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Abstract

The problem of Non-Gaussian Component Analysis (NGCA) is about finding a maximal low-
dimensional subspace E' in R" so that data points projected onto E follow a non-Gaussian distri-
bution. Vempala and Xiao (2011) proposed a local search algorithm, and showed that it was able to
estimate F accurately with polynomial time and sample complexity, if the dimension of E is treated
as a constant and with the assumption that all one-dimensional marginals of the non-Gaussian dis-
tribution over E have non-Gaussian moments. In this paper, we propose a simple spectral algorithm
called REWEIGHTED PCA, and prove that it possesses the same guarantee. The principle that un-
derlies this approach is a new characterization of multivariate Gaussian distributions.

1. Introduction

1.1. Non-Gaussian Component Analysis

Dimension reduction is a necessary step for much of modern data analysis, the principle being that
the structure or “interestingness” of a collection of data points is contained in a geometric structure
which has much lower dimension than the ambient vector space. We consider the case where the
geometric structure in question is a linear subspace. In other words, we are in the situation where
the variation of the data points within this subspace contains some information which we would like
to extract, while their variation in the complementary directions constitutes mere noise.

In many cases, it is reasonable to think of the noise as being Gaussian. Formally, we then have
the following generative model. Let E be an unknown d-dimensional subspace of R, and let E+
be the orthogonal complement of E. Let X be a random vector in R", which we can decompose into
two independent components: a non-Gaussian component X that takes values in E, and a Gaussian
component g that takes values in £*. In other words, we let X = (f(, g)c EpEL!

Our goal is to recover the subspace E from a sample of independent realizations of X. This is
precisely the framework of the problem of Non-Gaussian Component Analysis (NGCA). We make
no assumption on the relative magnitudes of X and g. When the noise component is much smaller,
which is a reasonable assumption in some real world applications, £ can be recovered using the
standard Principal Component Analysis (PCA). However, PCA manifestly fails when the signal to
noise ratio is small, i.e. when X has lower magnitude than g.

1. It is not necessary to assume that the Gaussian and non-Gaussian subspaces are perpendicular. They automatically
become perpendicular if we apply a whitening transformation.
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With mild distributional assumptions, applying a whitening transformation to the data points
can be done efficiently with sample size linear in the dimension (see Vershynin (2011)). As such,
we might as well assume that the distribution is already whitened (i.e. isotropic). In other words,
for the rest of this paper, we work with the model:

Definition 1 (Isotropic NGCA model)
X=Xg ecEaoE" EX=0, EXX'=I,. (1.1)

The NGCA problem is closely related to the problem of Independent Component Analysis
(ICA), but generalizes it in a crucial way. ICA assumes the existence of a latent variable s with
independent coordinates, whereas in our case, the distribution of X is allowed to have any manner
of dependencies amongst its entries.

1.2. Quantifying ‘“non-Gaussianity”

In order to provide a guarantee for an algorithm for NGCA, one needs to quantify the deviation of
X from being Gaussian. We will do so in terms of its moments.

Definition 2 We say that X is (m, n)-moment-identifiable along a unit vectorv € E if there is some
1 < r < mforwhich
[E{(X,»)"} — 7| = 7. (1.2)

Here y, is the r-th moment® of a N'(0, 1) random variable. The r-th moment distance of X from a
standard Gaussian is defined as the quantity

Dg,:= sup |E{(X,»)"} —| (1.3)
veS"—1INE

There are two reasons why we take such an approach. First, it allows us to analyze our proposed
algorithm more easily, since the algorithm is a moment method, and second, by the classical moment
problem, if Dg = 0 for all positive integers r, then X has the standard Gaussian distribution.

N onethelesé, readers may be concerned about how the moment-identifiability condition squares
with other notions of distribution distance. This was investigated somewhat by Vempala and Xiao
(2011), who proved the following result for log-concave distributions on R.

Fact 3 (Lemma 1 in Vempala and Xiao (2011)) Let G be the density of a standard Gaussian ran-
dom variable, F the density of an isotropic log-concave distribution. Suppose G is not (m,n)-

moment-identifiable, i.e. forr =1,... m,|[Ep{X"} — .| < n. Then there is a universal constant
C such that |
ogm m
I1F =Gl < CW +nme.

We note that the log-concave assumption is simply to obtain a tail bound for the characteristic
function for /. Hence, the result also holds for any distribution with a C' density, albeit with
possibly a different constant in the bound. Furthermore, the method for proving the result can easily
be generalized to multivariate distributions.

2. One can check that . = (r — 1)!! when r is even, and is zero for r odd.
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1.3. Previous work on NGCA

As far as we know, the NGCA problem was first formulated and studied by Blanchard et al. (2006).
They observed that whenever X satisfies the NGCA model (1.1), then for any smooth function h,
we have

B(h) :=E{Xh(X)} - E{Vh(X)} € E. (1.4)

This suggests that if we can find a rich enough collection of functions 7, then one should be able
to recover E as the span of {3(h): h € H}. Hence, the authors proposed first forming empirical
estimates B(h) using the given i.i.d. samples of X, and then running PCA on this collection of vec-
tors. Inspired by the FastICA algorithm of Hyvarinen (1999), they suggested picking test functions
of the form hg o, (X) = ha((X,w)) where w € S"! and {h,: a € R} is a one-parameter family of
smooth functions. They called this approach Multi-index Projection Pursuit.

Subsequent papers have built upon this in several ways. Kawanabe et al. (2006) investigated the
situation when the contrast functions h;’s are chosen to be radial kernel functions, and when these
are adapted to the data in an iterative fashion. Diederichs et al. (2010, 2013) replaced the PCA step
with a semidefinite program, thereby yielding an approach they call Sparse NGCA.

All the papers in this line of research suffer from the defect that the performance of the algo-
rithms all depend experimentally and theoretically on some “good” behavior of the 3(h)’s. Clearly,
how “good” the 3(h)’s are depends intimately on how the chosen contrast functions interact with
the particular way in which X deviates from being Gaussian. None of these papers are able to
quantify this dependence theoretically, and instead simply assume the “good” behavior (see for in-
stance Assumption 1 in Diederichs et al. (2013)), so their proposed algorithms cannot be said to
have polynomial time and sample complexity guarantees.

Indeed, prior to our work, the only algorithm with such guarantees was proposed and studied
by Vempala and Xiao (2011). Their strategy was to adapt Frieze et al. (1996)’s work on ICA to
higher moments. For each positive integer r, they defined the marginal moment function f,.(v) :=
E{(X,v)"}, and noted that the strict local optima of f,, would have to lie in F. Furthermore, for
each r, the r-th moment tensors of X defining f, can be approximated up to € accuracy in each of
its entries with enough samples. These therefore yield empirical estimates fr that have local optima
that are close to those of f,. Finally, they showed how to identify a local optima of fT using a 2nd
order local search. The samples are then projected onto the orthogonal complement of this direction,
and the algorithm is applied recursively on the projection. They were able to prove that whenever X
is (m, n)-moment-identifiable along all unit vectors v € FE, then their algorithm recovers a subspace
E close enough to E with time and sample complexity polynomial in n, 1, 1/, and log(1/8), where
§ is the failure probability. The degree of the polynomial however grows linearly in m and d.

Other work on NGCA include M. Kawanabe (2005); Kawanabe et al. (2006); Kawanabe and
Theis (2006); Sasaki et al. (2016). These papers have limited theoretical analysis, and we omit a
discussion of these because of space constraints.

3. We are of course omitting numerous details of their work. In addition, their statement of their guarantee (see Theorem
1 in their paper) is also somewhat different from how we have stated it here: they have both a slightly weaker
assumption on X ((m, n)-moment-distinguishability) and a slightly weaker conclusion on E (in terms of moment
distance). Nonetheless, their intermediate results are sufficient to prove the version that we have stated in the main
text.
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2. Main results

The principle that underlies our approach to NGCA is a new characterization of multivariate Gaus-
sian distributions. Throughout this section, X denotes a random vector in R™ and g is a standard
Gaussian random vector in R”™. By X’ we will always denote an independent copy of X.

Theorem 4 (First Gaussian test) Suppose X has the same radial distribution as g, i.e. || X||2 and
|\g|l2 are identically distributed. If (X,X') has the same distribution as (g,g’), then X has the same
distribution as g, i.e. the standard Gaussian distribution.

We will prove this theorem in Section 3 via a decomposition of moment tensors and a resulting
energy minimization property of the Gaussian measure. The theorem guarantees that any non-
Gaussianity of X is always captured by either the norm ||X]|, or the dot product pairings (X, X'). It

is clear that the norm condition on its own is not sufficient to guarantee that X 4 g. For instance,
let @ have any non-uniform distribution on the sphere. Then ||g||,0 has the same radial distribution
as g, but is not itself Gaussian.

This result by itself does not address the NGCA problem, in which we are looking for non-
Gaussian directions in the distribution of X. To this end, we propose a matrix version of the first
Gaussian test. Pick a parameter o > 0 and consider the test matrices

1

E{e*®XIX(x)"}, @D
Zy

1
By o= — E{eoIXEXXT} and Wy, =
I Z@ ’

where the normalizing quantities Zg = Zg x () := E{e=*IXI2} and Zg = Zg x(a) := E{e-*XX)}
are the moment generating functions of ||X||3 and (X, X’) respectively. We also remark that they
resemble partition functions in statistical mechanics.

For a standard Gaussian random vector g, a straightforward computation (see Lemma 31) shows
that both test matrices are multiples of the identity, namely

Dy, =(2a+1)7'L, and Ty, =a(a® 1)L, (2.2)

Our second test guarantees that the non-Gaussianity of X is captured by one of the test matrices,
and moreover that their eigenvectors reveal the non-Gaussian directions of X.

