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Abstract

Learning a target concept from a finite n X m concept space requires {2(n) proper equivalence
queries in the worst case. We propose a variation of the usual equivalence query in which the
teacher is constrained to choose counterexamples randomly from a known probability distribution
on examples. We present and analyze the Max-Min learning algorithm, which identifies an arbitrary
target concept in an arbitrary finite n X m concept space using at most an expected log, n proper
equivalence queries with random counterexamples.
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1. Introduction

Query learning may be viewed as a game between a learner and a feacher. The learner attempts
to learn a target concept chosen by the teacher from a known concept space by asking structured
queries that are answered by the teacher.

We define a finite concept space as an n X m boolean matrix C' with no duplicate rows or
columns. We may think of the columns as examples and each row as a concept consisting of a
subset of the examples, where C;; = 1 if and only if example j is an element of concept <. In this
boolean matrix representation of a concept space, the target concept is thus given by a target row.

The queries we consider are proper equivalence queries as defined by Angluin (1987, 1988).
The learner chooses a row h and makes an equivalence query with h. The teacher responds either
with “yes”, indicating that row A is the target concept, or a counterexample k, which is an example
on which the learner’s hypothesis h and the target concept ¢ disagree, that is, Cy, # Cy. Note that
because the values are boolean, the learner also learns the value of Cy from the counterexample k.

The queries are proper in the sense that the learner’s hypothesis must be drawn from the given
concept space. For improper equivalence queries, the learner may hypothesize any subset of ex-
amples, represented by an arbitrary boolean m-vector. Concepts expressed by proper equivalence
queries rather than improper equivalence queries may be preferred as more explanatory.

After making a number of equivalence queries and seeing a number of counterexamples, the
consistent rows are those whose values agree with the target concept for all the counterexamples
seen so far. Inconsistent rows cannot be the target concept and may be eliminated. The learner
exactly identifies the target concept when either an equivalence query is answered “yes” or there
is only one remaining consistent row, which must be the target concept. The goal of the learner is
exact identification of any target concept using as few equivalence queries as possible. The strategy
of exhaustive search, querying each row in turn, accomplishes exact identification in at most n — 1
equivalence queries for any target concept from any concept space.
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Note that in general the teacher has a choice of which counterexample to return to the learner.
In order to prove worst-case upper bounds, the usual assumption has been that the teacher answers
adversarially, that is, chooses counterexamples to maximize the number of equivalence queries used
by the learner. We consider an alternative assumption: there is a known probability distribution on
examples, and in choosing a counterexample, the teacher selects at random from this distribution,
conditioned on the example being a counterexample to the learner’s hypothesis. We call this new
setting equivalence queries with random counterexamples. We propose the Max-Min learning algo-
rithm and show that it achieves exact identification of any target concept in any concept space using
at most an expected logy n proper equivalence queries with random counterexamples.

For a motivating example, consider the Identity Concept Space, I,,, which is just the n X n
identity matrix. Suppose that the learner poses an equivalence query with hypothesis row A, but the
target row is actually row ¢ = h. In the identity matrix, each pair of distinct row vectors ¢, j have
Hamming distance 2. This means that the teacher has two choices of counterexample: column h
or column ¢. The teacher could answer unhelpfully, selecting column A of the hypothesis row as a
counterexample. The n — 1 other rows of I, have a 0 in column h, so only A is eliminated. The
teacher could also answer helpfully, selecting column ¢ as a counterexample. Row ¢ is the only row
that differs from row A in column ¢, so this would allow the learner to conclude with certainty that
the target row is row t.

If we assume the teacher answers adversarially, learning a target row in the identity matrix
requires n — 1 equivalence queries in the worst case. This is undesirable, because many query
learning tasks use a concept representation for which n is exponential in a task length parameter s.
We would thus prefer to be able to learn a target row in O(log n) equivalence queries.

In the case of I,, with a uniform distribution over examples, consider a learning algorithm that
repeatedly selects an arbitrary consistent row h to query. If & is not the target row, the equivalence
query with random counterexamples for & has a % probability of being answered unhelpfully, which
eliminates just row h, and a % chance of being answered helpfully, which immediately identifies
the target concept. Thus, the expected number of equivalence queries used is bounded above by the
expected number of fair coin flips until the first heads, which is just 2.

