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Abstract
We study sampling as optimization in the space of measures. We focus on gradient flow-based
optimization with the Langevin dynamics as a case study. We investigate the source of the bias
of the unadjusted Langevin algorithm (ULA) in discrete time, and consider how to remove or
reduce the bias. We point out the difficulty is that the heat flow is exactly solvable, but neither its
forward nor backward method is implementable in general, except for Gaussian data. We propose
the symmetrized Langevin algorithm (SLA), which should have a smaller bias than ULA, at the
price of implementing a proximal gradient step in space. We show SLA is in fact consistent for
Gaussian target measure, whereas ULA is not. We also illustrate various algorithms explicitly for
Gaussian target measure with Gaussian data, including gradient descent, proximal gradient, and
Forward-Backward, and show they are all consistent.

1. Introduction

We study sampling as optimization in the space of measures. In this paper we focus on gradient
flow-based optimization with the Langevin dynamics as a case study. Our starting point is the key
result of Jordan et al. (1998) that the Langevin dynamics in space corresponds to the gradient flow
of the relative entropy functional in the space of measures with the Wasserstein metric. This is why
running the Langevin dynamics is useful for sampling: It is the steepest descent flow that attracts
any initial distribution to the stationary target measure. Our motivating question is:

Is there an implementable discretization of the Langevin dynamics that is consistent and
converges exponentially fast under the logarithmic Sobolev inequality?

Recall in general, gradient flow converges exponentially fast under a gradient-domination con-
dition that is weaker than strong convexity. In the space of measures with the relative entropy
functional, this gradient-domination condition is the logarithmic Sobolev inequality (LSI) (Otto and
Villani, 2000). Therefore, in continuous time, the Langevin dynamics converges exponentially fast
under LSI. In discrete time, the situation is less clear. A basic discretization known as the unadjusted
Langevin algorithm (ULA) is biased, which means it converges to a limit different from the target
measure. This bias exists for arbitrarily small (fixed) step size, even for a Gaussian target measure.
This led to proposals to correct the bias, such as the Metropolis-Hastings correction step (Roberts
and Tweedie, 1996; Dwivedi et al., 2018) or decreasing the step size; however, the resulting algo-
rithms become more complicated, so here we focus on ULA in order to see the basic structure.
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SAMPLING AS OPTIMIZATION IN THE SPACE OF MEASURES

Even with the bias, we can use ULA to get a one-time sampling algorithm as follows: given an
error threshold, first choose a small enough step size so the bias is within the threshold, then run
ULA with that step size to approximate convergence. See for example Dalalyan (2017a,b); Dalalyan
and Karagulyan (2017); Durmus and Moulines (2016); Cheng and Bartlett (2018).

The bias in the Langevin algorithm is actually puzzling. The bias is typically attributed to the
fact that ULA is a discretization of the continuous-time Langevin dynamics, so it necessarily has
a discretization error. However, this attribution is misplaced, because the discretization error is the
deviation between ULA and the Langevin dynamics at small time, while we are concerned with the
asymptotic bias of ULA at large time. And indeed it is possible for a discretization algorithm to be
consistent (unbiased). For example, gradient descent is a discretization of gradient flow; under the
gradient-domination condition, both gradient flow and gradient descent converge to the minimizer
exponentially fast. Since the Langevin dynamics is a gradient flow and it converges exponentially
fast under LSI, we expect the gradient descent version to also converge exponentially fast under
LSI, hence our motivating question. We note that the class of measures satisfying LSI is rather large
and closed under bounded perturbation, so even multimodal distributions satisfy LSI.

Why is ULA biased? It cannot be the gradient descent discretization of the Langevin dynamics.
Rather, it is performing the Forward-Flow (FFl) discretization, which in general is biased. Here we
observe that the problem of minimizing relative entropy in the space of measures is a composite
optimization problem, which means the objective function is a sum of two terms. Indeed, relative
entropy can be written as the sum of negative entropy and the expected function value, where the
function is the negative log density of the target measure. ULA (FFl) is a two-step algorithm: First,
it applies the forward method to the expected function value, which is implemented by the usual
gradient descent step in space. Second, it applies the exact gradient flow of the negative entropy, the
heat flow, which is implemented by adding independent Gaussian noise in space. Therefore, ULA
is implementable, which means we can run it in space with a given sample, but it is biased. We can
compute the bias explicitly for the Ornstein-Uhlenbeck (OU) process, which is the case of Gaussian
target measure; see Example 2 below.

For a composite optimization problem, the algorithm of choice is the Forward-Backward (FB)
algorithm, which is a composition of the forward method for one term and the backward method for
the other. The FB algorithm is consistent, which crucially uses the fact that the backward method
is the adjoint of the forward method. Furthermore, FB converges at exponential rate under the
gradient-domination condition and some smoothness assumptions. For our problem of optimizing
relative entropy, FB means we want to run the forward method for the expected function value
(which we can do via the usual gradient descent), and run the backward method for negative entropy
(which we cannot do in general). Indeed, the main interesting difficulty is that for negative entropy,
its exact gradient flow (the heat flow) is implementable via Gaussian noise, but neither its forward
nor backward method is implementable.1 However, in one case, namely for Gaussian initial data, we
can solve the backward method for negative entropy. Therefore, for the OU process with Gaussian
initial data, we can solve the FB algorithm and see it is indeed consistent; see Example 8.

Finally, if we cannot remove the bias, we can try to reduce it. We propose the symmetrized
Forward-Flow (SFFl) algorithm, which is a composition of FFl and its adjoint. The SFFl algorithm
is symmetric and has order 2; therefore, its bias is also of order 2, smaller than FFl. Applying SFFl to
the Langevin dynamics yields the symmetrized Langevin algorithm (SLA), which is a composition

1. This is the opposite of what typically happens in optimization, where we cannot run gradient flow but we can run the
gradient descent algorithm.
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of ULA and its adjoint. SLA requires being able to run the backward method for the expected
function value, which is implemented by the proximal gradient step for the function in space. This
may require some numerical computation in each iteration, but the prize is a sampling algorithm
that should have a smaller bias. As an example, we show how to solve SLA explicitly for the OU
process. We see in this case SLA is in fact consistent; see Example 3. As another example, we show
how to implement SLA for a mixture of two Gaussians as target measure, by solving an explicit
one-dimensional calculation in each iteration. We show using synchronous coupling under strong
log-concavity that SLA converges exponentially fast to its limiting measure.

2. Sampling as optimization in the space of measures

Sampling can be formulated as optimization in the space of measures. Indeed, to sample from
a target distribution, it suffices to optimize an objective function in the space of measures that is
minimized at the target distribution. Thus, we can translate methods from optimization to sampling
by applying them to the optimization problem in the space of measures, provided the resulting
methods are implementable as (possibly stochastic) algorithms in space.

In principle, we can choose any objective function that is minimized at the target distribution.
But in the space of measures, there is a special function that works, which is the relative entropy:

Hν(ρ) =

∫
ρ log

ρ

ν
. (1)

This is also known as the Kullback-Leibler (KL) divergence. Here ρ is a probability measure on Rn

absolutely continuous with respect to ν, and the integral above is a shorthand for
∫
Rn ρ(x) log ρ(x)

ν(x)dx.
Relative entropy is nonnegative: Hν(ρ) ≥ 0; and it is minimized at the target measure: Hν(ρ) = 0
if and only if ρ = ν. Furthermore, ν is the only stationary point of Hν , even when ν is multimodal.
Therefore, if we can minimize Hν , then we can sample from ν.

Let ν = e−f , or equivalently f = − log ν. Relative entropy decomposes as a sum of two terms:

Hν(ρ) = Eρ[f ]−H(ρ) (2)

where Eρ[f ] =
∫
ρf is the expected value of f and−H(ρ) =

∫
ρ log ρ is the negative entropy of ρ.

2.1. The Langevin dynamics as the gradient flow of relative entropy

We wish to minimize the relative entropy functional (1) in the space of measures. A general strategy
to minimize a function is to run the gradient flow dynamics. This requires a metric structure (Am-
brosio et al., 2008). In the space of measures over Rn there is a nice choice of metric, which is the
Wasserstein metric induced by the quadratic distance function (Villani, 2003, 2008).

In the space of measures with the Wasserstein metric, the gradient flow of relative entropy (1) is
the following partial differential equation, known as the Fokker-Planck equation:

∂ρ

∂t
= ∇ ·

(
ρ∇ log

ρ

ν

)
= ∇ · (ρ∇f) + ∆ρ. (3)

Here ρ = ρ(x, t) is a smooth positive density evolving over time. This is the key result of Jordan
et al. (1998), which has been extended to vast generalities (Villani, 2008). So if we can follow the
flow of the Fokker-Planck equation in the space of measures, then we converge to the target measure
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ν = e−f . Furthermore, if ν satisfies the logarithmic Sobolev inequality (LSI), then the convergence
is exponentially fast, see §3.1.1. However, can we implement this in space?

It turns out the Fokker-Planck equation is the continuity equation of the Langevin dynamics,
which is the following stochastic differential equation in space:

dX = −∇f(X) dt+
√

2 dW. (4)

Here X = (Xt)t≥0 is a stochastic process and W = (Wt)t≥0 is the standard Brownian mo-
tion in Rn. That is, if Xt ∼ ρt evolves following the Langevin dynamics (4) in space, then
ρ(x, t) = ρt(x) evolves following the Fokker-Planck equation (3) in the space of measures; see
for example (Mackey, 1992, §11).

This means the Fokker-Planck flow (3) is implementable by the Langevin dynamics (4), as long
as we can follow the stochastic process (4) exactly. In one case, namely for the Gaussian target
measure, we know the exact solution; see Example 1 below. In general, we need to discretize to
obtain an algorithm in space; we discuss this further below.

Example 1 (Ornstein-Uhlenbeck.) Let ν = N (µ,Σ) be the Gaussian target measure with mean
µ ∈ Rn and covariance Σ � 0, so f(x) = 1

2(x−µ)>Σ−1(x−µ)+ 1
2 log det(2πΣ) is quadratic. The

Langevin dynamics (4) has a linear drift, and is known as the Ornstein-Uhlenbeck (OU) process:

dX = −Σ−1(X − µ) dt+
√

2 dW.

This has an exact solution as an Itô integral. In particular, the solution at each time t ≥ 0 satisfies

Xt − µ
d
= e−tΣ

−1
(X0 − µ) + Σ

1
2

(
I − e−2tΣ−1

) 1
2
Z

where Z ∼ N (0, I) is independent of X0. Thus, Xt ∼ ρt converges to N (µ,Σ) exponentially fast.

2.2. The unadjusted Langevin algorithm

A practical discretization of the Langevin dynamics (4) is the unadjusted Langevin algorithm (ULA):

xk+1 = xk − ε∇f(xk) +
√

2εzk (5)

where zk ∼ N (0, I) is independent of xk. Here ε > 0 is a step size, which is equal to the time step
in the discretization.

As ε→ 0, the ULA iteration (5) converges to the Langevin dynamics (4) (Mackey, 1992, §11).
However, when ε > 0, ULA is biased, which means it does not converge to the target distribution
ν = e−f . This bias is present even for Gaussian target measure, see Example 2.