Theorem 5 (Second Gaussian test) Consider a random vector X which follows the isotropic NGCA
model (1.1). Then, for any || small enough, either ®x ,, has an eigenvalue not equal to (2cc+1) 71
or Wy o has an eigenvalue not equal to a(a? —1)~L. Furthermore, all eigenvectors corresponding
to such eigenvalues lie in E.*

In Section 4, we will show how to derive the second Gaussian test from the first using a block
diagonalization formula for each of the matrices ®x , and Wx . Again, it is easy to see that Px
is not sufficient by itself to identify non-Gaussian directions: Take X = ||g||,0 as before, and this

4. The matrix ®x . always exists, but when X is not sub-Gaussian (i.e. can be rescaled so that marginals have tails
lighter than a standard Gaussian), ¥'x , may not be well-defined even for small «. In that case, ||X||, has a different
distribution from ||g||,, so that ®x,, has non-Gaussian eigenvalues. We can hence think of ®x  as the primary test
matrix, and ¥x . being an auxiliary that is only required in hard (effectively adversarial) cases.
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time that assume that € is uniform on {j:ei}f[:l. The symmetry implies that ®x , is a scalar matrix,
and computing its trace shows that it is equal to (2a + 1)~ '1,,.

For simplicity, we stated both Gaussian tests for population rather than for finite samples; they
involve taking expectations over the entire distribution of X which is typically unknown in practice.
However, both tests are quite robust and work provably well on finite (polynomially large) samples.
Robust versions of Gaussian tests can be formulated in terms of our definition of moment distance
(see (1.3)).

Theorem 6 (First Gaussian test, robust) There is a universal constant ¢ > 0 such that for each
positive integer r, we have either

B3} — E{llglz}] > en?/3 or  [E{(X,X)"} — E{(g,g")"}| > en;.

Here 7, = E{|g|"} is the r-th absolute moment of a standard Gaussian random variable, and
Nr = min{DX,ra :Yr}

As with the non-robust version, we will prove this theorem in Section 3 using a decomposition
of moment tensors. There is a similar robust version of the second Gaussian test, which we will skip
here but state and prove in Section 4.

Robustness allows us to use finite sample averages instead of expectations in the Gaussian tests,
which is critical for practical applications. Indeed, consider a sample X, ..., Xy, X}, ..., Xy of
2N 1i.i.d. realizations of a random variable X. We can then define the sample versions of the test
matrices in (2.1) in an obvious way:

N N
. 1 ~ 1 ’
Byxo=— ) e~lIXilEX, X7 and xpx,a:? N e XD X, (x)T + X(XT), (2.3)
® -1 ¥

with the normalizing quantities Zg := S e=alXill3 and Zg := 2 SN emaXa X,

The second Gaussian test leads to the following straightforward algorithm for solving NGCA
problem based on a finite sample: Use the sample to compute the test matrices i’x,a and ‘i’x,a;
select the eigenspaces corresponding to the eigenvalues that significantly deviate from the Gaussian
eigenvalues. Then all vectors in both eigenspaces will be close to the non-Gaussian subspace F
which we are trying to find. Let us state this algorithm and its guarantee precisely.

Algorithm 1 REWEIGHTED PCA(X,a1,a2,51,52)
Input: Data points X, ..., Xy, X],. .., Xy, scaling parameters a;, as € R, tolerance parameters

617ﬁ2 > 0.

Output: Two estimates E¢ and E‘I, for .
1: Compute test matrices ®x o, and ¥x ,,.

2: Compute the eigenspace E'g of ®x ., corresponding to the nonzero eigenvalues that are farther
than 3 from the value (2c;; + 1)1,

3: Compute the eigenspace Eg of \ilxﬂz corresponding to the nonzero eigenvalues that are farther
than (3, from the value az(a3 — 1)~ L.

Theorem 7 (Finding one non-Gaussian direction) Ler X be a sub-Gaussian random vector (see
Appendix B) which follows the isotropic NGCA model (1.1), and with sub-Gaussian norm bounded
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above by K > 1. Let r be the minimum integer for whzch the r-th moment distance Dy . =: D > 0.
Then for any 6, € € (0, 1), with probability at least 1 — 9, if we run Reweighted PCA wzth a choice
of parameters o, as, 51, B2 that is optimal up to constant multiples, at least one of Eg and Eg
is non-trivial, and any unit vector in their union is e-close to one in E, so long as the sample size
N is greater than poly,(n,1/e,log(1/0),1/D, K). Here, poly, is a polynomial whose total degree
depends linearly on r.

The idea of the proof is to use eigenvector perturbation theory from Davis and Kahan (1970).
The robust version of the second Gaussian test asserts the existence of a gap between Gaussian and
non-Gaussian eigenvalues. By bounding the deviation of the test matrix estimators <I>X ~ and \IIX a
from their expectation, we can thus show that their eigenstructures are similar. We will prove this
theorem formally in Section 5.

The next step is to obtain a good estimate for the entire non-Gaussian subspace. To do so,
we follow Vempala and Xiao (2011)’s strategy of projecting the sample points onto the orthogonal
complement of the found directions, and recursing our algorithm on the new sample. After a set
number of iterations, we collate all the found directions into a basis spanning candidate subspace
E. To state our guarantee for this procedure, we use the following notion of distance between
subspaces.

Definition 8 (Subspace distance) Ler F' and F' be subspaces of R™ of dimensions m. Let U and
U’ be matrices whose columns form an orthonormal basis for F and F' respectively. The distance
between I and F' is defined to be d(F, F') := ||{UUT — U'(U")7|| 5.

Theorem 9 (Finding all non-Gaussian directions) Let X be a sub-Gaussian random vector which
follows the isotropic NGCA model (1.1), and with sub-Gaussian norm bounded above by K >
1. Suppose that X is (m,n)-moment-identifiable along all unit vectors v € E. Then running
Reweighted PCA recursively (i.e. Algorithm 2) produces an estimate E such that d(E ,E) < €so
long as the sample size N is greater than poly,, ,(n,1/e,log(1/0),1/D, K). Here, poly,, , is a
polynomial whose total degree depends linearly on m and d.

We shall prove this theorem in Appendix H. The theorem gives a polynomial time and sample
complexity guarantee that REWEIGHTED PCA solves the NGCA problem, so long as m and d are
assumed to be constants, while making exactly the same assumptions as Vempala and Xiao (2011).
This means that theoretically, both algorithms do just as well. On the other hand, REWEIGHTED
PCA is a simple spectral algorithm, which is easier and faster to implement than local search.

Furthermore, while local search discovers one non-Gaussian direction at a time, REWEIGHTED
PCA possibly discovers multiple directions in each iteration. Most importantly, there is hope that
all non-Gaussian directions can be discovered in the very first iteration. This is probably what
will happen in practice with real data, and we may moreover prove that this is the case for special
distributions. For instance, we can prove the following guarantee for finding a planted sphere.

Corollary 10 (Finding a sphere) Let X be uniformly distributed on the scaled unit sphere /d S
in E. Suppose we are given a sample of size N 2 dn?(n + log(1/8)) /€2, then running the first two
steps of REWEIGHTED PCA with a choice of o € [c1/n,ca/n], and B = «/3 yields a subspace
EII, so that d(E@, E) < e. Here, ¢y and ¢y are absolute constants.



PoLYNOMIAL COMPLEXITY FOR NON-GAUSSIAN COMPONENT ANALYSIS

2.1. Reweighted PCA in other contexts

The name of the algorithm stems from the first test matrix, which can be seen as a PCA matrix for the
reweighted sample obtained when each point X; is given the weight e=lXil3, As mentioned in the
previous section, ®x , reveals at least one non-Gaussian direction in all but adversarial situations,
and so can be considered the primary test matrix.

The idea of doing PCA with weight functions that are non-linear in the sample points can be
traced back at least as far as Brubaker and Vempala (2008). In that paper, the authors similarly
use Gaussian weights, but do so in order to handle clustering for Gaussian mixture models that
are highly non-spherical. In a later paper, Goyal et al. (2014) used Fourier weights to handle ICA.
While our analysis is radically different, the idea for the algorithm was directly inspired by these
two papers.

2.2. Organization of paper and notation

In Section 3, we will prove the first Gaussian test and its robust version. In Section 4, we will
prove the second Gaussian test and state a robust version needed for proving our guarantee for
Reweighted PCA. The guarantee for finding one direction is proved in Section 5 and Appendix
G. The guarantees for finding all directions, and the special case of finding a sphere are proved in
Appendices H and I respectively. For the sake of space, many technical details are also deferred to
the appendix. Throughout the paper, scalars are denoted in standard font, while vectors and matrices
are denoted with bold font. C' and ¢ denote absolute constants whose value may change from line
to line. We let g, denote the standard Gaussian vector in R™. The subscript is omitted whenever
the dimension is obvious. In addition, for each r, we let ~,. and 7, denote the r-th moment and r-th
absolute moment of a standard Gaussian random variable.

3. Proof of the first Gaussian test

The first Gaussian test is based on the work of Tan (2017). For completeness, we will repeat the key
arguments. The statements and proofs in this section are valid more generally for random variables
X with finite moments of all orders (not necessarily sub-Gaussian).

Recall the following fact from multilinear algebra. For any positive integer r, we may identify
the r-th tensor product 77(R") = R" ® --- ® R™ with R"" by picking as a basis the vectors
{ei, ®e, ® - @€, } o <, With this choice of Euclidean structure, the Euclidean inner
product between any two pure tensors u; ® --- ® u, and vi ® - - - ® v, (treated as vectors) can be

written as
'

MR QU V- QVy) = H(ui,vi).
i=1
In particular, for power tensors u®” and v®”, we have the formula (u®”, v®") = (u,v)".
Now let X and Y be two independent random vectors. The above formula allows us to rewrite
the r-th moment of their inner product as an inner product between their r-th moment tensors.
Namely, we have

E{<X7Y>T} = E{<X®T7Y®T>} = < rXaM§(>a (3.1
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where we define My := EX®". For independent copies X, X’ of the same random vector having
distribution p, My = My, so

E{(X,X)"} = ||Mk|*. (3.2)

Next, for any random vector X, let X, denote a random vector that is independent of X, has
the same radial distribution as X, and whose distribution is rotationally invariant. We call X,.,; the
rotational symmetrization of X. Comparing the moment tensors of a random vector and those of its
rotational symmetrization gives rise to what we shall call eccentricity tensors. Specifically, for any
positive integer r, we define the r-th eccentricity tensor of X to be Ex = My — My .

. d . . . . . . .