We survey related work in the next section, give fundamental definitions and two lower bounds
in Section 3, prove the key property of elimination graphs in Section 4, give the Max-Min learning
algorithm and its analysis in Section 5, explore relationships with the VC-dimension in Section 6,
and conclude with a summary and an open problem in Section 7.

2. Related work

This work is in the area of exact learning with queries, described by Angluin (1988, 2004), which
primarily concerns worst-case bounds for exact identification of a target concept assuming adver-
sarial selection of counterexamples by the teacher. Our choice to consider randomly selected coun-
terexamples is new. Vaandrager (2017) reviews a variety of methods and practical applications for
model learning with queries.

Littlestone (1988) introduced the setting of online prediction of the labels of examples in which
the key measure is the worst-case total number of mistakes of prediction made by the learner. Using
the observation that a prediction algorithm has an implicit hypothesis, prediction algorithms and
learning algorithms using (possibly improper) equivalence queries can be converted to each other,
with bounds that differ by at most 1.
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Littlestone defined the Halving Algorithm, an online prediction algorithm that on input = pre-
dicts the majority vote of the remaining consistent hypotheses on input z. For the Halving Algorithm
the implicit hypothesis is the majority vote hypothesis as defined in Angluin (1988). A mistake of
prediction (or, equivalently, a counterexample to the majority vote hypothesis) eliminates at least
half the remaining consistent concepts, which implies a bound of log, n on the worst-case number of
mistakes of prediction (or, equivalently, on the number of (possibly improper) equivalence queries
until exact identification is achieved). Littlestone also defined the Standard Optimal Algorithm and
gave a concept class on which the Standard Optimal Algorithm makes at most 2 mistakes, while the
Halving Algorithm makes 3 mistakes for some target concept.

Though the strategy of choosing the majority vote hypothesis achieves at most log, n queries in
the worst case, the hypotheses it uses are not necessarily drawn from the given concept class, that
is, they may be improper. The worst-case lower bound on the number of proper equivalence queries
that may be required for exact identification of a concept is (n—1), as shown by the Identity Concept
Space. This phenomenon occurs in practice: Angluin (1990) proved non-polynomial information
theoretic lower bounds on learning finite automata and DNF formulas using proper equivalence
queries. Our current work shows that by relaxing the selection of counterexamples to be random, a
worst-case expected logy n proper equivalence queries suffice for exact identification in any finite
concept class.

Valiant (1984) introduced the PAC model, in which the learner attempts to learn a concept with
access to labeled examples drawn iid from an unknown probability distribution. In the PAC setting,
the learner is only required to find a concept e-approximately equal to the target concept, rather than
exactly equal. Blumer et al. (1989) showed the close relationship between the VC-dimension of a
concept class and the number of random examples required to learn concepts from it.

Haussler et al. (1994) considered a variant of the online prediction model in which the examples
to predict are drawn iid from a fixed probability distribution. The focus of their work was to give an
algorithm that has an asymptotically optimal bound of d/t on the probability of a mistake at trial ¢,
where d is the VC-dimension of the concept class.

Another related area is research on the worst-case number of examples needed by a helpful
teacher to teach a concept from a given concept class to a learner. The classic notion of the Teaching
Dimension of a concept class was introduced by Shinohara and Miyano (1991) and Goldman and
Kearns (1995). Zilles et al. (2011) introduced the Recursive Teaching Dimension of a concept class,
which has very recently been shown to have a close relation to the VC-dimension of the class by
Hu et al. (2017). In Section 6 we show that the VC-dimension gives a lower bound but not an upper
bound on the worst case expected number of equivalence queries used by the Max-Min algorithm.