Example 2 (ULA for OU.) Let ν = N (µ,Σ). ULA is xk+1− µ = (I − εΣ−1)(xk − µ) +
√

2εzk.
Unfolding and using the fact that the sum of independent Gaussians is Gaussian, we can write

xk − µ
d
= Akε (x0 − µ) +

√
2ε(I −A2

ε )
− 1

2 (I −A2k
ε )

1
2 z

whereAε = I− εΣ−1 and z ∼ N (0, I) is independent of x0. For 0 < ε < 2λmin(Σ), lim
k→∞

Akε = 0.

Therefore, xk
d→ µ+

√
2ε(I −A2

ε )
− 1

2 z. Thus, ULA for OU has the limit measure

νε = N
(
µ, Σ(I − ε

2Σ−1)−1
)
.
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At ε = 0, this is the target measure ν = N (µ,Σ). For ε > 0, νε 6= ν, so ULA is biased. The bias is

W2(ν, νε) = ‖Σ
1
2 − Σ

1
2 (I − ε

2Σ−1)−
1
2 ‖HS =

ε

4

√
Tr(Σ−1) +O(ε2).

where ‖B‖HS =
√

Tr(B2) is the Hilbert-Schmidt norm of a symmetric matrix B.

Above, we have used the formula for the Wasserstein distance between Gaussians (Takatsu, 2011).

2.2.1. CONVERGENCE TO THE BIASED LIMIT

We recall the following contraction result using synchronous coupling under strong log-concavity;
see (Dalalyan, 2017b, Lemma 1) or Appendix A.1. Note the similarity with the corresponding result
in strongly convex optimization, e.g., (Nesterov, 2004, Theorem 2.1.15).

Lemma 1 Suppose ν is α-strongly log-concave and L-log-smooth (αI � −∇2 log ν � LI) for
some 0 < α ≤ L. Let ρk, ρ′k be any two distributions evolving following the ULA algorithm (5).
Then for 0 < ε ≤ 2

α+L , W2(ρk, ρ
′
k)

2 ≤
(
1− 2ε αL

α+L

)k
W2(ρ0, ρ

′
0)2.

The above implies that ULA has a unique stationary measure νε. The bias should be of order
1 since ULA is a first-order discretization method, as suggested by Example 2. Using a simple
synchronous coupling argument with the same smoothness assumption as in Lemma 1 only yields
a bias of order 1

2 (Dalalyan, 2017b, Theorem 1). But with an additional smoothness assumption,
an expansion within the synchronous coupling argument yields a bias of order 1 (Dalalyan and
Karagulyan, 2017, Theorem 4). It is interesting to ask whether it is possible to prove a bias of order
1 with the minimal smoothness assumption as in Lemma 1.

Lemma 2 Suppose ν is α-strongly log-concave and L-log-smooth, and−∇2 log ν is M -Lipschitz.
For 0 < ε < 2

α+L , the bias of ULA is W2(νε, ν) ≤ ε
α(1

2Mn+ 11
5

√
L3n).

The bias from Lemma 2 and the exponential contraction from Lemma 1 imply an O(1
δ log 1

δ )
iteration complexity bound for sampling from ν up to Wasserstein errorO(δ), by choosing ε = O(δ)
and running ULA for k = Ω(1

ε log 1
δ ) iterations to getW2(ρk, ν) ≤W2(ρk, νε)+W2(νε, ν) = O(ε).

On the other hand, for the ideal unbiased discretization of the Langevin dynamics, exponential
contraction would imply a logarithmic iteration complexity bound.

2.2.2. ULA AS THE FORWARD-FLOW DISCRETIZATION OF LANGEVIN DYNAMICS

ULA is biased because it is the Forward-Flow (FFl) discretization of the Langevin dynamics (4).
Concretely, we can write ULA (5) as a composition of two operations:

xk+ 1
2

= xk − ε∇f(xk) (6a)

xk+1 = xk+ 1
2

+
√

2εzk. (6b)

The first step (6a) is a gradient descent step or the forward method for f ; the second step (6b) is the
exact solution for the heat flow. In the space of measures, the iterations in (6) correspond to

ρk+ 1
2

= (I− ε∇f)#ρk (7a)

ρk+1 = N (0, 2εI) ∗ ρk+ 1
2

(7b)
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where # is the pushforward operator and ∗ is the convolution. When f is smooth (∇2f � 1
ε I), the

first step (7a) is the gradient descent for the expected function value Eρ[f ] (see §E.1.3). The second
step (7b) is the exact gradient flow for negative entropy −H(ρ) (see §E.2.1). These are the two
components of the decomposition (2) of relative entropy. Therefore, ULA—which in the space of
measures takes the form (7)—is the Forward-Flow method applied to the composite optimization
problem of minimizing relative entropy (2). The source of the bias is that the flow method is not the
adjoint of the forward method, so the Foward-Flow method does not conserve the stationary point
of the overall flow, which is the target measure ν. See §F for a review on composite optimization.

In a recent work, Bernton (2018) proposes the proximal version of ULA, obtained by replacing
the forward method (gradient descent) in (7a) with the backward method (proximal gradient) for
Eρ[f ], which is also implemented by the proximal gradient for f in space. This is the Backward-
Flow discretization of the Langevin dynamics, which has similar convergence guarantees as ULA,
but is also still biased.

2.3. The Forward-Backward method for Langevin dynamics

A general algorithm for a composite optimization problem is the Forward-Backward (FB) method,2

which means running the forward method (gradient descent) for one component and running the
backward method (proximal gradient) for the other. The FB algorithm is consistent (unbiased)
because the backward method is the adjoint of the forward method, so the minimizer is conserved;
see §F.1. Furthermore, FB converges exponentially fast under the gradient-domination condition
and some smoothness assumptions (Garrigos et al., 2017), which is formally applicable in our case.
Therefore, we wish to run the FB method for composite optimization.

However, for our problem of optimizing relative entropy, FB means we need to replace (7b)
with the backward method for negative entropy in the space of measures. This is well-defined, but
cannot be solved explicitly—unlike the exact flow (7b)—except for Gaussian initial data (Carlen
and Gangbo, 2003). In general this exception does not help, since Gaussianity is not preserved
under the forward step (7a) when ∇f is nonlinear. However, for the OU process, ∇f is linear, so
a Gaussian initial data stays Gaussian under the FB algorithm, and in this case we see FB is indeed
consistent; see Example 8 in §4.1.

2.4. The symmetrized Langevin algorithm

Now that we know the unbiased FB algorithm for the Langevin dynamics is not implementable in
general, we can try to reduce the bias of what we can implement.

Recall that the bias of an optimization algorithm is of the same size as its discretization order
(see §B for a review of discretization methods). Recall also that if an algorithm is symmetric, which
means it is equal to its adjoint, then its order is even; in particular, it must be of order at least 2.
In general we can symmetrize an algorithm by composing it with its adjoint. Therefore, given any
algorithm with a first-order bias, we can upgrade it to an algorithm with a second-order bias by
symmetrizing it.

Applying this idea to FFl as the base algorithm, we obtain the symmetrized Forward-Flow (SFFl)
algorithm, which is the composition of FFl and its adjoint, the Flow-Backward (FlB) algorithm.

2. Or its adjoint, the Backward-Forward (BF) method. However, the forward method for the heat flow is also not
implementable, except for Gaussian data. We can also run the forward method (gradient descent) or backward
method (proximal gradient) for OU with Gaussian data, and see they are consistent; see Examples 4 and 5.
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Applying SFFl to the Langevin dynamics yields the symmetrized Langevin algorithm (SLA):

xk+1 = (I + ε∇f)−1(xk − ε∇f(xk) +
√

4εzk) (8)

where zk ∼ N (0, I) is independent of xk. Here (I+ε∇f)−1 is the proximal gradient operator of f ,
i.e., y = (I+ε∇f)−1(x) if and only if y+ε∇f(y) = x, or y = arg miny′∈Rn{f(y′)+ 1

2ε‖y
′−x‖2}.

This is not analytically solvable for general f , and may require numerical computation in each
iteration. However, if we can do this, then we can run SLA which in principle has a smaller bias.
When the target measure is Gaussian, namely for the OU process, we can write the SLA iteration
explicitly. In this case we see that SLA is in fact consistent,3 and converges exponentially fast.

Example 3 (SLA for OU.) Let ν = N (µ,Σ). The SLA iteration is

xk+1 − µ = (I + εΣ−1)−1(I − εΣ−1)(xk − µ) +
√

4ε(I + εΣ−1)−1zk.

Unfolding and using the fact that the sum of independent Gaussians is Gaussian, we can write

xk − µ
d
= Akε (x0 − µ) +

√
4εBε(I −A2

ε )
− 1

2 (I −A2k
ε )

1
2 z

where Aε = (I + εΣ−1)−1(I − εΣ−1), Bε = (I + εΣ−1)−1, and z ∼ N (0, I) is independent of x0.

For all ε > 0, limk→∞A
k
ε = 0. Therefore, xk

d→ µ+
√

4εBε(I −A2
ε )
− 1

2 z ∼ N (µ,Σ). This shows
SLA converges to the correct target measure ν = N (µ,Σ).

We also note that there are other discretizations of the Langevin dynamics that are unbiased for
the Gaussian target measure, for example the Ozaki discretization which uses Hessian information;
see for example (Dalalyan, 2017a). We can also implement SLA for a mixture of two Gaussians,
which requires solving a one-dimensional numerical problem in each iteration; see §A.4.

2.4.1. CONVERGENCE TO THE BIASED LIMIT

Similar to ULA, we have the following contraction result for SLA under strong log-concavity;
see Appendix A.3.

Lemma 3 Suppose ν is α-strongly log-concave and L-log-smooth (αI � −∇2 log ν � LI) for
some 0 < α ≤ L. Let ρk, ρ′k be any two distributions evolving following the SLA algorithm (8).
Then for 0 < ε ≤ 2

α+L ,

W2(ρk, ρ
′
k)

2 ≤

(
1− 2ε αL

α+L

1 + 2ε αL
α+L

)k
W2(ρ0, ρ

′
0)2.

The above implies that SLA has a unique stationary measure ν̃ε. Despite Example 3, in general
SLA is biased, and the bias should be of order 2 since SLA is a second-order discretization method.
However, using the expansion within synchronous coupling as in ULA seems to still yield a bias of
order 1 due to the stochastic terms.

3. This is surprising because SFFl is biased even for minimizing a sum of two quadratic functions in space. Here the
consistency of SLA for OU relies on the property that variance adds linearly when we sum independent Gaussians.
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Question 1 Is it true that if ν is strongly log-concave, then W2(ν, ν̃ε) = O(ε2)?

If Question 1 is true, then combined with Lemma 3, it implies anO( 1√
δ

log 1
δ ) iteration complex-

ity bound for sampling from ν up to Wasserstein error O(δ), by choosing ε = O(
√
δ) and running

SLA for k = O(1
ε log 1

δ ) iterations to get W2(ρk, ν) ≤W2(ρk, ν̃ε) +W2(ν̃ε, ν) = O(ε2) = O(δ).
We also note that a bias of order 2 may be the best we can hope for, since in general any higher

order necessitates running the algorithm with negative step size (Hairer et al., 2006, Theorem 3.18).
For the Langevin dynamics, this means running the heat flow backward in time, which is not only
non-implementable, but also not well-posed mathematically (except in special cases, e.g., see Mi-
ranker (1961)). But as entropy is a very special functional, it is possible this apparent difficulty may
be circumvented and implementable algorithms with higher-order bias may be found.