Since X = X, if and only if X is rotationally invariant, we see that the eccentricity tensors

of X are quantitative measures of how far its distribution is from being rotationally invariant. This
interpretation is further supported by the following observation.

Lemma 11 (Orthogonality) The eccentricity tensors of a random vector X are orthogonal to the
moment tensors of its rotational symmetrization. In other words, for any positive integer r,

T 2 T
(B M) =0 and M]3 =||M,,, |3+ X2 (3:3)

rot

Proof Let Q be a random orthogonal matrix chosen according to the Haar measure on O(n). For
any fixed vector v € R"™, Qv is uniformly distributed on the sphere of radius ||v||,, so if Y is any
random vector independent of Q, applying Q to Y preserves its radial distribution but makes QY
rotationally invariant.

Now choose Q to be independent of X and X,.,;. Our previous discussion implies that QTX 4
QX ot 4 X, ot. We use this to compute

E{<X’th>r} = E{<X7erot>r} = E{<QTX7XTot>T} = E{< ;ot>X7“ot>r}7 (3.4)

where X/, is an independent copy of X,..;. We may then apply identities (3.1) and (3.2) to rewrite
the above equation as

< TX’ M§r0t> = <MTX7‘Dt ’ Mg(rot > : (35)

Subtracting the right hand side from the left hand side gives (3.3). |

Theorem 12 Let X be a random vector in R™ with finite moments of all orders. Then
a) (Minimization) If X' is an independent copy of X, and X, o1, X, are independent copies of its
rotational symmetrization, we have

E{(X,X)"} > E{(X,ot, X;01)" } (3.6)

rot

for any positive integer r.
b) (Uniqueness) Furthermore, if equality holds in (3.6) for all r and we further assume that X
has a subexponential distribution’, then X is rotationally invariant.

5. For an introduction to the properties of subexponential distributions, we again refer the reader to Vershynin (2011).
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Proof Using identity (3.2), we rewrite the first claim as

2

2
HMTX||2 2 HMgrot 27

and this follows immediately from equation (3.3).

If equality holds for all positive integers 7, then by (3.3), Ex = 0 for all r, implying that X
and X,,; have the same moment tensors of all orders. Since subexponential random variables are
characterized by their moments (see Lemma 24), X and X,.,; have the same distribution. |

Proof [Proof of Theorem 4] If X has the same radial distribution as g, then g is the rotational
symmetrization of X. The claim is then a direct application of the uniqueness portion of Theorem
12. |

We now move on to proving the robust version of the test, namely Theorem 6.

Lemma 13 Let X be a random vector in R™. Let 0 be uniformly distributed on the sphere S™ 1.
Then the following hold for any positive integer r:

a) My, = E{||X|/3}Mp.

b) ||Ex|l3 = (B{(X,X")}") — (B{||X][5})*(E{(6,6)}").

¢) For any unit vector v € R",

B9}~ E{lg)'}] < E(IXI5) — E{lgl3}I=(0.6)") )
+ (=lEx)) - ®(xip)E(e.0))

d) In particular, when r is odd,

E{(X,»)"} — E{(g.»)"}| < (B{(X.X)"})"* = |[E{(x.X)"} - (E{(g.&")"})|"*. (3.8)
Proof Deferred to Appendix B. |

By balancing the two terms on the right hand side in part c), we obtain the following lemma,
whose proof is again deferred to Appendix B.

Lemma 14 Let X be a random vector in R™ for n. > 2. Suppose there is a unit vector v € S"~1,
an even integer v > 2, and a positive number 0 < § < 1 such that |[E{(X,v)"} — E{(g,v)"}| >
OE{(g,v)"}. Then either

2

EOIXI5) — Elgl3} > T E{g )} or [BIXX)) ~ Bllg.g)}] > o (Bllgw)' )"

Proof [Proof of Theorem 6] If r is odd, then the statement follows from (3.8). If r is even, set

Dx., . )
0 = =2+ in the previous theorem. ]
Efg.v) p
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4. Proof of the second Gaussian test

In this section, we return to the setting where X follows the NGCA model (1.1). We further as-
sume that the non-Gaussian component X is a sub-Gaussian random vector with sub-Gaussian norm
bounded by K. In order not to break the flow of the paper, most of the proofs are deferred to Ap-
pendix C.

The first step in proving the test is to notice that the independence of the Gaussian and non-
Gaussian components allows us to block diagonalize the test matrices.

Lemma 15 (Block diagonalization for ®x , and Wx ,) Assume E is spanned by the first d basis
vectors. Then the test matrices ®x o and Wy , decompose into blocks in the following manner:

L5 0 V5 0
Pyo=—22 Uy, = |—2< : 4.1
X,« < 0 (I’g,a > ) X, < 0 lIlg,a > ( )

We then observe that the trace of the test matrices are conveniently equal to the negated log
derivatives of their respective partition functions.

Lemma 16 (Trace of ®y , and Wy ) Let Y be any random vector in R". Then Tr(®y,) =
—(log Zs y) () and Tr(¥y ) = —(log Zw y) ().

Our next lemma shows that for o small enough, the partition functions themselves differentiate
between Gaussian and non-Gaussian random vectors. This is obvious once we realize that they are
just the moment generating functions of || X||5 and (X,X’), and that these are analytic in a small
neighborhood around 0.

Lemma 17 (Partition functions characterize Gaussian distributions) The following hold for any
sub-Gaussian random vector Y:
a) If Ze y(o) = Zag(ay) for a sequence of values oy, converging to 0, then Y has the same
radial distribution as g.
b) Ifin addition, Zwy y(Br) = Zw g(Bk) for a sequence of values (3}, converging to 0, then X has
the standard Gaussian distribution.

We are now in a position to prove the second Gaussian test.
Proof [Proof of Theorem 5] Let g; denote the standard Gaussian in RC. By Lemma 17, either
Zyx(a) # Za g, (a) for |o| small enough, or Zg, g (o) # Zw g, (c) for |a| small enough. As such,
either (log Zg 5)' (@) # (log Za g,)' (@) or (log Zy, )" () # (log Zw g,) (). Assume the former
holds, and let Ay, ..., A\, denote the eigenvalues of ®x . Since we may write ®x , in a block form,
these eigenvalues are either those of (I.X,a or ®, . Without loss of generality, we may assume that
A1, ..., A\g are the eigenvalues of <I>5(’a, and A\gy1,..., A, are those of ®g .

Lemma 31 tells us that \gy1 = -+ = A\, = 2+ 1)_1. On the other hand, by Lemma 16,

d
D> A =Tr(®g,) = —(log Zg 5)'(a).
i=1
By Lemma 30, —(log Zg 4,) () = d(2cx

(
through by d, we get é Zle Ai # (2a+
value for 1 <7 < d.

1)~1, so we have Z?Zl i # d(2a + 1)1, Dividing
-1

_|_
1)~*, which implies that at least one \; differs from this

10
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If it were the case that (log Zg, )’ (o) # (log Zg g,)'(c), a similar argument involving ¥x .
gives the alternate conclusion. |

It is tedious but not too difficult to make the second Gaussian test quantitative. We do this
by tracking how the non-Gaussian moments for ||X||, and (X, 5(/) contribute to the power series
expansions for —(log Z4 %)’ and —(log Zy, )’ around 0. This yields the following theorem.

Theorem 18 (Second Gaussian test, robust) Let r be the integer such that Dy, > 0 and Dy, ., =
0 for all ' < r. Then either

a) for|al < n?r/[(CK?)"(d" Tt + (r + 1)!)], we have

1< o

d Z)\i(‘l’;},a) 21
i=1

b) orfor |a| < nr/[(CK?)/?3,(d"/>T" + (r/2 + 1)1)], we have

d 1
Z )‘i<(1)5('a
— 200+ 1

Here 7, = E|{(g,v)|" for an arbitrary vector v € S"~! and n, = min{Dx ., 3, }.

2
Chy r—1
> 4.2

2
cnp rj2-1
> . 4.

—d(r/2-1)9, lof .3)

SRR

5. Proof of guarantee for Reweighted PCA

The second Gaussian test tells us how we can recover non-Gaussian directions from ®x , and
WYy . Our guarantee for Rewe1ghted PCA algorithm shows that we can do the same with the
plug-in estimators <I>X o and \Ifx «- To this end, we first provide concentration bounds for these
estimators, whose proofs can be found in Appendix E.

Theorem 19 (Concentration for ‘i?'X’a) There is an absolute constant C' such that for any 0 <
6,6 < 1, and any 0 < a < 1/[CK?n], we have P{||®x.o — ®x.al > €} < 0 so long as N >
CK?(n +1log(1/8))e 2

Theorem 20 (Concentration for \ilxya) There is an absolute constant C' such that for any 0 <
6,0 < 1, if N > CK%*(n+log(1/8))e 2 and |a| < 1/[CK?T(n+7)], we have P{||¥x o —Px o >
€} < 6. Here, 7 = log'/?(N/ min{0, K¢}).