One important question is the computational feasibility of the Max-Min algorithm. For example,
if the concept class consists of the deterministic finite acceptors (DFAs) over an alphabet of two
symbols with s states, and examples are the strings of length [, then n = 252 and m = 2!, which
implies that log n is bounded by a polynomial in s. However, Gold (1978) showed that even the
problem of determining whether there exists a DFA of s states consistent with a given set of labeled
examples is NP-complete. Angluin (1987) showed that a learning algorithm using equivalence
queries can be polynomially transformed to a PAC learning algorithm. Kearns and Valiant (1994)
showed that under generally accepted cryptographic assumptions, concepts represented by DFAs
are not polynomial-time PAC-learnable. Thus, we do not expect the Max-Min algorithm to run in
time polynomial in logn in general.
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3. Preliminaries

We introduce definitions and notation, and prove two lower bounds that provide context for the
positive results of the paper.

3.1. Definitions and notation

For any positive integer n, [n] denotes the set {0,1,...,n — 1}. For any positive real x, log x
denotes the base 2 logarithm of z.

Definition 1 For positive integers n and m, denote the set of all n x m boolean matrices by M, x .

We assume 0-based indexing of matrices, with row indices [n] and column indices [m].
Definition 2 A matrix C' is a concept space if C' € M, %, with no duplicated rows or columns.

Because we assume a probability distribution over examples, the effect of duplicated columns can
be achieved by adjusting the probabilities. Because no rows are duplicated, we know that rows
and j with ¢ # j will differ in at least one column, which simplifies the presentation.

Definition 3 For a concept space C € M, xm, define A(i, j) to be the set of column indices in
which the column-entries of row i and row j are unequal. That is,

Thus A(h,t) is the set of possible counterexamples when the hypothesis row is h and the target
row is t. Next we specify the selection of counterexamples for equivalence queries with random
counterexamples.

Definition 4 Given a concept space C, an example distribution T is a probability distribution over
the columns of C such that (k) > 0 for every column k € [m]. We assume that both the concept
space C and the fixed example distribution 7 are known to the learner. For rows i # j, we define
a random variable K; ; that selects a column k from the distribution 7 conditioned on the event
k € A(i, j). That is,
_ 7k

ZZGA(i,j) m(¢)
When the target concept is t and the learner makes an equivalence query with random counterex-
amples for hypothesis row h # t, the teacher selects a random counterexample given by Kj, ;.

PIK;; = k]

The next definition specifies for a given row ¢ and column k, the fraction of rows of C' that agree
with the value of row 7 in column k. These rows will be eliminated as inconsistent if & is returned
as a counterexample to hypothesis row <.

Definition 5 In a concept space C' € My xm, the column vote of row i in column k is denoted
V (i, k) and is defined as the fraction of rows whose entry in column k is equal to that of row i. That

is, »
_ {j: Cjr = Cir}|

V(i k) -

Because every row is either 0 or 1 in column k, we have the following.



THE POWER OF RANDOM COUNTEREXAMPLES

Lemma 6 If C is a concept space and Cjy, # Cjy, then V (i, k) + V (j, k) = 1.

Next we introduce the elimination graph, which is the primary mathematical object of study in this
paper.

Definition 7 The elimination graph for a concept space C and an example distribution 7, denoted
by Goiim(C, ), is a weighted directed graph with vertex set V. = [n] and real-valued edge weights
E(i,j) € [0,1]. For any pair of distinct vertices i and j, E(i,j) is given by the expected fraction
of rows eliminated from C' if an equivalence query is posed with hypothesis row i and target row j.
That is,
E(i,j)= Y P(K;j=Fk) V(ik).
kEA(i,))

As one example of an elimination graph, consider the Identity Concept Space I, with 7, the
uniform distribution on [n]. Then Geiim(In, m,) = (V, E), where V = [n], and E(i, j) = 3 for all
rows i # j. As another example, consider the following 5 x 5 concept space and its elimination
graph with respect to the uniform distribution on examples.

10010 8/15 3/5 11/20 1/2

00100 7/15 8/15 8/15 7/15

1000 1 2/5 7/15 1/2 9/20 (1)
01111 9/20 7/15 1/2 2/5

11110 1/2 8/15 11/20 3/5

To see that F(0,1) = 8/15, note that if the first equivalence query is with row 0 and the actual
target is row 1, then there are three possible counterexamples: column 0, which eliminates 3/5 of
the hypotheses, column 2, which eliminates 2/5 of the hypotheses, and column 3, which eliminates
3/5 of the hypotheses, for an expected fraction of 8/15 = (1/3)(3/5 4+ 2/5 + 3/5) of hypotheses
eliminated.