3. Optimization in the space of measures

Let us discuss further how to optimize in the space of measures. We review optimization in a smooth
Riemannian manifold in §C, including gradient flow and the forward and backward methods, and
conditions for exponential convergence such as gradient domination and strong convexity. We also
briefly recall the Wasserstein metric; see §D for a review or Villani (2008) for more detail.

Let P ≡ P2(Rn) denote the space of probability measures on Rn with finite second moments,
endowed with the Wasserstein metricW2 induced by the quadratic distance. Every element ρ ∈ P is
a probability measure represented by its density function ρ : Rn → R with respect to the Lebesgue
measure dx. The tangent space TρP consists of functionsR : Rn → R of the formR = −∇·(ρ∇φ)

for some φ : Rn → R; we write R ≡ ∇φ. The norm of R ≡ ∇φ is ‖R‖ρ = (Eρ[‖∇φ‖2])
1
2 .

Suppose we wish to solve the optimization problem

min
ρ∈P

F (ρ)

where F : P → R is a smooth functional. There are two basic classes of interesting functionals:

1. Expected value: Suppose F (ρ) = Eρ[f ] is the expected value of a smooth function f : Rn →
R. This is an example of a “potential energy” (Villani, 2003, §5.2.2). It involves only a scalar
product of a density ρ and a function f , so can be implemented by samples in space. The
gradient flow, gradient descent, and proximal gradient methods for Eρ[f ] are implemented by
the corresponding gradient flow, gradient descent, and proximal gradient methods for f , with
the same convergence guarantees. Therefore, we can view a deterministic problem from the
space of measures without loss of information. See §E.1 for more detail.

2. Negative entropy: Suppose F (ρ) = −H(ρ) is the negative entropy. This is an example
of an “internal energy” where we apply a function to the density ρ before integrating, so it
apparently cannot be implemented from samples in space. Interestingly, the gradient flow of
negative entropy is the heat flow, which is implementable by the Brownian motion (Gaussian
noise) in space. This also gives an optimization interpretation of the Fisher information as the
squared gradient of entropy. See §E.2 for more detail.

There is a third class of functionals which is “interaction energy”, for example variance. We do
not use interaction energy for sampling in this paper, but see §E.3 for the gradient flow of variance.
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3.1. Minimizing relative entropy

Our objective function for sampling is the relative entropy, which is a combination of the potential
and internal energies:

F (ρ) = Hν(ρ) =

∫
ρ log

ρ

ν
= Eρ[f ]−H(ρ) (9)

where ν = e−f is the target measure. Relative entropy is nonnegative, Hν(ρ) ≥ 0, and it is
minimized at the target measure: Hν(ρ) = 0 if and only if ρ = ν.

3.1.1. LOG-SOBOLEV INEQUALITY AS GRADIENT DOMINATION OF RELATIVE ENTROPY

The squared gradient of relative entropy F (ρ) = Hν(ρ) is the relative Fisher information:

Jν(ρ) = Eρ
[∥∥∥∇ log

ρ

ν

∥∥∥2
]
.

Note that ρ = ν is the only stationary point of Hν ; because if ρ is a stationary point of Hν , then
‖ gradρHν‖2ρ = Jν(ρ) = 0, and it is clear that Jν(ρ) = 0 if and only if ρ = ν.

The gradient domination condition ‖ gradF‖2 ≥ 2α(F −minF ), α > 0, for relative entropy
F = Hν becomes the logarithmic Sobolev inequality (LSI) (Gross, 1975; Otto and Villani, 2000):

Jν(ρ) ≥ 2αHν(ρ) ∀ ρ ∈ P.

The gradient flow identity d
dtF (ρ) = −‖ gradρ F‖2ρ becomes d

dtHν(ρ) = −Jν(ρ), which is a
generalization of the De Bruijn’s identity.

The set of measures satisfying LSI includes all strongly log-concave measures, and it is closed
under bounded perturbation with a constant that decays exponentially with the size of the perturba-
tion (Holley and Stroock, 1987). Thus, even a multimodal distribution such as a mixture of Gaussian
satisfies LSI, and hence the Langevin dynamics converges exponentially fast.

The Hessian of relative entropy F (ρ) = −Hν(ρ) is, for a tangent function R ≡ ∇φ ∈ TρP ,

(HessρHν)(R,R) = Eρ
[
‖∇2φ‖2HS + 〈∇φ, (∇2f)∇φ〉

]
.

Therefore, if f is strongly convex (ν is strongly log-concave), then F = Hν is also strongly convex,
in which case any two co-evolving solutions are contracting exponentially fast. However, note that
the Hessian of Hν is not bounded above.

3.1.2. LANGEVIN DYNAMICS AS GRADIENT FLOW OF RELATIVE ENTROPY

The gradient of F (ρ) = Hν(ρ) is gradρ F = −∇ · (ρ∇ log ρ
ν ) ≡ ∇ log ρ

ν . Therefore, the gradient
flow equation ρ̇ = − gradρ F of relative entropy is the Fokker-Planck equation (3):

∂ρ

∂t
= ∇ ·

(
ρ∇ log

ρ

ν

)
= ∇ · (ρ∇f) + ∆ρ. (10)

This is implementable in space as the Langevin dynamics stochastic differential equation (4):

dX = −∇f(X) dt+
√

2 dW.

9
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When the target measure is Gaussian, namely for the Ornstein-Uhlenbeck (OU) process, we have
an exact solution, as we have seen in Example 1. However, in general we need to discretize.

If ν satisfies α-LSI, then along the gradient flow (10),

d

dt
Hν(ρ) = −Jν(ρ) ≤ −2αHν(ρ),

which implies exponential convergence in relative entropy:

Hν(ρt) ≤ e−2αtHν(ρ0).

This also implies exponential convergence of the distance W2(ρt, ν), since LSI implies the Tala-
grand inequality: W2(ρ, ν)2 ≤ 2

αHν(ρ), ∀ ρ ∈ P (Talagrand, 1996; Otto and Villani, 2000). This
is because in general gradient domination implies the sufficient growth property, see Appendix C.1.

3.1.3. FORWARD METHOD FOR LANGEVIN DYNAMICS

The forward method ρk+1 = expρk(−ε gradρk F ) for relative entropy F = Hν is

ρk+1 = expρk

(
−ε∇ log

ρk
ν

)
where recall gradρ F ≡ ∇ log ρ

ν . If ρk isK-log-semiconcave relative to ν, which means−∇2 log ρk
ν �

KI for some K ∈ R, then for ε ≤ 1
max{0,−K} , the exponential map above is given by:

ρk+1 =
(
I − ε∇ log

ρk
ν

)
#
ρk. (11)

If we know the analytic form of ρk, then we can implement one step of the algorithm by xk+1 =
xk−ε∇f(xk)−ε∇ log ρk(xk). However, we cannot iterate this algorithm because at the next round
we do not know what ρk+1 is, we only have xk+1.

For Gaussian target measure, we can solve the forward method with Gaussian initial data.

Example 4 (Forward method for OU with Gaussian data.) Let ν = N (µ,Σ) as in Example 1.
Let ρ0 = N (µ,Σ0) with Σ−1

0 � Σ−1. Along the forward method (11) for OU, ρk = N (µ,Σk)
stays Gaussian. Further, (11) becomes xk+1 − µ = (I + ε(Σ−1

k − Σ−1))(xk − µ). Therefore,
Σk+1 = Σk(I + ε(Σ−1

k − Σ−1))2. The only fixed point is Σk = Σk+1 = Σ. Thus, the forward
method is consistent for OU with Gaussian data.

3.1.4. BACKWARD METHOD FOR LANGEVIN DYNAMICS

The backward method ρk+1 = arg minρ∈P{F (ρ) + 1
2εW2(ρ, ρk)

2} for relative entropy F = Hν is

expρk+1

(
ε∇ log

ρk+1

ν

)
= ρk.

If ρk+1 is L-log-smooth with respect to ν, which means −∇2 log
ρk+1

ν � LI for some L > 0, then
for ε ≤ 1

L , the backward method above is implemented (implicitly) by:(
I + ε∇ log

ρk+1

ν

)
#
ρk+1 = ρk. (12)

In general this is not solvable analytically.
For Gaussian target measure, we can solve the backward method with Gaussian initial data.

10
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Example 5 (Backward method for OU with Gaussian data.) Let ν = N (µ,Σ) as in Example 1.
Let ρ0 = N (µ,Σ0) for simplicity. Along the backward method (12) for OU, ρk = N (µ,Σk)
stays Gaussian. Further, (12) becomes (I − ε(Σ−1

k+1 − Σ−1))(xk+1 − µ) = xk − µ. Therefore,
Σk+1(I − ε(Σ−1

k+1 − Σ−1))2 = Σk. The only fixed point is Σk = Σk+1 = Σ. Thus, the backward
method is consistent for OU with Gaussian data.

4. Langevin dynamics as composite optimization in the space of measures

In §3.1 we have seen how to optimize Hν(ρ) by considering it as a single function. We now study
how to optimize Hν(ρ) as a composite function when we write it as a sum of two functions:

Hν(ρ) = Eρ[f ]−H(ρ).

4.1. Forward-Backward for Langevin dynamics

In general, the algorithm of choice for composite optimization is the Forward-Backward (FB) algo-
rithm, which means we run the forward method for one component and the backward method for
the other. (Equivalently, we can run the Backward-Forward algorithm, which is the adjoint version.)
The FB algorithm is consistent because the backward method is adjoint to the forward method, so
the FB algorithm preserves the stationary point; see §F for a review. FB can be shown to converge
exponentially fast under gradient domination condition and some smoothness assumptions (Garri-
gos et al., 2017); see also §F.2. In principle, the FB algorithm for the Langevin dynamics is the
answer we are seeking.

For optimizing relative entropy, the FB algorithm means running the forward method for Eρ[f ]
(which is implemented by the gradient descent for f ), followed by the backward method for−H(ρ):

ρk+ 1
2

= (I − ε∇f)#ρk (13a)

ρk+1 = arg min
ρ∈P

{
−H(ρ) +

1

2ε
W2(ρ, ρk+ 1

2
)2
}
. (13b)

We cannot implement the backward method for the heat flow in (13b), so the FB algorithm
above is not implementable in general. For Gaussian target measure, we can solve FB for Gaussian
initial data. In this case the distributions stay Gaussian, and FB is indeed consistent; see Example 8
in §G.1.

4.2. Backward-Forward for Langevin dynamics

Similarly, we can run the Backward-Forward (BF) algorithm for the Langevin dynamics.
For optimizing relative entropy, BF means running the backward method for Eρ[f ] (which is

implemented by the proximal gradient step for f ), followed by the forward method for −H(ρ):

ρk+ 1
2

=
(
(I + ε∇f)−1

)
#
ρk (14a)

ρk+1 = expρ
k+1

2

(−ε∇ log ρk+ 1
2
). (14b)

The BF algorithm above is not implementable in general, since we cannot implement the for-
ward method for the heat flow beyond one step. For Gaussian target measure, we can solve BF for
Gaussian initial data. In this case the distributions stay Gaussian, and BF is indeed consistent; see
Example 9 in §G.2.