Lemma 21 (Guarantee for Fg) Suppose the moments of || X||5 and ||g |5 agree up to order r —1,
but there is a number A > 0 such that ’E{HXHQT} - E{HgdH%}‘ > A. Foranyd,e € (0, 1), pick o

such that 0 < a; < min{Ar/[(CK?)" (A" + (r + 1)))],1/[CK?n]}, and B = A} /[4d(r —
1)!]. Then with probability at least 1—0, Reweighted PCA with2N > CK2d3/2(n+log(1/5))/62 2
samples together with this choice of o and B1 produces a nontrivial estimate Eq> of dimension

1< dq> < d, such that there is a dq> dimensional subspace Eg C F satisfying d(E<1>, Es) <e

Proof Deferred to Appendix G |

11
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Lemma 22 (Guarantee for Ey) Suppose the moments of (X, X') and (g,8') agree up to order r—1

but |E{(X,X)"} —E{(g,g")"}| > A. Foranyd,e,7 € (0,1), pick0 < ag < min{Ar/[(CK?)"(d" T+
(r + )N],1/[CK?*n'*7)}, and B = Aol '/4d(r — 1)\. Then with probability at least 1 — 6,
Reweighted PCA with sample size 2N satisfying exp(n®7) min{0, Ke} > 2N > CK2d*?(n +
log(1/6))/B3€% together with this choice of ay and By produces a nontrivial estimate Eg of
dimension 1 < ch, < d, such that there is a cz\p-dimensional subspace By C E satisfying
d(Eg,Eg) <e

Proof The proof is completely analogous to that for the previous theorem, except that we replace
our estimates and identities for ®x ,, with those for Wx ., wherever necessary. |

Proof [Proof of Theorem 7] Combine the last two lemmas with Theorem 18 from the last section.
|

Remark 23 (Selecting optimal parameters) If the problem parameters d,n,r, K and Di,r were
known before hand, then in principle, one could compute the optimal tuning parameters o, o, 51, Bo.
In practice, however, one rarely is in this situation, so one would have to estimate the problem pa-
rameters as a first step to solving the NGCA problem. Nonetheless, one can do this by the dou-
bling/halving trick. In other words, we start with some fixed initial choice of oy and «o. Using
Theorems 19 and 20, we can detect whether there are any outlier eigenvalues with high probabil-
ity. If there are none, we halve o,y and oo and try again, repeating this process until outliers show
up. The number of iterations is then the base 2 logarithm of the final o1 and o, plus an addi-
tive constant. This is at most polynomial in all the problem parameters, so the algorithm remains
efficient.

6. Discussion

We have presented and analyzed an algorithm that is guaranteed to return at least one non-Gaussian
direction efficiently, with sample and time complexity a polynomial in the problem parameters for a
fixed r, where r is the smallest order at which X has positive r-th moment distance from a standard
Gaussian. Furthermore, if X is (m,7)-moment-identifiable, then the algorithm estimates the d-
dimensional non-Gaussian subspace efficiently with polynomial time and sample complexity for
fixed m and d.

Since the degree of the polynomial increases linearly in 7, it would seem that the algorithm is
practically useless if 7 is larger than a small constant. However, note that having all third and fourth
moments equal those of a Gaussian is a condition that is already stringent in one dimension, and
which becomes even more so in higher dimensions. As such, unless X has some kind of adversarial
distribution, r will be either 4 or 3, depending on whether X is centrally symmetric or not.

The algorithm also often delivers much more than is guaranteed for several reasons. First, in
order to bound the subspace perturbation by €, we used a very crude estimate of the eigengap,
bounding it from below using the pigeonhole principle, which in the worst case assumes that the
eigenvalues are spread out at regular intervals. This should not happen in practice, and we expect the
non-Gaussian eigenvalues to instead cluster relatively tightly around their average. If this happens,
the sample complexity requirement can be relaxed by a factor of d.

12
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Second, just as it is extremely unlikely for r to be higher than 4, for a general non-Gaussian
X and a small, random «, it is extremely unlikely for any of the non-Gaussian values of ®x . to
be equal to the Gaussian one on the dot. This means that even though the guarantee for a single
run of the base algorithm is for one direction, in practice we most probably can recover the entire
subspace E simultaneously with just <i>x7a alone (as in the case in Corollary 10), albeit with a more
sophisticated truncation technique.

6.1. Conjectures and questions

We conjecture that REWEIGHTED PCA actually recovers the entire non-Gaussian subspace F with
in polynomial time and sample complexity if we fix m, but now allow d to vary. This would
improve upon both our result and that of Vempala and Xiao (2011). The first Gaussian test for a
random vector X using the distribution of its norm and dot product pairing also leads to further
questions. For a fixed nonzero real number ¢, both of these appear in the formula for || Y ||§, where
we set Y; := X + tX/, so it is natural to ask whether Reweighted PCA works with Py, . alone for
some t. In particular, does it work for £ = —1? It is also an open question whether (X, X’) alone is
sufficient to test whether X is standard Gaussian.
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Appendix A. Equivalence of NGCA models

In this section, we note the equivalence of several formulations of the NGCA model used in the
literature. First, the isotropic NGCA model (1) can be written equivalently as

F(x) = H(Pp(x)G(PpL(x)),

where I’ is the distribution of X, H is the distribution of f(, and G is the standard normal distribution.
This is the way in which Vempala and Xiao (2011) stated the NGCA model.
Next, consider the model
X=X+g,

where now X € F as before, but g is a centered Gaussian in R” with arbitrary covariance. As
a special case of this, we have X = (X,g) € E @ F', where E and E’ are complementary but
not necessarily orthogonal. Let 3 = Cov(X), and consider the whitened distribution X ~1/2X =
»-1/2X + ©-1/2g. Now the non-Gaussian subspace is £ ~'/2E, which we assume without loss of
generality to be the span of the first d coordinate vectors. This means that Cov(Eil/ 25() only has

nonzero entries in its top left d by d block. Since we can decompose
I, = Cov(EZ1/2X) = Cov(Z7/2X) + Cov(Z~'/%g),

this in turn implies that we can write

Al 0
—1/24\ _
Cov(E~1/7g) = ( i ) ,

where A is a PSD matrix such that A = I; — »-1/2X. Because of this structure, we have
»~1/2g = (h,h) € E® E*-, withh ~ AV(0,A) and h ~ N(0,I,_,). Since these two Gaus-
sian components have zero correlation, they are independent. Since a non-Gaussian distribution
remains non-Gaussian after convolution with a Gaussian, if we set Y := X~1/2X + h to be our new
non-Gaussian component, we see that we have again produced an instance of (1).

This additive model seems to be the most common formulation of NGCA in the literature (see
Blanchard et al. (2006); Kawanabe et al. (2006), etc.). It can also be equivalently written as

F(x) = H(Pg(x))G(x), (A.1)
where (G is now a centered Gaussian density with arbitrary covariance, and H is now just some

function. See Lemma 1 in Blanchard et al. (2006) for more details.

Appendix B. Details for Section 3

Let ¢): Ry — R be a convex, increasing function with ¢)(0) = 0. We define the Orlicz norm of a
random variable X with respect to ¥ as

IX |, := nf{A > 0 : E{(IX|/A)} < 1} (B.1)

Equipped with this norm, the space of random variables with finite norm forms a Banach space,
called an Orlicz space. For o > 1, set () := exp(x®) — 1. Elements of the ¢ Orlicz space
are called subexponential random variables. Similarly, elements of the vy Orlicz space are called
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sub-Gaussian random variables. The reason for this terminology is that the finiteness of (B.1) is
equivalent to tail decay conditions for 1) = 1/, (see Vershynin (2011).) Finally, we say that a random
vector X in R™ is sub-Gaussian (respectively subexponential) if all its 1-dimensional marginals are
sub-Gaussian (respectively subexponential).

Lemma 24 Let X be a subexponential random vector in R™. Then the distribution of X is deter-
mined by its moment tensors.

Proof Let ¢x(v) = E{e**¥)} denote the characteristic function of X, and let K = ||X| 4, denote
the subexponential norm of X. We then have the following moment growth condition (see Vershynin
(2011)):

ry\1/r
sup limsup E{X v} < K.

vesn—1 r—oo r

(B.2)

This condition implies that for each v € S™~!, the function ¢ +— E{e®X")} can be written as

a power series with coefficients w (see Billingsley (1995)), so ¢x(v) is determined by the
moments E{(X,v)"}. By (3.1), E{(X,v)"} = (M&%,v®"), so these are functions of the moment
tensors. Finally, it is a fact from elementary probability that X is determined by its characteristic
function (see Cinlar (2011)). [ |

Proof [Proof of Lemma 13] For the first statement, observe that X,,; = ||X||,0, with ||X]|, and 8
independent. We thus have

My, = E{(IX[,6)°"} = E{|X5}E{0°"} = E{|IX]||;}Mj.

Next, rewrite (3.3) as \\E%y\g = |Mg|l3 —2\\M§mu§. By (3.2), we have |[Mg||2 = E{(X,X’)"} and
using a), we get [My |15 = (E{||IX[|5})"E{(0,6")"}.
To prove part ¢), fix v and write
E{(X,v)"} —E{(g,v)"} = (Mg — M, v®") = (MY, — Mg, v¥") + (EX, v¥").
We use a) to write
(My,,, — Mg, v¥") = (E{|X]|5}Mp — E{lg]5}Mg, v¥") = (E{[X|[5} — E{[lgl>NE{(6.v)"}.

Notice that E{(0,v)"} = E{(0, 8")" }. We then combine the last two equations with b) and Cauchy-
Schwarz to get (3.7). Finally, to get the last claim, we use the fact that E{(0,6")"} = E{(g,g)"} =
0 whenever r is odd. |

Proof [Proof of Lemma 14] Observe that (3.7) gives the bound

T T T T T T T 1/2
OE{(g,v)"} < [E{IIX||3} — E{|Igll3}|E{(6,6")"} + (E{<X’X'> } = E{IXI15)* (E{(0.6") })> ~
(B.3)
Suppose |E{|IX]|l5} — E{l|gl5} < %E{(g, v)"}. Then the second term on the right in equation
(B.3) has to be large. Indeed, since 6 < 1 and
1
n7

E{(0.6')"} = E{¢7} < E{07} =
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we have, for n > 2, that

2
(=L X))~ EXIE)*E(0.007) ' > m (e} - L E(0.0)1E(g V)

> Dr{lg )

Now, applying the fact that E{(g,g)"} = (E{||g|5})*E{(6,8)"}, we use the reverse triangle
inequality and the above bound to write

[E{(X,X')"} —E{(g,&)"} > ‘E{<X,X’>T} — (E{IIX3})°E{(0.6")"} (B.4)

- | ®OXIEH” - B2l [E{(6,6))

2
> <785E{<g,v>’"}> ~ |EUXIEH? - Lz’ [E{(6,6)").
(B.5)

Next, notice that

‘(H‘E{IIXHQ})2 - (E{llgllg})z‘ = [E{IX[5} — E{llgll2}HE{IX]l5} + E{llgll})
= [E{IX[I5} — E{llgl5} - 2E{llgl5} + (E{IX]5} — B{|lgl5})?,
so by the assumption on |E{||X||5} — E{]|g||5}|. we have
2
(EOXI3D? ~ Eelp) (.07} < Sl ') 2B (el -E(0.0)) B
52 ?
+ (%) B6.07)
2 2 2
— S E D+ (T ) B0.6)7)

1762

<~ E{EV))” (B.7)

We can now substitute (B.6) into (B.4) to get

2
E{X X))~ E{lg.€)7)] > g (B{g v

Appendix C. Details for Section 4

Proof [Proof of Lemma 15] The decompositions follow easily from the independence of the two
components of the mixed vector, X and g, as well as the unconditional symmetry of the Gaussian
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. . . o : 2
component. Let us illustrate this by proving the decomposition for ®x . First, note that e—olXlz =

e—alXl3e—ollel, 5o that Zo x(a) = Zg () Zp g(r). The top left d by d block is hence given by
E{e=XBXX"}  Zpg(a)E{e@XEXX"}  Ef{eelXEXX"}
Zo x(c) Zax(a) Zgx(a) oo

The bottom right d’ by d’ block is also computed similarly. Finally, any entry outside these two
blocks is of the form

E{eXIEX;g}  E{eIXIEX,(—g;)}

E{eoXIiX,g }

— = — =0.
Zp x() Zp x(a) Zox(a)
[ |
Proof [Proof of Lemma 16] We have
E|X|J2e~lXlz  —Z5 x () )
Tr(P = = : = —(log Z .
H(®xa) = = 20N Zox(a) ~ (s Zax)(a)
The calculation for Wy , is similar. ]

In order to prove Lemma 17, we first need to establish the analyticity for the two partition
functions.

