al., 2013), approximate message pass-
ing (Schniter and Rangan, 2015), Wirtinger Flow (Candès et al., 2015c), iterative projections (Li
et al., 2015), the Kaczmarz method (Wei, 2015), and a number of other approaches (Chen and Can-
dès, 2017; Zhang and Liang, 2016; Cai et al., 2016; Wang et al., 2016; Wang and Giannakis, 2016;
Soltanolkotabi, 2017; Duchi and Ruan, 2017; Wang et al., 2017). Furthermore, recently a convex re-
laxation that operates in the natural domain of the signal was independently proposed by two groups
of authors (Goldstein and Studer, 2016; Bahmani and Romberg, 2017). All these techniques require
an initialization step, whose goal is to provide a solution x̂ that is positively correlated with the
unknown signal x. To do so, spectral methods are widely employed: the estimate x̂ is given by the
principal eigenvector of a suitable matrix constructed from the data. A similar stategy (initialization
step followed by an iterative algorithm) has proved successful for many other estimation problems,
e.g., matrix completion (Keshavan et al., 2010; Jain et al., 2013), blind deconvolution (Lee et al.,
2017; Li et al., 2016), sparse coding (Arora et al., 2015) and joint alignment from pairwise noisy
observations (Chen and Candès, 2016).

We focus on a regime in which both the number of measurement n and the dimension of the
signal d tend to infinity, but their ratio n/d tends to a positive constant δ. The weak recovery problem
requires to provide an estimate x̂(y) that has a positive correlation with the unknown vector x:

lim inf
n→∞

E
{
|〈x̂(y),x〉|
‖x̂(y)‖2 ‖x‖2

}
> ε, (3)

for some ε > 0.
In this paper, we consider either x ∈ Rd or x ∈ Cd and assume that the measurement vectors

ai are standard Gaussian (either real or complex). In the general setting of model (1), we present
two types of results:

1. We develop an information-theoretic lower bound δ`: for δ < δ`, no estimator can output
non-trivial estimates. In other words, the weak recovery problem cannot be solved.

2. We establish an upper bound δu based on a spectral algorithm: for δ > δu, we can achieve
weak recovery (see (3)) by letting x̂ be the principal eigenvector of a matrix suitably con-
structed from the data.

The values of the thresholds δ` and δu depend on the conditional distribution p(· | |〈x,ai〉|), and we
provide analytic formulas to compute them. More formally, consider the function f : [0, 1] → R,
given by

f(m) =

∫
R

EG1,G2 {p(y | |G1|)p(y | |G2|)}
EG {p(y | |G|)}

dy, (4)

with

G ∼ CN(0, 1), (G1, G2) ∼ CN

(
02,

[
1 c
c∗ 1

])
, (5)
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and m = |c|2. Note that the RHS of (4) depends only on m = |c|2. Indeed, by applying the
transformation (G1, G2)→ (eiθ1G1, e

iθ2G2), f(m) does not change, but the correlation coefficient
c is mapped into cei(θ1−θ2). Furthermore, set

Fδ(m) = δ log f(m) + log(1−m). (6)

Note that, when m = 0, G1 and G2 are independent. Hence, f(0) = 1, which implies that Fδ(0) =
0 for any δ > 0. We define the information-theoretic threshold δ` as the largest value of δ such that
the maximum of Fδ(m) is attained at m = 0, i.e.,

δ` = sup{δ | Fδ(m) < 0 for m ∈ (0, 1]}. (7)

The spectral threshold δu is defined as

δu =
1∫

R

(
EG
{
p(y | |G|)(|G|2 − 1)

})2
EG {p(y | |G|)}

dy

, (8)

with G ∼ CN(0, 1).
The main result of this paper can be summarized as follows.