We next define a measure that indicates the worst-case expected fraction of rows that will be
eliminated if the learner makes an equivalence query with row <.

Definition 8 Row i of a concept space C' € M., is called a-informative if min;; E(i, j) > o

If row ¢ is a-informative, then an equivalence query with random counterexamples specifying hy-
pothesis row ¢ will eliminate at least a fraction « of the rows in C' in expectation for any target
concept. Intuitively, the notion of a-informativity allows the learner to compare the utility of vari-
ous equivalence queries.

The main technical result of this paper, proved in Section 4, is that in every concept space C,
there exists a row that is %-informative. This leads to the Max-Min learning algorithm, that achieves
at most an expected log n equivalence queries to identify any target concept in any concept space of
n rows. In the example in equation (1), the first and last rows are %—informative.

3.2. Random consistent hypotheses are not enough

The example of learning an arbitrary target row in the Identity Concept Space I,, using equivalence
queries with random counterexamples suggests that random counterexamples are quite powerful.
For the I,, example, we saw that target row identification can be achieved with O(1) expected
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equivalence queries for any consistent querying strategy. It might seem that random counterex-
amples are so powerful that the learner can propose randomly selected consistent hypothesis rows
and still identify the target row in a sub-linear expected number of equivalence queries. We now
show that this is not true in general, even in a space consisting of I, with a single row of all zeros
appended, which we denote by J,,.

Definition 9 For any positive integer n, J,, is the concept space consisting of n + 1 rows and n
columns in which the first n rows are the same as in I,, and the last row consists of n zeroes.

Theorem 10 Consider the concept space Jy, with the uniform distribution on examples. Suppose
the learner repeatedly selects a hypothesis row chosen uniformly at random from the currently
consistent rows. When the target is row n (the row of all zeroes), the learner requires an expected
Q(n) equivalence queries with random counterexamples for exact identification of the target row.

Proof For all rows i # n, A(i,n) = {i}. Thus the counterexamples presented to the learner
are chosen deterministically. Moreover, the only row eliminated when column ¢ is returned as a
counterexample is row 7, because Cj; = 1 while Cj; = 0 for all j # 4. The learning task reduces to
randomly sampling a search space without replacement in search of a target element, which requires
an expected €2(n) equivalence queries with random counterexamples. |

Note that if the learner had proposed the row of all zeroes as a hypothesis row, this would have
identified any target row in just one equivalence query. However, it is not obvious that there will
always exist a suitable hypothesis row. In Section 4, we show that there will always be a hypothesis
row that eliminates at least half of the remaining consistent hypotheses in expectation.

3.3. A lower bound

We now show a worst-case lower bound for any randomized learning algorithm of |logn | —1 on the
expected number of equivalence queries with random counterexamples, where n is the number of
rows in the concept space. We first define the Complete Concept Space, which contains all subsets
of examples.

Definition 11 Let m be a positive integer and let n = 2™. The Complete Concept Space of size n
is a matrix Cp, € Myxm. The rows of C, are the set of all unique binary vectors of length m in
increasing order when considered as binary representations of integers.

For example,

Cy =

_ =0 O
— O = O

Theorem 12 Let m be a positive integer and let n = 2™. Any randomized learning algorithm
that exactly identifies any target concept from the Complete Concept Space Cy, with respect to the
uniform distribution on examples requires at least an expected m — 1 equivalence queries with
random counterexamples for some target concept.
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Proof Let A be any deterministic learning algorithm for C),, and X,, be the expected number of
equivalence queries with random counterexamples made by A in learning C,,, where n = 2™ and
the target concept is chosen uniformly at random from C),. By Yao’s minimax principle, it suffices
to show that X, is bounded below by m — 1.