Lemma 25 (Analyticity for Zg x and Zy x) Let X be a sub-Gaussian random vector in R™ with
sub-Gaussian norm bounded by K > 1. The functions Zg x and Zg x are both analytic on
(=1/CK?,1/CK?). They are given by the formulae Zg x(a) = 320 E{||X||3 }(—a)" /7! and
Zwx(a) = Y 2 E{(X,X)" }(—a)"/r\. Furthermore, by choosing C sufficiently large, on this
interval they satisfy the bounds

CK?|a|
7 7 < CK?n|a| it bl B C.1
Zox(a)l |Zwx(o)] < O+ o mm D
Proof Let us first prove the bounds in (C.1). Observe that
T 2 o E{IX]3")
E{e aHXIIQ} < E{elaHIXHQ} = Z TQM". (C2)

n=0
Here, Tonelli allows us to interchange the sum and expectation. We next use Lemma 32 to bound
the terms of this series. Indeed, using the equivalent estimate (E.5), we have

E{|X[3"} < C"K* (n" + 1)

for some universal constant C.. Substituting this into (C.2) and using |o| < 1/CK?, we have

e 2\T (1T |
E{efaHX”g} < E (CK ) (ln +T') ’a’r
T
r=0

_ - (CKPnja))” 2 Iy
—; . +;(CK o)

CK?|a

_ ,CK?nlal
¢ T CRal’
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One may prove the bound for Zg x by doing the same computation but using (E.2) instead of (E.1).
We next handle analyticity of Zg x. We shall prove by induction on r that we may differentiate
under the integral sign to get the formula

(7“) () = (—1 )TE{HXH% —a||XH2} (C.3)

Assume the formula is true for all ¥ < r. Then

X226 (@ thIXI3 _ |x||2r—2—elIXI3

Zgx(e) = (=1)"" lim E{ . } (C4)
_ e—hIXI3
— (—1)" i 2r—2 —afx|3l =72

(=1)" lim B{[X[)5" e~ ————} (C5)

Next, note that the integrand is positive and by the mean value theorem, for a fixed value of || X3,

we have ,
1 — e hIXIz

h
for some A’ € [0, h] if h > 0 and A’ € [h, 0] otherwise. As such, we have

2 _n 2
= [ X3¢~

21 — e—hlIXI2 2r_(|h|—a)||X]|2
— < |X]|5e ’

HX”QT 2 704HX||
For |h| — a < 1/CK?, one can easily show that this is integrable by expanding this as a power
series in HXH% and bounding the growth of the coefficients as above. As such, we may apply the
Dominated Convergence Theorem to push the limit inside the expectation in (C.4), thereby yielding
(C.3).
In particular, differentiating Zg x at 0, we see that its Taylor series at 0 is given by

00 2r
Zgﬂayvijgﬂ§bl@ﬂy. (C.6)

r!
r=0

The formula above shows that the Taylor series is absolutely convergent on our chosen interval. We
next need to show that Zg x agrees with its Taylor series on this interval, meaning we have to show
that the remainder term for the 7-th Taylor polynomial goes to zero pointwise. The Lagrange form
of the remainder term is written as

753" (o)
(r+1)!

RZ@,XW(O‘) = il

where 0 < |&'| < |a|. Applying Cauchy-Schwarz to the formula (C.3), we get

12530 () < (ROXIE2) " (e 2IxE) D

Lemma 32 again allows us to compute
4r+2 1/2 2\r+1/, r+1 |
(EOXIS21) ™ < (R + (1)),

19



PoLYNOMIAL COMPLEXITY FOR NON-GAUSSIAN COMPONENT ANALYSIS

This implies that for any C’ > 2C,
e ([-1/C"K2,1/C"K2))
1B Zg x.rll Lo (-1/c7 k2,10 K2)) < ’ N
L , (R (r + 1!

(CK2)H (01 4 (r+ 1)1) N
=TT (ORI + 1) (BN

CANAYAR S oo 2C)C"
< (= - nc/Ch _fET )
= (C’) <(r+1)! H) <e + 1—20/0/)

Using the fact that 7! ~ (g)r, this last expression decays to zero as 7 tends to co. Finally, to prove
the claim for Zg x, we repeat the same arguments. |

Note that in the course of proving the last lemma, we have also proved the following result to
be used elsewhere in the paper.

Lemma 26 (Taylor remainder terms for Zg x and Zy x) Let X be a sub-Gaussian random vec-
tor in R™ with sub-Gaussian norm bounded above by K > 1. There is an absolute constant C' such
that for all 0 < o < 1/CK?, on the interval [—a, o), the remainder terms for the r-th degree Taylor
polynomials for Zg x and Zg x at 0 satisfy the uniform bound

nrtl 2 CK?%a
”RZ<1>,X7T‘H007 HRZq:,xﬂ‘Hm < (CKQ)rJrlarJrl ((T n 1)| + 1> (eCK o+ 1_611(20() (C.8)

Proof [Proof of Lemma 17] By Lemma 25, all four functions are analytic in a neighborhood of 0.
Now recall that two different analytic functions cannot agree on a sequence with an accumulation
point. |

We now move on to proving Theorem 18. This requires the following technical lemma.

Lemma 27 Let X be sub-Gaussian random vector in R™ with sub-Gaussian norm bounded above
by K > 1. Suppose the moments of || X||5 and ||g||5 agree up to order v — 1, but there is a number

A > 0 such that |E{||X|2"} — E{Hgng}‘ > A, then there is an absolute constant C' such that for
la| < Ar/(CK?)" (0™ + (r + 1)), we have

/ !/ A rT—
|(log Za x)'(a) — (log Za )/ ()| > m!@! g (C.9)

Similarly, suppose the moments of (X,X') and (g,g') agree up to order r — 1 but |E{(X,X")"} —
E{(g,g")"}| > A, then for |a| < Ar/(CK?)"(n" ! + (r + 1)!), we have

|(log Zg x)' (@) — (log Zu ¢)'(a)| > 5 o (C.10)

A

Proof Let us first prove (C.9). For every positive integer k, let px (a) = Z;?:o IE{HXH%J tad /5!
denote the k-th Taylor polynomial of Zg x, and define pg; analogously. For convenience, also
denote the k-th Taylor remainder term as Rx j := R Zs x,k- FOr any a, we then have

_ Z:P,X(O[) _ Zfﬁ,g(a)
 Zax(e)  Zgg(a)

(log Za x) (o) — (log Za )" (r) (C.1D)
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which we can then bound using

Z:P,X(a) . Z</I>,g(a)
Zox(a) Zpgla)

Px. (@) Pr(@)

~|pxr-1(@) pgr-i(@)

| Zax(@)  px.(@)
Zex(a) pxr-1()

Per(0)  Zh4a)
Pgr—1() Zé,g(a)'
(C.12)

We now bound each of these three terms individually. First, we need upper and lower bounds
for px x(a). Using the [|X||3 moment bound (E.5), we have

E{|IX al’
st 11 3 B

< m
=1 I
k .
(CK?nal)’
R
Jj=1 J=1
CK?|a|
< CK?n|a| 1
=€ IRl
By sharpening the constant C' in our assumption on || if necessary, we may thus ensure that
1
px (o) =1 < 5 (C.13)
By the same argument, we can also ensure that
/ 2 1
Pxp(e) —E[X[3] < 5. (C.14)

By our assumptions on the moments of ||X||3 and ||g||3, we have px 1 = pg,_1. Furthermore,
only the leading terms of p&’r and p:g’r differ. This, together with (C.13) implies that

Px (@) pye(e)
PXr—1(0)  pgr—1(c)

> g ‘p;(,r(a) - p:g,r (Oé) ‘

2o !
_—. .1
— 3(r—1)! €15
Next, we have
Zpx(@) k() Zex(a) vy, ()| [Px.(@)  pPx.(@) (.16
Zox(a) pxr-1(c) Zeax(a) px(a) pxr(@)  pxp—i1(e)| '

Again we bound these two terms individually. Using the identity px ,(a) = px,—1(a) +
EIX |2 (—a)" /1!, we get

p;(,r (Oé) . pg{,r (04) - p;(,r (Oé) ‘ 1— PX,r (Oé)
pxr(@)  pxo—1(a) px,r (@) pxr—1()
Px,r(@) E[X])3 ol

(C.17)

pX,r(a)pX,rfl(O‘) 7!
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Using the bounds on px , and p&m (C.13) and (C.14), together with the HXH% moment bound (E.5),
we get

/ 2r| T 2\T (1T | r
Po(e)  |EIXal _ 3 (CK2) (4 r)lal” s
Px,r(Q)px,r—1(a) rl -8 rl
For the first term in (C.16), we write
Zgx(a)  px,(@)
Zax(@)  pxr)| = 108 Zex(@)) — (ogpx,(a))
b} 7T
B i (Z<1> X
da px 7”
R
‘10 ( XT@)‘ (C.19)
px.r(@)
Using Lemma 26 together with our assumptions on |«/|, we observe that
r+1 CK2‘04|
R < CKQ r+1y, . r+1 n 1 CK?|aln
| Xﬂ"(a)’ — ( ) ‘a| (T+ 1)| + € + 1— 0K2|Oé‘
1 nr+1
< (CK*)™Hal™ <(T — + 1). (C.20)

In particular, by sharpening the constant C' in our assumption on || if necessary, we can ensure that
this quantity is less than . In this case, we have

Rx ()
pX,r(a)

o (1 52 | Geer)
pXra pXra

< 2\(??:533) |
). (C.21)

X, ()
r+1
< (CK2) o ! < L 1>. (C.22)

1
<7)
-2

so that

g1y B

pX,r(a)

Rx,» (a)pgi,r (Oé)
DX r (a)2

By our bounds on these functions (C.13), (C.14), and (C.20), we have

Rxr(a)px . (a)
DX, r (04)2

pXr(a)
(r+1)!