Theorem Let x ∈ Cd be chosen uniformly at random on the d-dimensional complex sphere with
radius

√
d and assume that {ai}1≤i≤n ∼i.i.d. CN(0d, Id/d). Let y ∈ Rn be drawn independently

according to (1), and n, d→∞ with n/d→ δ ∈ (0,+∞). Then,

• For δ < δ`, no algorithm can provide non-trivial estimates on x;

• For δ > δu, there exists a spectral algorithm that returns an estimate x̂ satisfying (3).

For the special case of phase retrieval (see (2)), we evaluate the thresholds δ` and δu, and we
show that they coincide in the limit of vanishing noise.

Theorem Let x ∈ Cd be chosen uniformly at random on the d-dimensional complex sphere with
radius

√
d, and assume that {ai}1≤i≤n ∼i.i.d. CN(0d, Id/d). Let y ∈ Rn be drawn independently

according to (2), with {wi}1≤i≤n ∼ N(0, σ2), and n, d→∞ with n/d→ δ ∈ (0,+∞). Then,

• For δ < 1, no algorithm can provide non-trivial estimates on x;

• For δ > 1, there exists σ0(δ) > 0 and a spectral algorithm that returns an estimate x̂
satisfying (3), for any σ ∈ [0, σ0(δ)].

When x is chosen uniformly at random on the d-dimensional real sphere with radius
√
d and

{ai}1≤i≤n ∼i.i.d. N(0d, Id/d), we show that analogous results hold and that the threshold for
phase retrieval moves from 1 to 1/2. This is reminiscent of how the injectivity thresholds are δ = 4
and δ = 2 in the complex and the real case, respectively (Balan et al., 2006; Bandeira et al., 2014;
Conca et al., 2015). A possible intuition for this halving phenomenon comes from the fact that the
complex problem has twice as many variables but the same amount of equations of the real problem.
Hence, it is reasonable that the complex case requires twice the amount of data with respect to the
real case.
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The lower bound is proved by estimating the conditional entropy via the second moment method.
The spectral algorithm computes the eigenvector corresponding to the largest eigenvalue of a

matrix of the form:

Dn =
1

n

n∑
i=1

T (yi)aia∗i , (9)

where T : R→ R is a pre-processing function. For δ large enough (and a suitable choice of T ), we
expect the resulting eigenvector x̂(y) to be positively correlated with the true signal x. The recent
paper (Lu and Li, 2017) computed exactly the threshold value δu, under the assumption that the
measurement vectors are real Gaussian, and T is non-negative.

Here, we generalize the result of (Lu and Li, 2017) by removing the assumption that T (y) ≥
0 and by considering the complex case. Armed with this result, we compute the optimal2 pre-
processing function T ∗δ (y) for the general model (1). Our upper bound δu is the phase transition
location for this optimal spectral method. In the case of phase retrieval (as σ → 0), this pre-
processing function is given by

T ∗δ (y) =
y − 1

y +
√
δ − 1

, (10)

and achieves weak recovery for any δ > δu = 1. In the limit δ ↓ 1, this converges to the limiting
function T ∗(y) = 1− (1/y).

While the expression (10) is remarkably simple, it is somewhat counter-intuitive. Earlier meth-
ods (Candès et al., 2015c; Chen and Candès, 2015; Lu and Li, 2017) use T (y) ≥ 0 and try to extract
information from the large values of yi. The function (10) has a large negative part for small y, in
particular when δ is close to 1. Furthermore, it extracts useful information from data points with yi
small. One possible interpretation is that the points in which the measurement vector is basically
orthogonal to the unknown signal are not informative, hence we penalize them.

Our analysis applies to Gaussian measurement matrices. However, the proposed spectral method
works well also on real images and realistic measurement matrices.

We also compare our spectral approach to message passing algorithms. In particular, we prove
that, for δ < δu (i.e. in the regime in which the spectral approach fails), message passing converges
to an un-informative fixed point, even if initialized in a state that is correlated with the true signal x.
Vice versa, for δ > δu (i.e. in the regime in which the spectral approach achieves weak recovery),
we consider a linearized message passing algorithm, and prove that the un-informative fixed point
is unstable.
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