Clearly X1 > 1, because C has two concepts. Because the distribution on target concepts is
uniform, the first query made by A on C), has a probability of 1/2™ of being the target concept.
Otherwise, the counterexample is a random column, which eliminates exactly half of C),. The
remaining concept space (with the constant column eliminated) is isomorphic to C,, for n/ = 2m~1,
The conditional distribution of the target concept is uniform in the remaining space. Thus, for
m > 1,

1
X > 1+ (1—2m> X L.

Considering the recurrence Y3 = 1 and Y,;, = 1+ (1 — (1/2™))X,,—1, we have

SR (e

=2 k=j
m m 1
>1+) (1= 5
Jj=2 k=j
1
2 m = Z 2] 1
j=2
>m — 1.
Because X,,, > Y, for all m > 1, the result follows. |

4. Elimination graphs

We define deficient ¢-cycles and use them to prove results for the elimination graph Gejim(C, 7).
Theorem 16 shows that there are no deficient 3-cycles in any elimination graph. Theorem 17 gen-
eralizes Theorem 16 to show that there are no deficient /-cycles in any elimination graph for any
¢ > 2. These general results on Gejim (C, 7) are used in Theorem 18 to show that in any concept
space with any example distribution, there exists a %—informative rOW.

Lemma 13 For any concept space C, any example distribution w and any pair i # j in [n],
E(i,§) + E(j,i) = 1.
Proof From the definition of E(3, j),

E(i,j)+ EGi)= Y PEij=k)-V(i,k)+ > P(Kij=k)-V(jk).
keA(j,i

keA(i,j) A5
By the definition of Symmetric Row-Difference, A(i, j) = A(j, ). Therefore,

E(i,§) + E(j,i) = > P(Ki;=k)- (V(i,k)+V(j k).
keA(®,5)



THE POWER OF RANDOM COUNTEREXAMPLES

By Lemma 6, V (i, k) + V(j,k) = 1 for k € A(i, j). Therefore,

E(i,§) + E(j,i)= > P(Ki;=k)
kEA(i,5)

=1.

Definition 14 Let G = (V, E) be a weighted directed graph and ¢ > 1 an integer. A deficient
l-cycle in G is defined as a sequence vy, . ..,v_1 of distinct vertices such that for all i € [{],
E(vi, V(i41) (mod £)) < % with strict inequality for at least one i € [{].

Corollary 15 For any concept space C and any counterexample distribution w, there are no defi-
cient 2-cycles in G (C, ).

Proof Suppose by way of contradiction that there exists a deficient 2-cycle ig,41. Then ig # i1,
E(ip,i1) < %, and F(i1,i9) < %, and at least one of these inequalities is strict. Then E(ig, 1) +
E(i1,10) < 1. This contradicts Lemma 13. [

The proof that there are no deficient 3-cycles is somewhat more involved, but will enable an induc-
tive proof that there are no deficient /-cycles for any ¢ > 2.

Theorem 16 For any concept space C' € My, «xm and any counterexample distribution T, there are
no deficient 3-cycles in G gjin, (C, 7).

Proof Assume for the sake of contradiction that there is a deficient 3-cycle ig, i1, i2 in Gejim (C, 7).
Then E(ig,i1), E(i1,12) and E(ia, ) are all less than or equal to %, with at least one of them
strictly less than 3. By the definition of E(ig, i1),

N =

Z P(Kio,h - k) ) V(i07 k) <
k€A (i0,i1)

Expanding the definition of K ;,,

N =

( (k) ( )) Vig, k) <

. NTT
keA(io,il) ZKGA(’L(),“)

Multiplying through by > /e A (;, ;) 7(€) and changing the bound variable  to £,

n(k)-Viiok) <5 > w(k). 2)

kEA(io,il) kEA(io,il)

N | =

We partition the set of columns & in A(ig, 71) into two sets depending on the whether iy agrees with
ip or 41 in column k. Define D(0,2) to be the set of columns k such that the values of iy and 2
agree in column &, and the value of ¢; is different. Similarly, define D(1, 2) to be the set of columns
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k such that the values of ¢; and 75 agree in column k and the value of i is different. These two sets

are disjoint and
A(ig,i1) = D(0,2) U D(1,2).