Furthermore, by using the moment bounds (E.5) as before, one can show that

r+1

i)l < K3 Jal (" 4 +1).
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so that the first term is also bounded according to

Ry (@)

pX,r(a)

n’r—l—l

< (CK2)7"ya\’”< —i—r—i—l). (C.23)

r!

As such, combining (C.19) and (C.21) tells us that

Zyx(o) Pk, (0)

Zox(a) px(a)

n

r!

1 nr—i—l
+r+ 1) + (CK*) ™ol <(T O + 1)

< r?laf (

nr—i—l
< (CK?|a|" (r, o 1). (C.24)

We can now use this estimate together with (C.18) to continue (C.16), writing

VA a / a r+1 CKZ T (T ! r
Zex(a)  pxr-1(e) ! r!
nr—i—l
< (CK2)Tya’“< — 1>. (C.25)
7!
Notice that same methods also give us
/ ! 1
pg r(a) Z<I> g(a) 2 r <7’LT+ )
: - = < (CK*)'|« +r+1). (C.26)
per1(@)  Zagla)| = CEITT

We may therefore finally substitute these last two bounds, together with (C.15), into (C.12). This
yields

r+1

r—1
|(log Za x)' () — (log Za.g)' ()| > 28’ _ C(CK?)"|al" (nw +r+ 1). (C.27)

— 3(r—1)!

We now claim that with our assumptions on |/, the first term dominates the second. This is a simple
calculation, thereby competing the proof of (C.9). To prove (C.10), we repeat the entire argument,
but using the relevant estimates for Zg x instead of those for Zg x. |

Applying the previous lemma in the setting of our NGCA model, we get the following result.

Theorem 28 (Robustness for non-Gaussian eigenvalues) Let X be a sub-Gaussian random vec-
tor satisfying the NGCA model (1.1), and with sub-Gaussian norm bounded above by K > 1. Let
M(®g ) -5 Ad( Py, ) denote the eigenvalues of g . Suppose the moments of ||X||§ and ||gd\|§
agree up 1o order v — 1, but there is a number A > 0 such that |E{|X||3"} — E{|lg43"}| > A,

then there is an absolute constant C' such that for |a| < Ar/(CK?)"(d" + (r 4+ 1)!), we have

S A
—2d(r—1)

a7 (C.28)

ISHN

d 1
\Ni(Psy ) —
; (Px0) 200+ 1
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Similarly, let \(¥g ), ..., Ai(¥g ) denote the eigenvalues of Wy . and suppose the moments
of (X,X') and (g, g> agree up to order r — 1 but [E{(X,X"\"} —E{(g,g)"} > A. Then for
la| < Ar/(CK?)"(d™ + (r + 1)), we have

1 « A -1
- Ai(Py ) — > " C.2
Z ( X,a) a2 -1~ 2d(’l“ _ 1)| ’O[‘ ( 9)

Proof This is simply a translation of the previous theorem with the help of Lemma 16, which tells
us that the log derivatives of the partition functions are equal to the traces of ®x , and ¥x ., and
that of Lemma 31, which tells us what the Gaussian eigenvalue is. |

Proof [Proof of Theorem 18] Combine the previous Corollary with Theorem 6. |

Appendix D. Identities for Gaussian test matrices

In this section, we let g denote a standard Gaussian random variable, and g,,, a standard Gaussian
random vector in R". First, notice that independence gives Zg ¢ () = Zg 4()" and Zg g (o) =

Zq,,g(a)”.

Lemma 29 We have the identities Zg g (o) = (20 + 1)_"/2 when o > —1/2 and Zg 4 (o) =
(1- 042)_”/2 when |a| < 1.

Proof By the remarks above, it suffices to prove the formula when n = 1. These are then simple
exercises in calculus. Notice that

t (2a+1)t2
Zo o (a) = B{e 9"} = / et ey /
{),g( ) { } \/% m

Now substitute u = y/2a + 1 - ¢ to arrive at the formula for Zg 4. For the next formula, we use
conditional expectations to write

Zy g(e) = E{e™*9'} = E{E{e "% |g}}. (D.1)
The inner expectation can be computed as

(ag)?

e~ gt — o'
-7l

Substituting this back into (D.1) and using the same technique as above gives us what we want. Wl

E{e

Lemma 30 We have the identities —(log Zg g )/ (o) = n(2a 4+ 1)~ when o > —1/2 and
—(log Zw g ) (a) = na(a?® — 1)~ when |a < 1.

Lemma 31 We have the identities ®y o = (2 + 1)1, when o > —1/2 and ¥, o = o(a® —
1)711,, when |a| < 1. Here, I, is the n-dimensional identity matrix.
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Proof By rotational symmetry, we know that both matrices are multiples of the identity. To compute
these scalars, it hence suffices to find the trace of both matrices. But

E{e—augnlléug 12}
Tr(®, o) = n2] — _(logZ "(a).
"(Pg0) Efe—olel3) log Zag, ) ()

Dividing by n and using the previous lemma gives us what we want. |

Appendix E. Concentration and moment bounds

Theorem 32 (Concentration of norm for general sub-Gaussian vectors) Let X be a sub-Gaussian
random vector in R", with || X||,,, < K. There is a universal constant C' such that for each positive
integer v > 0, the moments of || X ||, and (X, X') satisfy

E{IXIENY" < CK (Vi + /) (E.1)

(E{|(X, X)) *" < CK(Vn+ V7). (E.2)
Proof The second bound follows from the first, since by Cauchy-Schwarz,
1/2 1/2 1
(B X1 < (B{XIIX 50 = E(IX]5H""

To prove (E.1), pick a %—net N on S"~1. A volumetric argument shows that one may pick N to
have size no more than 5" (see Vershynin (2011)). We then have

IX|ly = sup (X,v) <2sup(X,v).
vesn—1 veN

By definition, there is a universal constant ¢ such that for any fixed unit vector v € S, P{(X,v) >

t} <2exp (—%22) . Taking a union bound over the net thus gives

ct?
P{||X]|, > 2t} < 2exp <nlog5 — K2> (E.3)

Next, we integrate out the tail bound (E.3) to obtain bounds for the moments. Observe that if

2‘3;(22 > nlogb, we have nlog 5 — %2 < ct> This condition on t is equivalent to t > CK+/n, so

T 2K?
we have

1 t< CK+/n
P{|X], > 2t} < { v (E.4)

2exp(—%§> t>CKy/n

For any positive integer r, we integrate this bound to get

E{|X|5} = /O rr VB |X] > t)dt

CKy/n (9] ct?
< / rt" " dt +/ 2" exp<—2>dt
0 CK+/n K

<CO'K'n"? 4+ C"K"r /OO /2 Lot gy,
0
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The integral in the last line is the gamma function, so in short, we have shown that
E{|X|l5} < C"K"(n'/? + T(r/2+1)). (ES)

Taking r-th roots of both sides and using Holder, together with the fact that F(:L‘)l/ * < x, gives
(E.D). |

Lemma 33 (Covariance estimation for sub-Gaussian random vectors) Let X be a centered sub-
Gaussian random vector in R" with covariance matrix % and sub-Gaussian norm satisfying || X||,,, <

K for some K > 1. Let Sy = % Efi 1 XiXiT denote the sample covariance matrix from N in-
dependent samples. Then there is an absolute constant C' such that for any 0 < €,0 < 1, we have

P{HSN - ZH > e} < solongas N > CK?(n+log(1/8))e 2.

Proof Refer to Vershynin (2011). |

Lemma 34 (Moments of spherical marginals) Let 6 be uniformly distributed on the sphere S™ 1.
Then for any unit vector v € S"~' and any positive integer k, we have

13- (2k—1)

E{(6,v)"} =

Proof There are several ways to prove this identity. We shall prove this by computing Gaussian
integrals. Let g and g¢,, denote standard Gaussians in 1 dimension and n dimensions respectively.
Then using the radial symmetry of g, we have

E{g™} = E{(g,,V)*"} = E{(l[g. [0, v)*"} = E{llg, 3" }E{(6, v)*"}.