11



SAMPLING AS OPTIMIZATION IN THE SPACE OF MEASURES

5. Discussion and future work

In this paper we have studied sampling as optimization in the space of measures. We started with the
question of whether we can have a consistent discretization of the Langevin dynamics that converges
exponentially fast under LSI. We have seen that the difficulties are twofold: First, relative entropy
is a composite optimization problem in the space of measures, so we have to work with composite
algorithms. Second, the heat flow is exactly solvable, but neither its forward nor backward methods
are implementable. Therefore, unbiased algorithms such as the FB algorithm are not implementable
for the Langevin dynamics. The basic discretization known as ULA is implementable but biased.
We also proposed a symmetrized variant of ULA which should have a smaller bias, at the price of
implementing the proximal gradient step in space.

We have focused on the Langevin dynamics, which is the gradient flow dynamics for minimizing
relative entropy. More generally, we can apply more sophisticated optimization techniques, such as
acceleration, to sampling. There is a second-order variant of the Langevin dynamics known as
the underdamped Langevin dynamics, which is the stochastic version of the second-order heavy
ball dynamics for optimization, and has been shown to have better convergence properties than the
Langevin dynamics (Cheng et al., 2018). However, it is interesting to consider whether we can also
apply the acceleration principle directly in the space of measures, for example via the variational
Lagrangian approach (Wibisono et al., 2016).
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Appendix A. Details for §2

A.1. Proof of Lemma 1 (Contraction of ULA)

We use synchronous coupling to show iteratively that

W2(ρk+1, ρ
′
k+1)2 ≤

(
1− 2εαL

α+ L

)
W2(ρk, ρ

′
k)

2

which will imply the desired claim.
Let xk ∼ ρk, x′k ∼ ρ′k be coupled with the optimal coupling, so W2(ρk, ρ

′
k) = E[‖xk − x′k‖2].

We evolve xk, x′k via ULA (5) with the same Gaussian noise zk (this is the synchronous coupling):

xk+1 = xk − ε∇f(xk) +
√

2εzk

x′k+1 = x′k − ε∇f(x′k) +
√

2εzk.

Subtracting and taking the squared norm, we obtain

‖xk+1 − x′k+1‖2 = ‖xk − x′k − ε(∇f(xk)−∇f(x′k))‖2

= ‖xk − x′k‖2 − 2ε〈∇f(xk)−∇f(x′k), xk − x′k〉+ ε2‖∇f(xk)−∇f(x′k)‖2.

Since f = − log ν isα-strongly convex andL-smooth, we have by (Nesterov, 2004, Theorem 2.1.12):

〈∇f(xk)−∇f(x′k), xk − x′k〉 ≥
αL

α+ L
‖xk − x′k‖2 +

1

α+ L
‖∇f(xk)−∇f(x′k)‖2. (15)

Therefore, we have the bound

‖xk+1 − x′k+1‖2 ≤
(

1− 2εαL

α+ L

)
‖xk − x′k‖2 + ε

(
ε− 2

α+ L

)
‖∇f(xk)−∇f(x′k)‖2.

If 0 < ε ≤ 2
α+L , then the second term above is nonpositive, so we may drop it:

‖xk+1 − x′k+1‖2 ≤
(

1− 2εαL

α+ L

)
‖xk − x′k‖2.

Now we take expectation and use the fact that xk, x′k have the optimal coupling:

E[‖xk+1 − x′k+1‖2] ≤
(

1− 2εαL

α+ L

)
E[‖xk − x′k‖2] =

(
1− 2εαL

α+ L

)
W2(ρk, ρ

′
k)

2.

Finally, by the definition of Wasserstein distance as the infimum over all coupling, we conclude

W2(ρk+1, ρ
′
k+1)2 ≤

(
1− 2εαL

α+ L

)
W2(ρk, ρ

′
k)

2

as desired. �

A.2. Proof of Lemma 2 (Bias of ULA)

This follows from the noiseless case (δ = σ = 0) of (Dalalyan and Karagulyan, 2017, Theorem 4).
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A.3. Proof of Lemma 3 (Contraction of SLA)

We follow the same outline as §A.1. We use synchronous coupling to show iteratively that

W2(ρk+1, ρ
′
k+1)2 ≤

(
1− 2ε αL

α+L

1 + 2ε αL
α+L

)
W2(ρk, ρ

′
k)

2

which will imply the desired claim.
Let xk ∼ ρk, x′k ∼ ρ′k be coupled with the optimal coupling, so W2(ρk, ρ

′
k) = E[‖xk − x′k‖2].

We evolve xk, x′k via SLA (8) with the same Gaussian noise zk (this is the synchronous coupling):

xk+1 + ε∇f(xk+1) = xk − ε∇f(xk) +
√

2εzk

x′k+1 + ε∇f(x′k+1) = x′k − ε∇f(x′k) +
√

2εzk.

Subtracting and taking the squared norm, we obtain

‖xk+1 − xk+1 + ε(∇f(xk+1)−∇f(x′k+1))‖2 = ‖xk − x′k − ε(∇f(xk)−∇f(x′k))‖2.

We expand both sides and use the inequality (15). As in §A.1, for 0 < ε ≤ 2
α+L , the right hand

side is upper bounded by (1− 2εαL
α+L )‖xk − x′k‖2. Similarly, the left hand side is lower bounded by

(1 + 2εαL
α+L )‖xk+1 − x′k+1‖2. Combining and taking expectation, we obtain

E[‖xk+1 − x′k+1‖2] ≤

(
1− 2ε αL

α+L

1 + 2ε αL
α+L

)
E[‖xk − x′k‖2] =

(
1− 2ε αL

α+L

1 + 2ε αL
α+L

)
W2(ρk, ρ

′
k)

2.

Finally, by the definition of Wasserstein distance as the infimum over all coupling, we conclude

W2(ρk+1, ρ
′
k+1)2 ≤

(
1− 2ε αL

α+L

1 + 2ε αL
α+L

)
W2(ρk, ρ

′
k)

2

as desired. �

A.4. SLA and ULA for mixture of Gaussians

Let the target measure be an equal mixture of two Gaussians:

ν =
1

2
N (−a, I) +

1

2
N (a, I)

for some a ∈ Rn. Then we can write f = − log ν as

f(x) =
1

2
‖x‖2 − log cosh(〈x, a〉) +

1

2
‖a‖2 +

n

2
log(2π).

The gradient of f is∇f(x) = x− tanh(〈x, a〉)a.

ULA. The ULA iteration for mixture of Gaussians is:

xk+1 = (1− ε)xk + ε tanh(〈xk, a〉)a+
√

2εzk

where zk ∼ N (0, I) is independent of xk. We can run this directly.
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SLA. The ULA iteration for mixture of Gaussians is:

(1 + ε)xk+1 − ε tanh(〈xk+1, a〉)a = (1− ε)xk + ε tanh(〈xk, a〉)a+
√

4εzk (16)

where zk ∼ N (0, I) is independent of xk.
Let vk = 〈xk, a〉 ∈ R. Taking the inner product of both sides of (16) with a gives us

(1 + ε)vk+1 − ε‖a‖2 tanh(vk+1) = (1− ε)vk + ε‖a‖2 tanh(vk) +
√

4ε〈zk, a〉.

Given vk and zk, we can invert the equation above to solve for vk+1, which is well-defined for small
ε. Once we have vk+1 = 〈xk+1, a〉, we can substitute it to (16) to solve for xk+1:

xk+1 =
1− ε
1 + ε

xk +
ε

1 + ε
(tanh(vk) + tanh(vk+1)) a+

√
4ε

1 + ε
zk.

Appendix B. A review of discretization methods for a flow in space

We provide brief review of discretization methods, and refer to (Hairer et al., 2006) for more detail.

B.1. Integrator, order, and adjoint

Let ϕ = (ϕt)t∈R be the flow of the differential equation ẋ = v(x) for a smooth vector field v on
Rn. An integrator for ϕ is a family A = (Aε)ε∈R of algorithms Aε : Rn → Rn, indexed by a step
size ε ∈ R (or ε in a neighborhood of 0), such that A0 = I is the identity map, (ε, x) 7→ Aε(x) is
smooth, and

lim
ε→0

Aε(x)− x
ε

= v(x) ∀x ∈ Rn.

We say that the integrator A has order p, for some p ∈ N ∪ {+∞}, if

‖ϕε(x)−Aε(x)‖ ≤ O(εp+1) as ε→ 0, ∀x ∈ Rn

where the bound on the right hand side above may depend on x.
The adjoint of an integrator A = (Aε)ε∈R is another integrator A∗ = (A∗ε )ε∈R defined by

A∗ε = (A−ε)
−1.

(IfAε is defined for ε in a symmetric interval around 0, thenA∗ε is defined for ε in the same interval.)
This definition of adjoint satisfies (A∗)∗ = A and (A ◦ B)∗ = B∗ ◦ A∗ for any integrators A and
B, where A ◦B = (Aε ◦Bε)ε∈R is the composition of two integrators.

We say that an integrator A is symmetric if it is self-adjoint: A∗ = A. We can symmetrize any
integrator A by composing it with its adjoint in either order; this gives two symmetric integrators
A ◦A∗ and A∗ ◦A, which in general are not equal. We recall the following results.

Lemma 4 ((Hairer et al., 2006, Theorem 3.2))

1. An integrator A and its adjoint A∗ have the same order.

2. If A is symmetric, then its order is even.

For example, the exact flow ϕ = (ϕt)t∈R is a symmetric integrator of order +∞. This is the
ideal integrator, but typically not computable in practice. There are two first-order integrators that
come from basic discretizations: the forward (explicit) method, and the backward (implicit) method.
We can also symmetrize them to obtain second-order integrators. We describe them further below.
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B.2. The forward method

We wish to approximate the differential equation ẋ = v(x). The forward method F = (Fε)ε∈R uses
the approximation 1

ε (Fε(x)− x) = v(x), or equivalently,

Fε(x) = x+ εv(x). (17)

We also write

Fε = I + εv (18)

where I is the identity map. This is known as the forward or explicit Euler method, because given
where we are now, we can determine where to go next with little computation. If v is smooth and
Lipschitz, then the forward method Fε is a diffeomorphism for ε in a small enough neighborhood
around 0, therefore F is an integrator. Furthermore, F has order 1 because Fε is performing a first-
order approximation.

B.3. The backward method

We wish to approximate the differential equation ẋ = v(x). The backward method B = (Bε)ε∈R
uses the approximation 1

ε (Bε(x)− x) = v(Bε(x)), or equivalently,

Bε(x)− εv(Bε(x)) = x. (19)

Therefore,

Bε = (I − εv)−1. (20)

This is known as the backward or implicit Euler method, because to determine where to go next
we need to solve an implicit equation (19), or equivalently compute the inverse of an operator (20).
As in the forward method, if v is smooth and Lipschitz, then for small |ε|, the map I − εv is a
diffeomorphism. So Bε = (I − εv)−1 is also a diffeomorphism, and therefore B is an integrator.

Furthermore, observe that we can write

Bε = (F−ε)
−1 = F∗ε .

Therefore, the backward method is the adjoint of the forward method, and thus by Lemma 4 they
have the same order 1.