Similarly, we can define D(0,1) to be the set of columns & such that the values of iy and iy
agree in column £ and the value of 45 is different. Then D(0, 1) is disjoint from both D(0, 2) and

D(1,2) and we have
A(th?) = D(07 1) U D(07 2)

and
A(ig,i9) = D(1,2) U D(0,1).

Using the partition of A(ig,7;) and equation (2), we have

3

“)

&)

. 1
N wlk) Ve k) + Y wlk)- Vi k 35( Yo oak+ Y 7r(k:)>.
keD(0,2) keD(1,2) €D(0,2) keD(1,2)
The analogous inequalities for edges F(i1,42) and F(ia, i) are as follows:
. . 1
S oak) Vi + Y wk) VK < Y k) + Y wk),
keD(0,1) keD(0,2) keD(0,1) keD(0,2)
. . 1
S k) Vigk) + Y w(k)-V(zz,k)§§( IR W(k)).
keD(1,2) keD(0,1) keD(1,2) keD(0,1)
Adding the left hand sides of the inequalities (3, 4, 5) yields the following:
Y. k) (V0o k) + V(i k) + Y (k) - (V(io, k) + V(i2, k)
keD(0,2) keD(1,2)
+ > o V (i1, k) + V (i, k).

keD(0,1)

By Lemma 6, this sum reduces to the following:
Yooay+ D, wk)+ Y k).
k€D(0,2) keD(1,2) keD(0,1)
Adding the right hand sides of the inequalities (3, 4, 5) yields the following:
1

520 X wk Y A+ Y (k).

keD(0,2) keD(1,2) keD(0,1)

Because at least one of the inequalities (3, 4, 5) is strict, the sum of the left hand sides is strictly less

than the sum of the right hand sides, that is,

YNoortk+ Y. wk)+ D wk)< > w4+ Y. wk)+ D w(k).

keD(0,2) keD(1,2) keD(0,1) keD(0,2) keD(1,2) keD(0,1)

This contradiction concludes the proof.
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Theorem 17 For any concept space C, any example distribution 7, and any integer £ > 2, there
are no deficient {-cycles in Gojim(C, ).

Proof We proceed by induction, where the predicate P(¢) indicates that there exist no deficient
(-cycles in Gejim (C, 7). Corollary 15 and Theorem 16 imply P(2) and P(3). We will now show
that P(¢) — P(¢ + 1) for all £ > 3. Suppose there exists a deficient (¢ + 1)-cycle: ig, i1, .. ., ip.
Rotate the cycle as necessary so that E(ig, 1) < % and the rest of the edges have weights less than
or equal to % Consider E(ig,ig). If E(ig,i9) < %, then 4o, 1,42 is a deficient 3-cycle, which
cannot exist by P(3). Otherwise, E(i2,49) > 3 and therefore E(ig, i) < 1 by Lemma 13. Then
i0, 12,13, ..., 1 is a deficient /-cycle, which cannot exist by the inductive hypothesis P(¢). |

Theorem 18 For any concept space C and any example distribution m there exists at least one
%-informative row in Gojim (C, ).

Proof Suppose by way of contradiction that there does not exist a row i such that E (i, j) > % for
all j # 4. Then for every row i, there necessarily exists a row j # ¢ such that E(i,j) < % Let
#(i) map each i to such a j. Define ¢%(i) = ¢(¢? (7)) for each positive integer d, with ¢°(i) = i.
Beginning at an arbitrary row i, consider the sequence i, ¢(ip), . . . , 9" (io), where n is the number
of rows in C.. By the Pigeonhole Principle, there exist distinct a, b € [n] such that ¢%(ig) = ¢®(ig).
Without loss of generality, take a < b. Because ¢(i) # i, b # a+ 1,0 b—a > 2. The subsequence
#(i0), 9“1 (dg), . . ., 91 (i0) is a deficient (b — a)-cycle, a contradiction by Theorem 17. [ |

5. The Max-Min learning algorithm

We now show that for any target row in any concept space with n rows and any example distribution,
if the learner always queries a %-informative row in the space of consistent rows, then the target row
will be identified in O(log n) queries with high probability.