Rearranging gives

E g2k
E{(8,v)%} = 9 )
E{lle, 12"}
We then compute
Wn > n—1_—r2
E{Hgn\lgk} = (27m)"/2/0 r2kpn=le=r"/2 gy (E.7)

where w, is the volume of the sphere S”~!. It is well known that

27Tn/2

while we also have ~
T2k7’n_16_r2/2d’r _ 2n/2+k—lr(n/2 + k‘)

0
Substituting these back into (E.7) gives
I'(n/2+ k)
E Ry =k LT T — gy 2)---(n+ 2k —2). E.
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This yields the denominator in (E.6). A similar calculation for E{g?*} yields the numerator. [

Proof [Proof of Theorem 19] Let Y = ¢~IXI2X. Then Y is a sub-Gaussian random vector
with [[Y[[,, < K. Let 3 and X denote its covariance and empirical covariance matrices re-
spectively. Then ||2|| < 1 and by Lemma 33, we have || — 3| < €/2 with probability at
least 1 — /2. Next, observe that ®x, = Zgx(a)” 1y and <I’Xa = Zs x(o)~ 133 where
Zax(a) = Z;Vﬂ e_o‘”XJ'”g/N. As such, we have

1®x0 — Exall < |Zox(@) |E - 2] + | Zox(@) ! — Zax(@) YIZ]. (B9

Combining our lower bound on « with the power series formula for Zg from Lemma 25, we
have Zg x(«) > 1/2. Furthermore, we may apply Hoeffding’s inequality to see that ’Zq>7x((l) -
Zg x(a)| < €/2 with probability at least 1 — §/2. We can now combine all of this together to get
the probability bound. |

Proof [Proof of Theorem 20] First, define 3 = E{e“X(X’X/ X(X)T}and 3 = SN | eme®aXi (XX +

X'XT) /2N, so that Uy, = Zgx(a) ' and \iIX,a = Z\II,X( )~ 133, Asin the previous theorem,
we can write

1x.0 — Txall < [Zux(@) 2~ 2|+ [Zex(@) ™" — Zex(@) [IZ]. (E.10)

This time however, we cannot immediately invoke Lemma 33 because we can no longer view
> and 3 as the covariance and empirical covariance matrices of a random vector. Nonetheless, we
can follow the same proof scheme with a few adjustments.

The basic idea is to use a net argument to transform the operator deviation bound into a scalar
bound for random variables. Let N be a i—net on S"~!. By a volumetric argument, we may pick
N to have size no more than 9" (see Vershynin (2011)). For any n by n real symmetric matrix M,
we then have

IM|| = sup [{(v,Mv)| < 28up|<v Mv)|. (E.11)

vesn—1

As such, by taking a union bound, we can hope to bound || — X|| by bounding | (v, (2 — X)v)|
for a fixed unit vector v € S™~!. Let us do just this. We have

N
1 /
= 3 2 VXY,
=1

so that
1 N
(v, (B -Z)y) =+ D (Vi —EYy), (E.12)
=1
where
Y; = e XXX vy (XS, ). (E.13)
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Observe that the Y;’s are i.i.d. random variables. At this point in the proof of covariance es-
timation, one observes that the resulting random variables are subexponential, so one may apply
Bernstein’s inequality. Unfortunately, our Y;’s are not subexponetial because of the e~Xi-Xi) fac-
tor. The way we overcome this is to condition on the size of these factors being uniformly small.
Indeed, by Lemma 35 to come, we have e~oXiX) < ¢ for all samples ¢ with probability at least
1 — 3. We call this event A.

Next, define }N/Z :=Y;14. The ﬁ’s are i.i.d random variables with subexponential norm bounded
by eK2. We can then apply Bernstein and our assumption on the sample size NV to get

d

Conditioning on the set A, we have Y; = Y; for each i. We can also rewrite the bound on the right
hand side using our assumption on /N. Doing this gives us

{

We would like to replace EY; with EY;, but the two quantities are not necessarily equal. Nonethe-
less, we can bound their difference as follows. We have

1 X
NZ(YZ‘ - EY) < on
=1

> e} < ~Nejort o O (E.14)

1 Y N 5
NZ(Y; —EY;)| > ¢ ‘ A} < (E.15)
=1

EY; — EY; = E{Y 14} = E{e XX (X, v)(X), v)1 4} (E.16)

We apply generalized Holder to write

. x4 4
E{em X0 (X5, v) (X W) 1ac}] < (BLem @ X)) T (B{XG, v (X)) T PLAT)

(E.17)

We now use the moment bounds for sub-Gaussian random variables and Lemma 36 to bound the
first two multiplicands on the right. This gives us

IE{e= XX (X, v)(X], )1 4e | < CK2P{A}Y2, (E.18)

Next, we use Lemma 35 together with our assumption on |/, tightening the constant if neces-
sary, to see that P{ A} < ¢2/C2? K*. We combine this together with the last few equations to obtain
|EY; — EY;| < ¢, and combining this with (E.15), we obtain

d

Recall that Y;’s were defined for a fixed v € /. We can take a union bound over all vectors in N to
get

1 N

N > (Y - EY)

i=1

> 2 ( A} < gin. (E.19)

P{Sup|<v, (2 —Z)v)| > 2 ‘ A} < 0. (E.20)
veN
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Combining this with (E.11) then gives
]P{||ﬁ: ~ 8 > de ‘ A} <. (E21)

Let us continue to bound the other terms in (E.10) conditioned on the set A. Notice that on this
set, Zg x () is an average of terms that are each bounded in absolute value by e. Using Hoeffding’s
inequality together with a similar argument as above to bound |[EZy x ()14 — Zg x ()|, one may
show that

IP’{|ZA\1,7X(04) ~ Zax(a)| > ¢/2] A} <6 (E.22)

We may also use the power series formula for Zg x from Lemma 25 together with our bound on |«
to show that Zg x(a) > 3.

It remains to bound ||3||. To do this, we let v again be an arbitrary unit vector, and use Cauchy-
Schwarz to compute

’ N\ 1/2 1/2
IE{e= XX (X, v)(X], v)}| < (Ee‘QMX“Xz‘)) / (E{(XZ-,V>2<X;,V>2}> 2 (E.23)

We have already seen that moment bounds and Lemma 36 imply that this is bounded by an absolute
constant C'. In fact, we can take C' = 3.
Putting everything together, we see that on the set A, we can continue writing (E.10) as

1¥x.0 — xal < [Zox(@) I|Z = 2|+ [Zex(@) ™" = Zex(@) |2
< (.

Using our bound for P{ A}, we can therefore uncondition to get
P{H\ifxﬂ — Uy > Ce} < §+P{A} < 2. (E.24)

Finally, note that we can massage the constants so that the multiplying constants in front of € and o
disappear. |

-1
Lemma 35 Forany0 <d < land N €N, if |a| < (C’KQN/log(N/(S)(\/ﬁ+ \/log(N/cS))) ,

then

IP’{ sup e X Xi) e} < 6. (E.25)
1<i<N

Proof Without loss of generality, assume that o > 0. Using the union bound, it suffices to prove
that

P{(X,X') < —1/a} = P{e‘o‘<x’x/> > e} < % (E.26)

To compute this, we first condition on X’ and use the sub-Gaussian tail of X to get

1
P{X,X) < -1/a|X)<exp| ——— |,
(XD <y p( 0K2a2ux’||§>
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and integrating out X/, then gives
P{(X,X) < —1/a} < E{e (KX (E27)

To compute this expectation, let A be the event that ||X'||, < CK(y/n+ /log(N/d)). Then by
equation (E.4) in Theorem 32, we have P{A¢} < §/N. As such, we can break up the expectation
into the portion over A and the the portion over A¢ to obtain

Ee~(CK2?IXID) ™ — e~ (CK22IXID™ | AYP{A} + E{e~(CE*IXIDT | g}P{A)

< E{e~(CK*IXID™ | A} 4 P{A°)
< 1 n 4]
exp| — —.
=P\ T CKIa2(n +log(N/3)) ) T N
As such, we just need the first term to be less than § /N, which corresponds to the requirement that
1
CK*a2(n +1og(N/9))

This is simply a rearrangement of our assumption on |c/|. [ |

(E.28)

> log(N/6).

Lemma 36 (Better bound for Zg) There is an absolute constant C such that if || < 1/CK?\/n,
then Zg x(o) < 3.

Proof The idea of the proof is similar to that of the previous lemma. We first condition on X’ and
use the sub-Gaussian nature of X to bound its Laplace transform, thereby obtaining

2.2 2
E{e—a(X,X’> | X/} < €CK @ ||X’||2.
Integrating out X’ gives

Zwx(a) < E{60K2a2||X’||§}

> 2.2 112
:/ PR N > ¢ Ly
0
&0 2.2(1x/|12
< e+/ IP’{eCK 2[X|2 t}dt (E.29)
e
Next, we use our assumption on |«/| to write

/ Viogt
]P{eC’KQOEHX ||§ > t} _ ]P{|X/||2 > Og}

CK|a

< P{IX'l, > \/log ICK/n}. (E30)

Fort > e, we have v/logt > 1, so we may apply (E.4) to get
P{||X’H2 > \/logtCK\/ﬁ} < e~ logtOn _ 4=Cn (E31)

Plugging this into (E.29) gives
e—Cn

A < <3 E.32
wx(a) <e+ o S (E.32)
if we choose C' to be large enough. |
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Appendix F. Eigenvector perturbation theory

If two n by n matrices are close in spectral norm, one can use minimax identities to show that their
eigenvalues are also close. It is less trivial to show that their eigenvectors are also close, which is
the case in the presence of an “eigengap”. This was addressed by Davis and Kahan (1970).

Definition 37 Let E and F be two subspaces of R"™ of dimension d. Let V and Vben by d matrices
with orthonormal columns forming a basis for F/ and E respectively. Let 01 > 09 > --- > 04 be
the singular values of VI'V. We define the principal angles of E and E 10 be 0,(E, E) = arccos o;
forl <i<d.

Lemma 38 Let E, E, V and V be as in the previous definition. We have
T d
IVv' —vVT|7 =2 sin?6,(E, E). (F.1)
=1
In particular, the quantity depends only on E and E and not the choice of bases.

Proof We expand

VYT — VT2 = WV |2 + [VVT 2 — 2(vvT ¥V, (F2)
Observe that
IVVT|2 = Te(VVIVVT) = Tr(VIVVTV) = Tr(1,) = d. (F3)
Similarly, we have
VY2 = d. (F4)
Next, we compute
(VW WV = Te(VWIVV) = Te(V VVIV) = [V V3. (F.5)

Next, we use the fact that the squared Frobenius norm of a matrix is the sum of squares of its singular
values to write

d d
AT ~
IV VIE =) 07 = cos®6,(E, E). (F.6)
i=1 i=1
We may then combine these identities to write

d d
IVV' — w72 = 2> (1—cos®0;(E,E)) =2 sin®6;(E, E). (F7)
=1 =1

as was to be shown. |

Using the previous lemma, it is easy to see that the distance between subspaces is preserved
under taking orthogonal complements.
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Lemma 39 Let F and F' be subspaces of R of dimensions m, and let F' and F'* denote their
orthogonal complements. We have d(F, F') = d(F*, F'*).