B.4. Symmetrized methods

We can consider the symmetrized versions of the basic methods. There are two versions: the sym-
metrized forward method—which applies the forward method followed by the backward method—
is known as the trapezoid rule, while the symmetrized backward method—which applies the back-
ward method followed by the forward method—is known as the implicit midpoint rule. Both have
order 2, being symmetric methods. We can also consider compositions of basic methods with vary-
ing step sizes, properly chosen to increase the order of the resulting algorithm; see (Hairer et al.,
2006, §II.II.4).
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B.5. On order of error and order of bias

We show that the order of the discretization error of an algorithm is the same as the order of the
bias, at least under strong convexity. Thus, if we can find a discretization algorithm of high order,
then we are guaranteed the bias will be small.

Suppose the vector field v satisfies the following monotonicity property for some α > 0:

〈v(x)− v(y), x− y〉 ≤ −α‖x− y‖2 ∀x, y ∈ Rn. (21)

This is satisfied, for example, for gradient flow of a strongly convex function, i.e., v(x) = −∇f(x)
where f : Rn → R is α-strongly convex. The condition above implies any two solutions of the flow
of v contract exponentially fast, and in particular there is a unique fixed point x∗. We now show that
any integrator for the flow of v will also converge exponentially fast to a biased limit of the same
order as the discretization error.

Lemma 5 Let A = (Aε)ε∈R be an integrator of order p ∈ N for the flow of v satisfying (21). Let
x0 ∈ Rn and define iteratively xk+1 = Aε(xk). Then

‖xk − x∗‖ ≤ O(εp) + e−αεk‖x0 − x∗‖.

In particular, the bias of Aε is O(εp).

Proof Let x̃(t) = ϕt(x0) be the flow of v starting from x̃(0). We compare xk with x̃(εk). By
triangle inequality,

‖xk − x∗‖ ≤ ‖xk − x̃(εk)‖+ ‖x̃(εk)− x∗‖.

The first term is upper bounded by e−αεk‖x̃(0)−x∗‖ by property (21). We need to show the second
term δk := ‖xk − x̃(εk)‖ is O(εp).

Consider the flow ϕε(xk−1) of v starting at xk−1. We also write xk = Aε(xk−1) and x̃(εk) =
ϕε(x̃(ε(k − 1))). By triangle inequality,

δk = ‖xk − x̃(εk)‖ ≤ ‖Aε(xk−1)− ϕε(xk−1)‖+ ‖ϕε(xk−1)− ϕε(x̃(ε(k − 1)))‖.

The first term above is O(εp+1) since Aε is an order-p integrator. The second term above is upper
bounded by e−αε‖xk−1 − x̃(ε(k − 1))‖ = e−αεδk−1 by the contraction property of ϕt, by (21).
Then

δk ≤ O(εp+1) + e−αεδk−1.

Unfolding the recursion with δ0 = 0 (since x̃(0) = x0), we get

δk ≤
O(εp+1)(1− e−αεk)

1− e−αε
= O(εp)

as desired.
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Appendix C. A review of optimization in Riemannian manifold

We review optimization in a smooth Riemannian manifold. We focus on gradient flow and simple
discretization methods including the forward and backward methods. We discuss sufficient condi-
tions ensuring exponential convergence rate including gradient domination and strong convexity.

Let M be a complete smooth Riemannian manifold of dimension n ≥ 1. Let

f : M → R

be a smooth objective function. We assume f is bounded below and achieves its minimum in M
(not necessarily at a unique point), so the set of minimizers

x∗(f) = arg min
x∈M

f(x)

is not empty. Let min f ≡ minx∈M f(x) be the minimum value of f .
We want to solve the optimization problem

min
x∈M

f(x)

which is equivalent to the problem of reaching the set of minimizers x∗(f). The basic dynamics
that achieves this task is gradient flow. We first recall some conditions that ensure exponential
convergence rate.

C.1. Conditions ensuring exponential convergence

We say that f is α-strongly convex for some α > 0 if

Hessx f � αI ∀x ∈M.

Here recall the Hessian Hessx f is the bilinear form on the tangent space TxM that measures
the second rate of change of f along geodesics, and the condition above means (Hessx f)(v) ≡
(Hessx f)(v, v) ≥ α‖v‖2x for all v ∈ TxM .

We say that f is α-gradient dominated for some α > 0 if

‖ gradx f‖2x ≥ 2α(f(x)−min f) ∀x ∈M.

For M = Rn, this is known as the Polyak-Łojaciewicz condition or the Kurdyka-Łojaciewicz
condition (Polyak, 1963; Lojasiewicz, 1963). In the setting of M = P2(Rn) with the relative
entropy functional, this is known as the logarithmic Sobolev inequality (Otto and Villani, 2000).
Observe that if f is gradient dominated, then any stationary point of f (where the gradient vanishes)
must be a global minimum.

We say that f has α-sufficient growth for some α > 0 if

f(x)−min f ≥ α

2
d(x, x∗(f))2 ∀x ∈M.

Here d(x, x∗(f)) = infx∗∈x∗(f) d(x, x∗) is the distance from x to the minimizer set x∗(f). In
the setting of M = P2(Rn) with the relative entropy functional, this is known as the Talagrand
inequality (Otto and Villani, 2000).

We recall the following implications from (Otto and Villani, 2000, Propositions 1’ & 2’), which
follow by interpolating the inequalities along the gradient flow.
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Lemma 6 Let α > 0.

1. If f is α-strongly convex, then f is α-gradient dominated.

2. If f is α-gradient dominated, then f has α-sufficient growth.

C.2. Gradient flow

The basic dynamics for minimizing a function f is the gradient flow:

ẋ = − gradx f. (22)

Here gradx f ∈ TxM is the metric gradient of f at x, which in local coordinate is given by mul-
tiplying the vector of partial derivatives of f by the inverse metric at x. Gradient flow is a descent
flow:

d

dt
f(x) = 〈gradx f, ẋ〉x = −‖ gradx f‖2x ≤ 0.

We are interested in quantifying how fast the convergence occurs.

C.2.1. EXPONENTIAL CONTRACTION OF SOLUTIONS UNDER STRONG CONVEXITY

Strong convexity is the weakest condition needed for exponential contraction between solutions.
Indeed, suppose f is α-strongly convex for some α > 0, and let x(t), y(t) be two solutions of the
gradient flow (22). Assume x(t) and y(t) are close enough so that the geodesic connecting them
is minimizing. Then the gradient of the squared distance x 7→ d(x, y(t))2 is gradx(t) d(·, y(t))2 =
−2 logx(t)(y(t)) (see for example (Ferreira, 2006)). Here logx y ∈ TxM is the logarithm map,
which is the inverse of the exponential map, i.e., v = logx y if and only if y = expx(v). Similarly,
the gradient of y 7→ d(y, x(t))2 is grady(t) d(·, x(t))2 = −2 logy(t)(x(t)). Then we have (hiding
dependence on t for simplicity):

d

dt
d(x(t), y(t))2 = −2

〈
logx(y), ẋ

〉
x
− 2
〈

logy(x), ẏ
〉
y

= 2
〈

logx(y), gradx f
〉
x

+ 2
〈

logy(x), grady f
〉
y
. (23)

On the other hand, by the strong convexity of f , we have

f(y) ≥ f(x) + 〈gradx f, logx y〉x +
α

2
d(x, y)2

f(x) ≥ f(y) + 〈grady f, logy x〉x +
α

2
d(x, y)2.

Summing yields 〈gradx f, logx y〉x + 〈grady f, logy x〉x ≤ −αd(x, y)2. Substituting to (23) yields

d

dt
d(x(t), y(t))2 ≤ −2αd(x(t), y(t))2.

Therefore, d(x(t), y(t))2 ≤ e−2αtd(x(0), y(0))2, as desired.
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C.2.2. EXPONENTIAL CONVERGENCE OF FUNCTION VALUE UNDER GRADIENT DOMINATION

Gradient domination is the weakest condition needed for exponential convergence of function value.
Indeed, suppose f is α-gradient dominated for some α > 0. Then along the gradient flow,

d

dt
(f(x)−min f) = −‖ gradx f‖2x ≤ −2α(f(x)−min f).

Therefore, f(x(t))−min f ≤ e−2αt(f(x(0))−min f). This also implies exponential convergence
to the minimizer, since gradient domination implies sufficient growth.

C.3. Gradient descent

Gradient descent algorithm for minimizing f with step size ε > 0 is the iteration

xk+1 = expxk(−ε gradxk f).

Here we assume ε is small enough so the geodesic from xk to xk+1 is minimizing.
As in gradient flow, in general we can get exponential contraction between solutions of gradient

descent under strong convexity, and get exponential convergence in function value under gradient
domination. However, we now also need a smoothness assumption on f . Specifically, suppose f
is α-gradient dominated for some α > 0. Assume further f is L-smooth for some L > 0, which
means Hess f � LI . This implies, for x, y sufficiently close,

f(y) ≤ f(x) + 〈gradx f, logx y〉x +
L

2
d(x, y)2.

Plugging in x = xk, y = xk+1 along gradient descent with d(x, y)2 = ε2‖ gradxk f‖
2
xk

, we obtain

f(xk+1) ≤ f(xk)− ε
(

1− εL

2

)
‖ gradxk f‖

2
xk
. (24)

If 0 < ε ≤ 2
L , then we can chain the last term above with the gradient domination inequality to

conclude that

f(xk+1)−min f ≤
(

1− 2αε

(
1− εL

2

))
(f(xk)−min f).

Unrolling the recursion gives the exponential convergence in function value:

f(xk)−min f ≤
(

1− 2αε

(
1− εL

2

))k
(f(x0)−min f).

For example, if ε = 1
L , then the rate is (1 − α

L)k. This also implies exponential convergence in
the distance to minimizer by the sufficient growth property. See also, for example, (Ferreira and
Oliveira, 1998; Zhang and Sra, 2016; Karimi et al., 2016).
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C.4. Proximal gradient

The proximal gradient method for minimizing f with step size ε > 0 is

xk+1 = arg min
x∈M

{
f(x) +

1

2ε
d(x, xk)

2

}
. (25)

Assume ε > 0 is small enough so the minimizer above is unique and within the injectivity radius of
xk. Then the minimizer xk+1 is characterized by gradxk+1

(f + 1
2εd(·, xk)2) = 0, or equivalently,

logxk+1
xk = ε gradxk+1

f.

This is equivalent to the implicit update expxk+1
(ε gradxk+1

f) = xk, which generalizes the usual
update xk+1 + ε∇f(xk+1) = xk in the Euclidean case.

As before, in general we can get exponential contraction between solutions under strong con-
vexity, and get exponential convergence in function value under gradient domination. Unlike in
gradient descent, here we do not need a smoothness assumption on f , but we need to solve the
implicit update above.

Suppose f is α-gradient dominated for some α > 0. Since xk+1 is the minimizer of (25),

f(xk+1) +
1

2ε
d(xk+1, xk)

2 ≤ f(xk).

Equivalently, since d(xk+1, xk)
2 = ε2‖ gradxk+1

f‖2xk+1
,

f(xk+1)− f(xk) ≤ −
1

2ε
d(xk+1, xk)

2 = − ε
2
‖ gradxk+1

f‖2xk+1
.