Definition 19 Ar any point in the execution of a learning algorithm, the learned information is the
set I of all pairs (k,b), where k € [m] is a column that has been returned as a counterexample to
an equivalence query and b € {0, 1} is the value of the target row in column k.

Definition 20 Given concept space C and a set I of learned information, the set of consistent rows,
denoted cons(C, 1), is the set of rows i such that for each pair (k,b) € I, Ci, = b.

Define the Max-Min learning algorithm to be the strategy in which, at each opportunity to pose
an equivalence query, a hypothesis row h is chosen such that

h = argmax min E(i,7)). (6)
iEcc%ns(C,I)<j€COHS(CJ)\{i} ( j))

By Theorem 18, E(h, j) > % for all possible target rows j # h.

For any positive integer n, define 7'(n) to be the maximum, over all concept spaces C' of n rows,
all example distributions 7, and all possible target concepts ¢, of the expected number of equivalence
queries with random counterexamples used by the Max-Min learning algorithm to identify the target
concept ¢ in C' with respect to 7.

10
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Theorem 21 For all positive integers n, T'(n) < logn.

Proof We proceed by strong induction. Define P(n) to be the predicate: 7'(n) < logn. Then P(1)
is true because no queries are required in a trivial concept space. Moreover, P(2) is true because
only one query is necessary in any two-row concept space. Assume that P(r) is true for all positive
integers r < n for some n > 2. Consider any concept space C' with n + 1 rows, any example
distribution 7, and any target concept ¢.

Define R to be the number of remaining consistent rows after the Max-Min algorithm makes
one equivalence query with random counterexamples for row h, where h satisfies Equation (6).
Then R is a random variable dependent on the teacher’s random choice of counterexample. By the
definition of i and Theorem 18, we know that E[R] < 2.

After the equivalence query the problem is reduced to learning the target row ¢ in a concept
space consisting of the remaining r consistent rows, where 1 < r < n. The expected number of
queries for this task is bounded above by 7'(r), so we have the following:

Tn+1) <1+ (IP’[R =] ~T(7~)>.
r=1
Applying the inductive hypothesis,
Tn+1)<1 —{—Z (IP’[R =r] -logr).
r=1

Applying Jensen’s Inequality,

T(n+1) <1+log(E[R]).

Using the fact that E[R] < (n;rl)a

(n+1)
2

T(n—l—l)Sl—i—log( ):log(n+1).

This concludes the inductive step. |

Lemma 22 Let C' be any concept space with n rows, T any example distribution and t any target

concept. Define Ry to be the number of consistent rows remaining after  equivalence queries, with
n

queries chosen according to the Max-Min learning algorithm. Then E[Ry] < 5

Proof By Theorem 18, we know that E[R;] < 5. We use induction on /:

E[Ry] n
2 < 20+1"

E[Rey1] = E[E[Reyq | R]] <

11
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Theorem 23 Let§ € R : 0 < § < 1. Then, with probability at least 1 — 0, the Max-Min learning
algorithm terminates in at most O(log (nd~1)) equivalence queries.

Proof After ¢ equivalence queries, the identity of the target row is unknown only if there are at
least two rows that are consistent with the answers to queries already asked by the learner, that is,
R, > 2. Applying Markov’s inequality to R,, a non-negative random variable, we have

E[Rf] n
P(R; > 2) < 5 < SYasE (7
It suffices to take £ > log (nd~!) to ensure that P(R, < 2) is at least 1 — 4. [ |

We note that the Max-Min learning algorithm does not necessarily achieve the optimal worst case
expected value for every concept space. In particular, for the concept space in equation (1) with a
uniform distribution over examples, the initial choice of the Max-Min algorithm could be the first
row or the last row (which lead to bounds of 2.25 or 2.125, depending on how ties are broken),
while there is a strategy that first queries the second row and then identifies any other target using
just one more query, for a bound of 2 queries.

6. Comparison with the VC-dimension

As described in Section 2, several important quantities, for example, the number of examples re-
quired for PAC learning, the optimal error bound for predicting {0, 1}-sequences and the recursive
teaching dimension, are closely related to the VC-dimension of a finite concept class. In this section
we show that the VC-dimension gives a lower bound for the worst-case expected number of proper
equivalence queries used by the Max-Min algorithm, but not an upper bound.