We can now use these observations to state Theorem 2 from Yu et al. (2015) in a convenient
form.

Theorem 40 Let X and 3 be twon by n symmetric real matrices, with eigenvalues \1 > -+ > X\,
and Ay > -+ > Ay Fix1 < r < s <mn, and assume that min{\, — A\, 11, A\s— X511} > 0, where we

define \o = 0o and \p+1 = —o0. Letd =r+n — s, andletV = (v1,va, ... ,Vp,Vsi1,...,Vp) and
V=01,V2,...,%,Vsi1,...,V,) ben by d matrices whose columns are orthonormal ezgenvectors
10 A1, A2, oy Ary Astd, - - /\ and )\1,)\2, . )\T )\5+1, .. )\ respectively. Then
L 2V/2d||2 — =
Vv — vV, < ” | : (F.8)

min{)\'r — A1, As — /\s—i-l}

Appendix G. Proof of Lemma 21

Proof Combining Lemmas 15, 16, and 31 tells us that in the right coordinates, ®x ., block diago-

nalizes as
i 3 \ 0
by, = X.a ) G.1
o= (5 e @

Next, label the eigenvalues of ®x o, as A\ > Ao > -+ > ;. Wecanfind0 < p < g <n
such that the eigenvalues corresponding to the ®g  block are A, Aa, ..., Ap, Ag41, ..., An. Using
Theorem 28, we then have

1 A
A | - > =l —=9p. G.2
Z +qu;1 241 +1| = 2d(r — 1)1 b G2)

In particular, we have% iz1 Ai—1/(200+1) = 261, and 1/ (200 +1)— 5= Ly g1 i = 2B
Since at least one of these sums of eigenvalues is non-empty, truncating the eigenvalues of ®x ., at
the (31 level gives us a non-trivial subspace of F.

In order to show that our empirical estimate <i>x7a1 also has an approximation to this property,
we will need to use the eigenvector perturbation theory explained in Appendix F. First, we need to
bound from below the “eigengap” in ®x ,. Suppose first that p > 1, i.e. that there are eigenvalues
larger than (2a;; + 1)~!. Then by the pigeonhole principle, one can find 4 such that (2c;; + 1)1
B1/2 > Niy1 > (2a1 +1)7tand \; — \jr1 > B1/2d. Similarly, if ¢ < n — 1, then we can find j
such that (2c; + 1)1 > X1 > (201 +1)71 = 1 /2 and \j_1 — \; > B1/2d.

Now let F' be the span of the elgenvectors of ®x o, correspondmg to )\1, e AL A, A,
and let F be the eigenvectors of dx ., corresponding to Ao A )\j, ) A By Theorem 19,
with probability at least 1 — §, we have

Bre

[®x.0 — Pxall <
We may then use Theorem 40 to see that d(F, F) < ¢
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We are not yet done, because we do not have access to F'. Nonetheless, we can show that F'
contains Fg. Using eigenvalue perturbation inequalities together with equation (G.3) tells us that
we have

< Bre B1 Bie 251
i <\ — < (2 1 - — < (2 1 + —, 4
)\+1_>\+1+2d (200 +1)71 + +2d (200 + 1)1 3 G4
and similarly that
{ Bre 1 B Bue 1 26
< - < S N S ity ,
)\]71 < )\j,1 od = (20&1 + 1) 5 od = (20&1 + 1) 3 (G 5)

Let Ig = {i : |A\; — (1 — 201) 7| > B1}. We see that this set does not contain any index between
i+1landj—1,s0 Es, which comprises the span of the eigenvectors to these eigenvalues, does not
contain any eigenvector that F' does not contain, as was to be shown. The inclusion then implies
that we may find a subspace Eg C F' such that d(Eq,, Eg) <e.

Finally, we observe that dim E¢ > 1, since

DY DI e ©6)
P ! 2a1 —|—1 201 + 1 b '
and .
1 1 ° 1
201 +1 2 Nz g Z)‘_& ' G
a+l n-g, 7 o+l n-etE
|

Appendix H. Proof of Theorem 9

Before we prove the guarantee, we state our proposed algorithm more formally.

Algorithm 2 ITERATED REWEIGHTED PCA(X,d,a1,02,81,32)
Input: Data points X = [Xy,...,Xn,X],...,X)y], scaling parameters oy, a2 € R, tolerance
parameters (31, 82 > 0.
Output: Output E for E.
I: Initialize £ := 0.
2: fork=1,...,ddo:
Fy, Fy := REWEIGHTED PCA(PELX,agk),aék), ik),ﬁék)).
if F| #0,then £ := E@ Fy.
else £ := E & Fy.
if dim(F) = d return £ := E.

AN A

Proof We provide an outline of the proof, omitting details that are similar to those in the proof of
Theorem 7. Suppose we are at Step 3, having just completed k iterations, and have found F so that
dim(E) = dj, and d(E, E}) < €, for some subspace E, C E. Call Y := Pz X, and Y := P, X.

By Lemma 42, the remaining non-Gaussian part of Y is either (m, cn?/¥,,)-norm-moment-
identifiable or it is (m, cn?)-product-moment-identifiable (see Definition 41 below). Let us assume
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that the former holds since the other case is similar. For convenience, we denote o« = agkﬂ)

6= B§k+1) to be the scaling and tolerance parameters for the k£ 4 1-th iteration.

By Theorem 28, we observe the existence of non-Gaussian eigenvalues in the ® matrix for Y
for o small enough (specifically, o < min{cn?r/(CK?) 3y (d" T + (r + 1)!),1/CK?n}):
d 1 cn?

Ni(®roy.a) — > m=1 H.1
; (®reva) = 50757 2 dm— DEn .1

1
d—dp

It remains to see that this signal is not destroyed by the noise stemming from our estimation of
Py, by Py . Note that we have

E{eME) — E{em V2| < B{(emME 1 e VIE)[a] VI3 — o V3)}
< aE{|[[¥; - VI3
= aB{X (P, — Py )X])
< of[Py; — P B{|X]3)

< naeg.
Here, the first inequality follows from Lemma 43, while the last one follows from the fact that
IPpr —Ppoll < |[Ppi —Ppullp = d(E, By).
By doing several computations similar to the above, we obtain
|y, — By ]| < poly,, (n)e. (H2)
Meanwhile, Theorems 19 and 20 imply that with high probability,
1Dy, — Pyl < <o (H.3)
We may combine (H.2) and (H.3) to get

[®y.0 — Py ,oll S [ Pya — Pyl + [Py — Pyl
< poly,,, (n)ex + €o.

Suppose €p and €, are small enough so that

2

n m—1
poly,, (n)ex + €0 S e (H.4)

Then the non-Gaussian eigenvalues continue to be outlier eigenvalues of <i>Y » and can be discov-
ered via truncation. One can formalize this using same argument as in the proof of Lemma 21.
Finally, we again imitate the proof of Lemma 21 and appeal to Theorem 40. This tells us that the
eigenspace F corresponding to the found eigenvalues is €’ close to that of the “true” eigenspace F’
in B if

Be

B2 (H.5)

poly,,(n)ex + €0 S
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where we pick 3 < n?a™~!/d(r — 1)!7,. If this is the case, we have have
d(E@Fl,Ek@F/) = ||PE+PF1 _PEk —|—PF/||F < 6k+6/ = €kt1-

Suppose the algorithm terminates in [ steps. Then [ < d, and if we fix a desired ¢; < 1, then
iterating the inequalities (H.4) and (H.5) shows us that we just require

€0 < €/poly,, (n)* = €/poly,, 4(n).

By Theorem 19, this condition can be met with a sample size that grows according to poly,, a(n).
|

Definition 41 Let X be an isotropic random vector in R%. For any positive integer m, v, > 1 > 0,
we say that X is (m, j1)-norm-moment-identifiable if

[ECIXIE) — Eqlgl'}| = u

for some integer r < m/2. Similarly, we say that X is (m, p)-product-moment-identifiable if

> p

E{(X.X)} ~E{(e.g)"}

for some integer r < m.

Lemma 42 [n the NGCA model (1), suppose X is (m, n)-moment-identiﬁalzle along every direction
v € E for some n € (0,1). Then for any proper subspace Ej, of E, PEkLX is either (m, cn?/%,)-

norm-moment-identifiable or it is (m, cn?®)-product-moment-identifiable.

Proof Note that P, kLX is still (m, n)-moment-identifiable along every direction in £ N EkL As
such, we may apply Theorem 6 to conclude. |
Lemma 43 For any real numbers a and b, we have |e? — e?| < (e® + €)|b — al.

Proof Use the fact that e”(x — 1) + 1 > 0 for all real x. [ |

Appendix I. Proof of Corollary 10

Proof By symmetry, we know that @5 = coly is a scalar matrix. To compute co, we write

_1E{eREX|5)  1emodd
@ d EleelXIi3y  deod

1
co = gTI‘(‘I)X
Combining this with Lemma 31 and 15 allows us to write

(] 0
Pxo = < 0] (2a+1)"Tq, > '
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By our choice of a, this gives an eigengap of

Our assumption that N 2> dn?(n + log(1/4))/e? together with Theorem 19 then guarantees that

[®x.0 — Pxal <

ce
(1.1)
Vidn
with high probability. We may now apply Theorem 40 to see that d(F,E) < e where F is the
subspace spanned by the top d eigenvectors of ®x .
It remains to see that F' is discovered by the algorithm. But then (I.1) implies that

A 1 1 ce «
(P - > \(P _ > —
i(Bxa) = 755, 2 N ®xa) — 950 Vdn = 2
for 1 < i < d, and similarly,
. 1 1 ce

Ai(®x o)

(6]
- < Ni(®Pxa) - —— <<
T+ 20 = Ni(®xa) 1420 Vin " 4

for d + 1 < ¢ < n. The final inequality in both lines holds after choosing ¢ to be small enough.
We therefore see that the top d eigenvalues are indeed those that are identified by truncating at level
8 =a/3. [
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