Now using the gradient domination inequality and collecting the terms give us

f(xk+1)−min f ≤ 1

1 + αε
(f(xk)−min f). (26)

Unfolding the recursion, we conclude that

f(xk)−min f ≤ 1

(1 + αε)k
(f(x0)−min f).

See also, for example, (Ferreira and Oliveira, 2002; de Carvalho Bento et al., 2016)

C.5. Symmetrized forward method

The symmetrized forward method for minimizing f is the composition of the gradient descent and
the proximal gradient methods:

xk+ 1
2

= expxk(−ε gradxk f) (27a)

xk+1 = arg min
x∈M

{
f(x) +

1

2ε
d(x, xk+ 1

2
)2

}
. (27b)

Note that this is the Forward-Backward algorithm for composite optimization, applied to the self-
decomposition 2f = f + f .
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Suppose f is α-gradient dominated and L-smooth for some 0 < α ≤ L, and let 0 < ε ≤ 2
L .

Then as in (24), the first update (27a) above implies

f(xk+ 1
2
)− f(xk+1) ≤ −ε

(
1− εL

2

)
‖ gradxk f‖

2
xk
.

Similarly, as in (26), the second update (27b) above implies

f(xk+1)− f(xk+ 1
2
) ≤ − ε

2
‖ gradxk+1

f‖2xk+1
.

Summing the two inequalities above and using the gradient domination inequality give us

f(xk+1)− f(xk) ≤ −2αε

(
1− εL

2

)
(f(xk)−min f)− αε(f(xk+1)−min f).

Collecting terms and unrolling the recursion, we conclude the exponential convergence rate

f(xk)−min f ≤

(
1− 2αε

(
1− εL

2

)
1 + αε

)k
(f(x0)−min f).

For example, if ε = 1
L , then the rate is

(
1−α

L
1+α

L

)k
, which is slightly better than for gradient descent.

Appendix D. A brief review of the Wasserstein metric in the space of measures

Let P ≡ P2(Rn) be the space of probability measures ρ on Rn with finite second moments. We
provide a brief review of the Wasserstein metric, and refer the reader for more detail to Villani
(2003, 2008); Carlen and Gangbo (2003); Otto and Villani (2000).

The Wasserstein metric W2 on P is defined as

W2(ρ, ν)2 = inf
X∼ρ,Y∼ν

E[‖X − Y ‖2] (28)

where the infimum is over all coupling of random variables (X,Y ) with X ∼ ρ and Y ∼ ν. This
formally endows P with an infinite-dimensional smooth Riemannian metric.

A tangent vector/function R ∈ TρP is of the form

R = −∇ · (ρ∇φ)

for some function φ : Rn → R. We also write R ≡ ∇φ. The squared norm of R ≡ ∇φ is

‖R‖2ρ = ‖∇φ‖2ρ =

∫
ρ‖∇φ‖2 = Eρ[‖∇φ‖2].

The gradient of a functional F : P → R is

gradρ F = −∇ ·
(
ρ∇δF

δρ

)
where δF

δρ (x) is the naive (L2) derivative of F with respect to ρ(x). There are also Hessian formulae
for specific functional classes (Villani, 2008, §15).
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When ρ and ν are smooth and absolutely continuous, the optimal coupling in the Wasserstein
distance (28) is unique and induced by an optimal transport map which is the gradient of a convex
function: (X,Y ) = (X,∇φ(X)), where φ : Rn → R is convex and satisfies (∇φ)#ρ = ν. There-
fore, if there is a convex function whose gradient pushes forward one measure to another, then that
gradient must be the optimal transport map. Furthermore, the geodesic in the Wasserstein metric
connecting one measure to another is obtained by linearly interpolating the optimal transport map
in space and taking the pushforward. We summarize this fact in the following lemma, which we use
in our discussion in this paper.

Lemma 7 Let φ : Rn → R satisfy ∇2φ � KI for some K ∈ R. For 0 ≤ ε < 1
max{0,−K} , the

exponential map expρ(ε∇φ) in the Wasserstein metric is given by the pushforward of the linear
map (I + ε∇φ)#.

Proof The map I+ ε∇φ = ∇
(
‖·‖2

2 + εφ
)

is the gradient of a convex function that pushes forward
ρ to expρ(ε∇φ), so it must be the optimal transport map.

Appendix E. Details for §3: Optimization in the space of measures

E.1. Expected value

Let
F (ρ) = Eρ[f ] =

∫
Rn
ρ(x)f(x) dx

for some smooth function f : Rn → R in space. If f is minimized at x∗(f) = arg minx∈Rn f(x)
with minimum value min f , then F is minimized at any measure ρ supported on x∗(f) with the
same minimum value, minF = min f . Essentially, the behavior of F is the same as that of f .

E.1.1. GRADIENT DOMINATION AND STRONG CONVEXITY

The gradient of F (ρ) = Eρ[f ] is gradρ F = −∇ · (ρ∇f) ≡ ∇f , so ‖ gradρ F‖2 = Eρ[‖∇f‖2].
The gradient-domination condition ‖ gradF‖2 ≥ 2α(F −minF ), α > 0, becomes

Eρ[‖∇f‖2] ≥ 2αEρ[f −min f ] ∀ ρ ∈ P.

Therefore, F satisfies gradient domination in the space of measures if and only if f satisfies the
gradient-domination condition ‖∇f‖2 ≥ 2α(f −min f) in space.

Similarly, the Hessian of F is given by (Hessρ F )(R,R) = Eρ[〈∇φ, (∇2f)∇φ〉], for a tangent
function R ≡ ∇φ ∈ TρP . Therefore, F is strongly convex in the space of measures if and only if f
is strongly convex in space. In particular, if f (and hence F ) is strongly convex, then f has a unique
minimizer x∗ ∈ Rn, and F has a unique minimizer δx∗ ∈ P which is the point mass at x∗.

E.1.2. GRADIENT FLOW

The gradient flow equation ρ̇ = − gradρ F is

∂ρ

∂t
= ∇ · (ρ∇f) .
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This is the continuity equation of the gradient flow equation of f in space:

ẋ = −∇f(x).

Therefore, the gradient flow of F (ρ) = Eρ[f ] is implementable by the gradient flow of f in space.
Furthermore, the rate of convergence for F is the same as the rate of convergence for f . If f (and
hence F ) is gradient dominated, then the convergence is exponential in the function value, and
also in the distance to the set of minimizers. If f (and hence F ) is strongly convex, then any two
coevolving solutions are contracting exponentially fast. If f (and hence F ) is nonconvex, then the
limiting measure is supported on the set of local minima, with weights equal to the measure of the
corresponding basins of attraction under the initial measure.

E.1.3. GRADIENT DESCENT

The forward method or gradient descent ρk+1 = expρk(−ε gradρk F ) becomes

ρk+1 = expρk(−ε∇f) (29)

where recall gradρ F ≡ ∇f . Assume f is L-smooth, which means ∇2f � LI . Then for ε < 1
L ,

the gradient descent for F (29) is implemented by gradient descent for f in space:

ρk+1 = (I − ε∇f)#ρk.

Furthermore, if f (and hence F ) is α-gradient-dominated for some α > 0, then gradient descent
converges exponentially fast in the function value:

F (ρk)−minF ≤ (1− αε(2− εL))k(F (ρ0)−minF ).

For example, for ε = 1
2L , the rate is (1− 3

4
α
L)k. This also implies an exponential convergence rate in

the distance to minimizer. Similarly, if f (and hence F ) is strongly convex, then any two solutions
are contracting exponentially fast.

E.1.4. PROXIMAL GRADIENT

The backward method or proximal gradient algorithm for F (ρ) = Eρ[f ] is

ρk+1 = arg min
ρ∈P

{
Eρ[f ] +

1

2ε
W2(ρ, ρk)

2

}
.

Equivalently, ρk+1 solves the adjoint version of the equation (29):

expρk+1
(ε∇f) = ρk.

This is implemented by the backward method or proximal gradient algorithm for f in space:

ρk+1 =
(
(I + ε∇f)−1

)
#
ρk.

See below for detail. Here (I + ε∇f)−1 is the proximal gradient operator for f ; i.e., xk+1 =
(I + ε∇f)−1(xk) if and only if

xk+1 = arg min
x∈Rn

{
f(x) +

1

2ε
‖x− xk‖2

}
.
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This is well-defined if f satisfies−LI � ∇2f � LI for some L > 0, and 0 < ε < 1
L . Furthermore,

if f (and hence F ) is α-gradient-dominated for some α > 0, then proximal gradient converges
exponentially fast in the function value:

F (ρk)−minF ≤ 1

(1 + αε)k
(F (ρ0)−minF ).

This also implies an exponential convergence rate in the distance to minimizer. Similarly, if f (and
hence F ) is strongly convex, then any two solutions are contracting exponentially fast.

E.1.5. DETAIL FOR §E.1.4: PROXIMAL GRADIENT FOR EXPECTED VALUE

Let f : Rn → R be a smooth function.
The proximal step for f with step size ε > 0 is the map Pε,f : Rn → Rn given by

Pε,f (x) = arg min
y∈Rn

{
f(y) +

1

2ε
‖y − x‖2

}
.

Taking derivative and setting it to zero, the solution y = Pε,f (x) satisfies ∇f(y) + 1
ε (y − x) = 0,

or equivalently, y + ε∇f(y) = x. Thus,

Pε,f (x) = (I + ε∇f)−1(x).

This is well-defined if f is L-smooth, i.e., −LI � ∇2f(x) � LI , and 0 < ε < 1
L .

In the space of measure, this corresponds to the pushforward map

P̃ε,f (ν) = ((I + ε∇f)−1)#ν.

We will show this is also the proximal step in the space of measure of the corresponding expected
value functional:

P̃ε,f (ν) = arg min
ρ∈P

{
Eρ[f ] +

1

2ε
W (ρ, ν)2

}
.

We calculate the derivative and set it to zero at stationary point. At the minimizer ρ = P̃ε,f (ν),
the gradient of F̃ (ρ) = Eρ[f ] + 1

2εW (ρ, ν)2 vanishes. This means for any motion of ρ given by
∂ρ
∂t +∇ · (ρξ) = 0, we have

0 =
d

dt

∣∣∣∣
t=0

F̃ (ρ) =

∫
ρ(y)

〈
∇f(y) +

1

ε
(y −∇ϕ∗(y)), ξ(y)

〉
dy.

Here ∇ϕ is the optimal transport map that sends ν to ρ, so I −∇ϕ∗ is the optimal map that sends
ρ to ν. Since the integral above is zero for any ξ, we must have (ρ–almost surely)

y + ε∇f(y) = ∇ϕ∗(y).

Thus,
∇ϕ∗ = I + ε∇f

so the optimal map that sends ν to ρ is

∇ϕ = (I + ε∇f)−1

which is the proximal step map. Therefore, the solution ρ = P̃ε,f (ν) is given by

ρ = (∇ϕ)#ν = ((I + ε∇f)−1)#ν

which is the same as the pushforward of the proximal map above, as desired.
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E.2. Negative entropy

Suppose

F (ρ) = −H(ρ) =

∫
Rn
ρ(x) log ρ(x) dx

is the negative entropy. It takes values in R ∪ {+∞}. The value +∞ is achieved by a point
mass, or any distribution supported on a set of Lebesgue measure zero. Negative entropy is also
unbounded below, with the limiting value −∞ achieved by the Lebesgue measure (which is not a
probability measure). For example, for a Gaussian distribution ρ = N (µ,Σ), the negative entropy
is F (ρ) = −1

2 log det(2πeΣ).