Definition 24 Given a concept space C, a set S = {ko, k1, ...,kq—1} of d columns is shattered by
C' if and only if for every d-tuple (by, b1, . ..,bs_1) of boolean values, there exists a row i such that
Ci, = by forall ¢ € [d]. The VC-dimension of C' is the largest d such that there exists a set of d
columns shattered by C.

If C has n rows then its VC-dimension is at most logn. For all n > 2, the Identity Concept
Space I,, has VC-dimension 1 and the Complete Concept Space C, has VC-dimension log n.

Theorem 25 If C' is a concept class of VC-dimension d, then any randomized learning algorithm
to learn C' must use at least an expected )(d) equivalence queries with random counterexamples
for some target concept.

Proof If C is a concept class of VC-dimension d, then we consider a shattered set S' of d columns
and a probability distribution on examples that is uniform on S and negligibly small elsewhere. This
is essentially the situation of a Complete Concept Space with 27 rows and the uniform distribution
on examples. By Theorem 12, every randomized learning algorithm that exactly identifies any con-
cept from C' using equivalence queries with random counterexamples must use at least an expected
Q)(d) queries in the worst case. n

In the other direction, we show that there is a family of concept spaces such that the VC-
dimension of each concept space in the family is 1, but the worst-case expected number of equiv-
alence queries used by the Max-Min algorithm grows as 2(log n), where n is the number of rows

12
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in the concept space. This example was given by Littlestone (1988), who showed that the Standard
Optimal Algorithm makes €2(log n) mistakes of prediction in the worst case.

Theorem 26 There exists a family of concept spaces D,, such that for eachn > 2, D,, has n rows
and VC-dimension 1, but on D,, the Max-Min algorithm uses an expected Q(logn) equivalence
queries with random counterexamples in the worst case.

Proof The class D,, contains n rows and n — 1 columns. Row ¢ consists of ¢ 1’s followed by
(n —1 —14) 0’s. Thus, row zero consists of n — 1 0’s. We first show that for all n > 2, the VC-
dimension of D,, is 1. The set containing just the first column is shattered (labeled 0 by row 0 and
labeled 1 by row 1). However, no larger set of columns can be shattered. If k; < ko then in any row
in which column k; is 0, column k5 must also be 0.

To see that the Max-Min algorithm uses an expected (2(log n) equivalence queries in the worst
case, we analyze the case when the target concept is row zero. With concept class D,,, the Max-Min
algorithm will choose either the unique middle row (if n is odd) or one of the two middle rows (if
n 18 even); for concreteness, assume that the row with smaller index is chosen. Then in either case,
row 7(n) = [(n — 1)/2] is chosen. One of the r(n) columns in which row r(n) is 1 will be chosen
as a counterexample, say k, and then the problem is reduced to learning the zero row in the reduced
concept space Dy. This analysis leads to a recurrence f(1) =0, f(2) = 1 and for n > 3,

1

=14+ ——= k
fn) =14+ o5 ST Ik,
where f(n) is the expected number of equivalence queries for the Max-Min algorithm to learn the

zero row in D,,. An inductive proof shows that f(n) > clnn for some ¢ > 0.5, establishing the
lower bound. |

7. Discussion

We have introduced a new setting for exact learning with proper equivalence queries in which the
teacher returns a counterexample drawn from a known distribution on examples. We have proposed
the Max-Min learning algorithm and shown that it uses at most an expected log, n proper equiva-
lence queries with random counterexamples to identify any target concept in any concept space with
n rows, with respect to any distribution on examples.

One intriguing open question is whether a much simpler learning algorithm might achieve the
same bound if we consider expected performance with respect to a randomly drawn target concept,
instead of a worst case target concept. In particular, we conjecture that a learning algorithm that
hypothesizes a randomly chosen consistent row uses an expected O(log n) equivalence queries with
random counterexamples to identify a randomly drawn target concept in a concept space of n rows.
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