E.2.1. THE HEAT FLOW AS GRADIENT FLOW OF NEGATIVE ENTROPY

The gradient of F (ρ) = −H(ρ) is gradρ F = −∇ · (ρ∇ log ρ) = −∆ρ, or gradρ F ≡ ∇ log ρ.
Therefore, the gradient flow equation ρ̇ = − gradρ F of negative entropy is the heat equation:

∂ρ

∂t
= ∆ρ.

This has an exact solution which is the heat flow:

ρt = ρ0 ∗ N (0, 2tI).

In space, this is implemented via addition of independent Gaussian noise:

Xt = X0 +
√

2tZ (30)

where Z ∼ N (0, I) is independent of X0.4 Note that ρt tends to the Lebesgue measure as t→∞.
Note also that variance grows linearly along the heat flow.

For example, if ρ0 = N (µ,Σ), then ρt = N (µ,Σ + 2tI). In this case negative entropy
decreases logarithmically: F (ρt) = −n

2 log(2πe) − 1
2

∑n
i=1 log(λi + 2t), where λ1, . . . , λn > 0

are the eigenvalues of Σ � 0. This logarithmic rate is also the fastest rate at which negative entropy
decreases along the heat flow. This follows from the fact that Gaussian minimizes negative entropy
for a given covariance, so F (ρt) ≥ F (N (0,Σ + 2tI)) where Σ is the covariance of ρ0.

By the nonnegativity of mutual information, we also have a logarithmic upper bound on negative
entropy. Indeed, since I(X0;Xt) = H(Xt) −H(Xt |X0) ≥ 0 and H(Xt |X0) = H(N (0, 2tI)),
we have F (ρt) ≤ F (N (0, 2tI)). However, the upper bound is +∞ at t = 0. Using the entropy
power inequality, we can improve this to F (ρt) ≤ −n

2 log(e−
2
n
F (ρ0) + e−

2
n
F (N (0,2tI))), which has

the same logarithmic behavior for large t, and takes the correct value F (ρ0) at t = 0.

E.2.2. FISHER INFORMATION AND CONVEXITY OF NEGATIVE ENTROPY

The squared norm of the gradient of negative entropy F = −H is the Fisher information:

J(ρ) = Eρ[‖∇ log ρ‖2].

4. The true solution of the heat flow is the Brownian motion in space. However, at each time, the solution has the same
distribution as (30) above.
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Therefore, the gradient flow identity d
dtF (ρ) = −‖ gradρ F‖2 becomes d

dtH(ρ) = J(ρ), which is
known as De Bruijn’s identity in information theory (Stam, 1959).

The Hessian of F (ρ) = −H(ρ) is, on a tangent function R = −∇ · (ρ∇φ) ∈ TρP ,

(Hessρ F )(R,R) = Eρ[‖∇2φ‖2HS].

The expression above is nonnegative; therefore, negative entropy is a convex functional in the
space of measures. It is not strictly convex in general, but it is strongly convex along geodesics
that preserve the mean, with strong convexity parameter the Poincaré constant of the distribution;
see (Carlen and Gangbo, 2003, Corollary 2.5). Note that the Hessian of negative entropy is not
bounded above.

We also note that the gradient flow identity d2

dt2
F (ρ) = 2(HessF )(gradF, gradF ) becomes

d2

dt2
H(ρ) = −2K(ρ), where K(ρ) is the second-order Fisher information:

K(ρ) = Eρ[‖∇2 log ρ‖2HS].

This is used in the proof of the concavity of entropy power along the heat flow (Dembo et al., 1991;
Villani, 2000). Moreover, since d

dtH(ρ) = J(ρ) ≥ 0 and d2

dt2
H(ρ) = −2K(ρ) ≤ 0, entropy is

increasing and concave along the heat flow; this is also a consequence of the general fact that a
convex function is decreasing in a convex manner along its own gradient flow.

E.2.3. FORWARD METHOD FOR HEAT FLOW

The forward method ρk+1 = expρk(−ε gradρk F ) for negative entropy F = −H is

ρk+1 = expρk(−ε∇ log ρk)

where recall gradρ F ≡ ∇ log ρ. If ρk is K-log-semiconcave, which means −∇2 log ρk � KI for
some K ∈ R, then for ε ≤ 1

max{0,−K} , the forward method above is implemented by:

ρk+1 = (I − ε∇ log ρk)#ρk. (31)

If we know the analytic form of ∇ log ρk, then we can run one step of the algorithm above by
xk+1 = xk − ε∇ log ρk(xk). However, in the next step we do not know the analytic form of
∇ log ρk+1, so we cannot continue running it.

For Gaussian initial data, we can solve the forward method. In this case the distributions stay
Gaussian, but the variance grows faster than in the heat flow.

Example 6 (Forward method for heat flow with Gaussian data.) Let ρ0 = N (µ0,Σ0), ε > 0.
Along the forward method (31) for the heat flow, ρk = N (µk,Σk) stays Gaussian. Furthermore,
the algorithm (31) becomes the iteration xk+1 = (I + εΣ−1

k )xk− εΣ−1
k µk. Since xk ∼ N (µk,Σk),

xk+1 ∼ N (µk,Σk(I + εΣ−1
k )2). Therefore, µk+1 = µk = µ0 and Σk+1 = Σk(I + εΣ−1

k )2. Note
that Σk � Σk−1 + 2εI � Σ0 + 2εkI , so variance grows faster than in the heat flow (with t = εk).

29
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E.2.4. BACKWARD METHOD FOR HEAT FLOW

The backward method ρk+1 = arg minρ∈P{F (ρ) + 1
2εW2(ρ, ρk)

2} for negative entropy F = −H
is

expρk+1
(ε∇ log ρk+1) = ρk.

If ρk+1 is L-log-smooth, which means −∇2 log ρk+1 � LI for some L > 0, then for ε ≤ 1
L , the

backward method above is implemented (implicitly) by:

(I + ε∇ log ρk+1)#ρk+1 = ρk. (32)

In general this is not solvable analytically. For Gaussian initial data, we can solve the backward
method. In this case the distributions stay Gaussian, but the variance grows slower than in the heat
flow (and in contrast to the forward method), see also (Carlen and Gangbo, 2003, Remark, §3).

Example 7 (Backward method for heat flow with Gaussian data.) Let ρ0 = N (µ0,Σ0) and 0 <
ε ≤ λmin(Σ0). Along the backward method (32) for the heat flow, ρk = N (µk,Σk) stays Gaus-
sian. Furthermore, the algorithm (32) becomes the iteration (I − εΣ−1

k+1)xk+1 + εΣ−1
k+1µk+1 = xk.

Since xk+1 ∼ N (µk+1,Σk+1), xk ∼ N (µk+1,Σk+1(I − εΣ−1
k+1)2). Therefore, µk+1 = µk = µ0

and Σk+1(I − εΣ−1
k+1)2 = Σk. Equivalently, Σk+1 = 1

2(Σk + 2εI + {Σk(Σk + 4εI)}
1
2 ) =

Σk + 2εI − ε2Σ−1
k + O(ε3). In particular, Σk ≺ Σk−1 + 2εI ≺ Σ0 + 2εkI , so variance grows

slower than in the heat flow.

E.3. Gradient flow of variance

The variance of a probability density ρ on Rn can be written as

Var(ρ) =
1

2

∫
Rn×Rn

ρ(x)ρ(y)‖x− y‖2 dx dy.

This is an example of an “interaction energy” of (Villani, 2003, §5.2.2), which in general is of
the form F (ρ) = 1

2

∫
Rn×Rn ρ(x)ρ(y)W (x − y) dx dy where W : Rn → R is a symmetric convex

function. Variance is the case when W (x) = ‖x‖2.
In general, the gradient of the interaction energy is gradρ F = −∇· (ρ∇(ρ∗W )) ≡ ∇(ρ∗W ),

where ∗ is the convolution. For variance with W (x) = ‖x‖2, we have (ρ ∗W )(x) =
∫
Rn ρ(y)‖x−

y‖2 dy. Then∇(ρ∗W )(x) = 2
∫
Rn ρ(y)(x−y) dy = 2(x−µ(ρ)) where µ(ρ) = Eρ[X] is the mean

of ρ. Therefore, the gradient of variance is gradρ Var = −∇· (ρ∇(ρ∗W )) = −2∇· (ρ(x−µ(ρ))).
Notice that

‖ gradρ Var ‖2 =

∫
ρ‖∇(ρ ∗W )‖2 = 4

∫
ρ‖x− µ(ρ)‖2 = 4 Var(ρ).

Therefore, along the gradient flow of variance, d
dt Var(ρ) = −‖ gradρ Var ‖2 = −4 Var(ρ), which

implies Var(ρt) = e−4t Var(ρ0).
The gradient flow of variance ρ̇ = − gradρ Var is

∂ρ

∂t
= 2∇ · (ρ(x− µ(ρ))).
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Observe that the mean is preserved:

d

dt
µ(ρ) =

∫
Rn

∂ρ

∂t
x = 2

∫
Rn
∇ · (ρ(x− µ(ρ)))x = −2

∫
Rn
ρ(x− µ(ρ)) = −2(µ(ρ)− µ(ρ)) = 0

where in the calculation above we have used integration by parts. Therefore, µ(ρ) = µ(ρ0) = µ0 is
fixed along the gradient flow of variance. Thus, the gradient flow of variance becomes

∂ρ

∂t
= 2∇ · (ρ(x− µ0)).

This has an exact solution

ρ(t, x) = e2ntρ0(e2tx+ (I − e2t)µ0).

Furthermore, this is implemented in space by shrinking around the mean:

x(t) = µ0 + e−2t(x− µ0).

Appendix F. A review of composite optimization

LetM be an n-dimensional smooth Riemannian manifold. We consider the composite optimization
problem

min
x∈M

f(x) + g(x)

where f, g : M → R are smooth functions. One way to solve this optimization problem is to apply
basic algorithms—gradient flow, gradient descent, or proximal gradient—to the objective function
f + g. However, sometimes we can compute these algorithms on f and g individually, but not on
their sum; an example is the Langevin dynamics in discrete time.

One algorithm for solving this optimization problem is the Forward-Backward (FB) algorithm,
which alternates between a forward step (gradient descent) for f and a backward step (proximal
gradient) for g. The iteration can be written as a composition of two steps, with a step size ε > 0:

xk+ 1
2

= expxk(−ε gradxk f) (33a)

xk+1 = arg min
x∈M

{
g(x) +

1

2ε
d(x, xk+ 1

2
)2

}
. (33b)

Recall that the optimality condition for the second equation (33b) is expxk+1
(ε gradxk+1

g) =
xk+ 1

2
.Combining this with (33a), we can write the FB algorithm as defined implicitly by the identity

expxk+1
(ε gradxk+1

g) = expxk(−ε gradxk f). (34)

F.1. Why does Forward-Backward work?

The minimizer (or any stationary point) of f+g is a fixed point of the forward-backward algorithm.
This is because the backward step (proximal gradient) is the inverse of the negative forward step
(gradient descent).

Concretely, let x∗ ∈ M be a stationary point of f + g, so gradx∗ f + gradx∗ g = 0. Suppose
we start at xk = x∗. Then in the first half-step we move to xk+ 1

2
= expx∗(−ε gradx∗ f), which
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in general is different from x∗ (because x∗ may not be a stationary point of f , so gradx∗ f 6= 0).
However, the next half-step brings us back to xk+1 = x∗; this is because xk+1 by definition satisfies
the consistency equation

expxk+1
(ε gradxk+1

g) = xk+ 1
2

= expx∗(−ε gradx∗ f)

and we see that xk+1 = x∗ is a solution since gradx∗ g = − gradx∗ f .
This pairing between methods which are inverses of each other is important to make the algo-

rithm converge to the true minimizer of the composite function. By symmetry, we can also use the
backward and forward method, which will also converge to the correct minimizer. However, if we
choose any other pairing, then the algorithm will have a bias, i.e., it will converge to a point that is
different from the true minimizer.

F.1.1. EXAMPLE: QUADRATIC FUNCTION IN R

Let M = R and f(x) = 1
2(x− a)2, for some a ∈ R. The basic algorithms with step size ε > 0 are:

Algorithm Iteration
Gradient descent (GD) xk+1 = (1− ε)xk + εa

Gradient flow (GF) xk+1 = e−εxk + (1− e−ε)a
Proximal gradient (PG) xk+1 = 1

1+εxk + ε
1+εa

Table 1: Basic algorithms applied to f(x) = 1
2
(x− a)2 in R.

Observe that 1− ε ≤ e−ε ≤ 1
1+ε , so in the quadratic case we see that PG is faster than GF which in

turn is faster than GD.
Now consider the composite optimization problem minx∈R f(x) + g(x) where

f(x) =
1

2
(x− 1)2 and g(x) =

1

2
(x+ 1)2.

Then f(x) + g(x) = x2 + 1, which is minimized at x∗ = 0; but note that x∗ = 0 is not a stationary
point of f or g.

We consider composite algorithms to solve the composite optimization problem in which we
alternately apply a basic algorithm to each of f and g:

xk+ 1
2

= Aε,f (xk)

xk+1 = A′ε,g(xk+ 1
2
)

for some A,A′ ∈ {GD,GF,PG}. For each combination, we use Table 1 to compute the exact
iteration from xk to xk+1 and determine the limit point. If the limit point is not x∗ = 0, then the
composite algorithm is biased; else, it is unbiased. The results are in Table 2. Note that all are
biased except for two: the Forward-Backward algorithm, and the Backward-Forward algorithm.
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Alg. for f Alg. for g Iteration Limit

GD GD xk+1 = (1− ε)2xk − ε2 − ε
2−ε

GF xk+1 = e−ε(1− ε)xk + e−ε(1 + ε)− 1 e−ε(1+ε)−1
1−e−ε(1−ε)

PG xk+1 = 1−ε
1+εxk 0

GF GD xk+1 = e−ε(1− ε)xk + (1− e−ε)(1− ε)− ε (1−e−ε)(1−ε)−ε
1−e−ε(1−ε)

GF xk+1 = e−2εxk − (1− e−ε)2 − (1−e−ε)2
1−e−2ε

PG xk+1 = e−ε

1+εxk + 1−e−ε−ε
1+ε

1−e−ε−ε
1−e−ε+ε

PG GD xk+1 = 1−ε
1+εxk 0

GF xk+1 = e−ε

1+εxk + e−εε
1+ε − 1 + e−ε e−εε−(1−e−ε)(1+ε)

1+ε−e−ε

PG xk+1 = 1
(1+ε)2

xk + ε2

(1+ε)2
ε

2−ε

Table 2: Composite algorithms applied to f(x) = 1
2
(x− 1)2 and g(x) = 1

2
(x+ 1)2 in R.

F.2. Convergence rate of FB under gradient domination in Euclidean space

We review the exponential convergence rate of the Forward-Backward (FB) algorithm under gradi-
ent domination condition and partial smoothness assumptions. In this section we are working in the
Euclidean case M = Rn. The following is adapted from (Garrigos et al., 2017, Theorem 4.2.b.ii).

Lemma 8 Let f : Rn → R be K-semiconvex and L-smooth (KI � ∇2f � LI) for some K ∈ R,
L > max{0,−K}, and let g : Rn → R be convex (∇2g � 0). Assume f̃ = f + g is α-gradient
dominated for some α > 0. Consider the FB iteration

xk+ 1
2

= xk − ε∇f(xk)

xk+1 = arg min
x∈Rn

{
g(x) +

1

2ε
‖x− xk+ 1

2
‖2
}
.

Then for 0 < ε ≤ min{ 2
L ,

2
K+L},

f̃(xk)−min f̃ ≤

(
1 +

αε(2− εL)

1− 2ε KL
K+L

)−k
(f̃(x0)−min f̃).

Proof By the L-smoothness of f and the convexity of g,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

g(xk+1) ≤ g(xk)− 〈∇g(xk+1), xk − xk+1〉.

Adding the two inequalities above yields

f̃(xk+1) ≤ f̃(xk) + 〈∇f(xk) +∇g(xk+1), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2.
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Since xk−ε∇f(xk) = xk+ 1
2

= xk+1+ε∇g(xk+1), we have∇f(xk)+∇g(xk+1) = 1
ε (xk−xk+1).

Note that here the linearity Rn is essential. Substituting this equality to the inequality above yields

f̃(xk+1) ≤ f̃(xk)−
(

1

ε
− L

2

)
‖xk+1 − xk‖2.

Since f isK-semiconvex and L-smooth, we have ‖xk+1−xk‖2 ≥ (1−2ε KL
K+L)−1‖xk+ 3

2
−xk+ 1

2
‖2

by Lemma 9 below, so

f̃(xk+1) ≤ f̃(xk)−
1(

1− 2ε KL
K+L

) (1

ε
− L

2

)
‖xk+ 3

2
− xk+ 1

2
‖2.

Furthermore, xk+ 3
2
− xk+ 1

2
= (xk+1 − ε∇f(xk+1)) − (xk+1 + ε∇g(xk+1)) = −ε(∇f(xk+1) +

∇g(xk+1)) = −ε∇f̃(xk+1). Note that here the linearity of Rn is also essential. Therefore,

f̃(xk+1) ≤ f̃(xk)−
ε2(

1− 2ε KL
K+L

) (1

ε
− L

2

)
‖∇f̃(xk+1)‖2.

Now using the α-gradient domination assumption on f̃ , we get

f̃(xk+1) ≤ f̃(xk)−
2αε2(

1− 2ε KL
K+L

) (1

ε
− L

2

)
(f̃(xk+1)−min f̃).

Collecting terms and unrolling the recursion give

f̃(xk)−min f̃ ≤

(
1 +

αε(2− εL)

1− 2ε KL
K+L

)−k
(f̃(x0)−min f̃)

as desired.

The proof of Lemma 8 uses the following lemma.

Lemma 9 Let f : Rn → R be K-semiconvex and L-smooth (KI � ∇2f � LI) for some K ∈ R,
L > max{0,−K}. Let x, y ∈ Rn, and for ε ≥ 0, let x(ε) = x− ε∇f(x) and y(ε) = y − ε∇f(y).
Then for 0 ≤ ε ≤ 2

K+L ,

‖x(ε)− y(ε)‖2 ≤
(

1− 2ε
KL

K + L

)
‖x− y‖2.

Proof Since f is K-semiconvex and L-smooth, the function φ(x) = f(x)− K
2 ‖x‖

2 is convex and
(L − K)-smooth. If K = L, then we are done. Else, by a standard property of smooth convex
function (Nesterov, 2004, Theorem 2.1.5) we have 〈∇φ(x) − ∇φ(y), x − y〉 ≥ 1

L−K ‖∇φ(x) −
∇φ(y)‖2. Since∇φ(x) = ∇f(x)−Kx, this is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ KL

K + L
‖x− y‖2 +

1

K + L
‖∇f(x)−∇f(y)‖2.
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Note this is the same as the bound for a smooth and strongly convex function (Nesterov, 2004,
Theorem 2.1.12), but here K may be negative (but not too negative, as K + L > 0). Then:

‖x(ε)− y(ε)‖2 = ‖x− y − ε(∇f(x)−∇f(y))‖2

= ‖x− y‖2 − 2ε〈∇f(x)−∇f(y), x− y〉+ ε2‖∇f(x)−∇f(y)‖2

≤
(

1− 2ε
KL

K + L

)
‖x− y‖2 − ε

(
2

K + L
− ε
)
‖∇f(x)−∇f(y)‖2.

If 0 ≤ ε ≤ 2
K+L , then the last term on the right hand side above is nonpositive, so we may drop it

to get the desired result ‖x(ε)− y(ε)‖2 ≤
(

1− 2ε KL
K+L

)
‖x− y‖2.

Appendix G. Details for §4

G.1. Forward-Backward for Langevin dynamics

Example 8 (FB for OU with Gaussian data.) Let ν = N (µ,Σ) as in Example 1, and ε ≤ λmin(Σ).
Let ρ0 = N (µ0,Σ0) and let Σ0 = I for simplicity, so Σ0 commutes with Σ. Along FB (13) for OU,
ρk = N (µk,Σk) stays Gaussian, and Σk commutes with Σ. Furthermore, (13) becomes:

xk+ 1
2

= µ+ (I − εΣ−1)(xk − µ)

xk+1 = µk+1 + (I − εΣ−1
k+1)−1(xk+ 1

2
− µk+1).

Since xk ∼ N (µk,Σk), this yields a system of updates (the second one is implicit):

µk+1 = µ+ (I − εΣ−1)(µk − µ)

Σk+1(I − εΣ−1
k+1)2 = Σk(I − εΣ−1)2.

The mean converges exponentially fast to the correct mean: µk = µ+ (I − εΣ−1)k(µ0 − µ)→ µ.
For the covariance, note that Σk = Σk+1 = Σ is the only fixed point of the update. Therefore, the
FB algorithm is consistent for OU with Gaussian data.

G.2. Backward-Forward for Langevin dynamics

Example 9 (BF for OU with Gaussian data.) Let ν = N (µ,Σ) as in Example 1, and ε ≤ λmin(Σ).
Let ρ0 = N (µ0,Σ0) and let Σ0 = I for simplicity, so Σ0 commutes with Σ. Along BF (14) for OU,
ρk = N (µk,Σk) stays Gaussian, and Σk commutes with Σ. Furthermore, (14) becomes:

xk+ 1
2

= µ+ (I + εΣ−1)−1(xk − µ)

xk+1 = µk + (I + εΣ−1
k )(µ− µk) + (I + εΣ−1

k )(I − εΣ−1)−1(xk − µ).

Since xk ∼ N (µk,Σk), this yields a system of updates

µk+1 = µ+ (I + εΣ−1)−1(µk − µ)

Σk+1 = Σk(I + εΣ−1
k )2(I − εΣ−1)−2.

The mean converges exponentially fast to the correct mean: µk = µ+ (I+ εΣ−1)−k(µ0−µ)→ µ.
For the covariance, note that Σk = Σk+1 = Σ is the only fixed point of the update. Therefore, the
BF algorithm is consistent for OU with Gaussian data.
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