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Abstract
An important long-term goal in machine learning systems is to build learning agents that, like
humans, can learn many tasks over their lifetime, and moreover use information from these tasks to
improve their ability to do so efficiently. In this work, our goal is to provide new theoretical insights
into the potential of this paradigm. In particular, we propose a lifelong learning framework that
adheres to a novel notion of resource efficiency that is critical in many real-world domains where
feature evaluations are costly. That is, our learner aims to reuse information from previously learned
related tasks to learn future tasks in a feature-efficient manner. Furthermore, we consider novel
combinatorial ways in which learning tasks can relate. Specifically, we design lifelong learning
algorithms for two structurally different and widely used families of target functions: decision
trees/lists and monomials/polynomials. We also provide strong feature-efficiency guarantees for
these algorithms; in fact, we show that in order to learn future targets, we need only slightly more
feature evaluations per training example than what is needed to predict on an arbitrary example
using those targets. We also provide algorithms with guarantees in an agnostic model where not all
the targets are related to each other. Finally, we also provide lower bounds on the performance of a
lifelong learner in these models, which are in fact tight under some conditions.
Keywords: lifelong learning; costly features; representation learning

1. Introduction

Machine learning algorithms have found widespread use in solving naturally occurring tasks in do-
mains like medical diagnosis, autonomous navigation and document classification. Accompanying
this rapid growth, there has been remarkable progress in theoretically understanding how machine
learning can solve single tasks in isolation. However, real-world tasks rarely occur in isolation. For
example, an autonomous robot may have to accomplish a series of control learning tasks during
its life, and to do so well it should employ methods that improve its ability to learn as it does so,
needing less resources as it learns more (Thrun and Pratt, 1997; Thrun and Mitchell, 1995). As we
scale up our goals from learning a single function to learning a stream of many functions, we need
to develop sound theoretical foundations to analyze these large-scale learning settings.

Broadly, the goal of a lifelong learner is to solve a series of many tasks over its lifetime by a)
extracting succinct and useful representations about the relations among previously learned tasks,
and then b) using these representations to learn future tasks more efficiently. In this work, we
provide new insights into this paradigm by first proposing a metric for lifelong learning that exposes
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an important type of resource efficiency gain. Then we design algorithms for important and widely
used classes of functions with strong theoretical guarantees in this metric.

In particular, we consider a setting where evaluating the features of data points is costly and
hence the learner wishes to exploit task relations to improve its feature-efficiency over time. Feature-
efficiency is critical in applications such as medical diagnosis and high-dimensional data domains
where evaluating feature values of a data point might involve performing expensive or intrusive
medical tests or accessing millions of values. In fact, one of the reasons decision trees (which
is one of the important function classes we study in this paper) are commonly used in medical
diagnosis (Podgorelec et al., 2002) is that once the trees are learned, one can then make predictions
on new examples by evaluating very few features—at most the depth of the tree. We consider
lifelong learning from the perspective of this feature evaluation cost, and show how we can use
commonalities among previously-learned target functions to perform much better in learning new
related targets according to this cost. Specifically, if we face a stream of m adversarially chosen
related learning tasks over the same set of N features, each with about S training examples, we
will make O (SmN) feature evaluations if we learn each task from scratch individually. Our goal
will be to leverage task relatedness to learn very few tasks from scratch and learn the rest in a
feature-efficient manner, making as few as O (S(m+N)) feature evaluations in total.

We study two structurally different classes of target functions. In Section 3 we focus on deci-
sion trees (and lists) which are a widely used class of target functions (Wu et al., 2008; Rokach and
Maimon, 2008; Quinlan, 1986; Breiman et al., 1984) popular because of their naturally interpretable
structure – to make a prediction one has to simply make a sequence of feature evaluations – and their
usefulness in the context of prediction in costly feature spaces. In Section 4 we analyze monomial
and polynomial functions, an expressive family that can approximate many realistic functions (e.g.,
Lipschitz functions (Andoni et al., 2014)) and is relevant in common machine learning techniques
like polynomial regression, curve fitting and basis expansion (Ziegel, 2003). Our study of polyno-
mials also demonstrates how feature-efficient learning is possible even when the function class is
not intrinsically feature-efficient for prediction. The non-linear structure of both of these function
classes poses interesting technical challenges in modeling their relations and proposing feature-
efficient solution strategies. Indeed our algorithms will use their learned information to determine
an adaptive feature-querying strategy that significantly minimizes feature evaluations.

In Section 3, we present our results for decision trees and lists. First, we describe intuitive rela-
tions among our targets in terms of a small unknown set of K “metafeatures” or parts of functions
common to all targets (think of K much less than N ). More specifically, these metafeatures are
subtrees that can be combined sequentially to represent the target tree. We then present our feature-
efficient lifelong learning protocol which involves addressing two key challenges. First, we need a
computationally-efficient strategy that can recover useful metafeatures from previously learned tar-
gets (Algorithm 2). Interestingly, we show that the learned metafeatures can be useful even if they
do not exactly match the unknown K metafeatures, so long as they “contain” them in an appro-
priate sense. Second, we need a feature-efficient strategy that can learn new target functions using
these learned metafeatures (Algorithm 1). Making use of these two powerful routines, we present
a lifelong learning protocol that learns only at most K out of m targets from scratch and for the
remaining targets examines only Kd features per example (where d is the depth of the targets), thus
making O (S(NK +mKd)) feature evaluations in total (Theorem 2).

In Section 4, we study monomials and polynomials which are similarly related through K un-
known metafeatures. We adopt a natural model where the metafeatures are monomials themselves,
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so that the monomial targets are simply products of metafeatures. In the case of polynomials, this
defines a two-level relation, where each polynomial is a sum of products of metafeatures. For poly-
nomials, we present an algorithm that learns only K of m targets from scratch and on the remaining
targets, evaluate sO (K + d) features per example (where d is the degree of the target), thus making
only O (S(KN +m(K + d))) feature evaluations over all tasks. More interestingly, in the case
of large-degree monomials, our algorithm may need fewer feature evaluations per example (K) to
learn the monomial than that needed (d) to evaluate the monomial on an input point.

Next in Section 5, we consider a relaxation of the original model, more specifically, an agnostic
case where the learner faces m + r targets, r of which are “bad” targets adversarially chosen to
be unrelated to the other m interrelated “good” targets. As a natural goal, we want the learner to
minimize the feature evaluations made on the training data of the m good targets. We show that
when r is not too large, the above lifelong learners can be easily made to work as well as they
would when r = 0. To address greater values of r, we first highlight a trade-off between allowing
the learner to learn more targets from scratch and learning the remaining targets with more feature
evaluations. We then present a technique that strikes the right balance between the two.

Finally, in Section 6 we present lower bounds on the performance of a lifelong learner for all
values of r, including r = 0 by designing randomized adversaries. Ignoring the sample size S and
other problem-specific parameters, for small r we prove a lower bound of Ω (KN +mK) feature
evaluations which proves that our above approaches are in fact tight. For sufficiently large r, we
prove a bound of Ω (mN), thereby demarcating a realm of r where lifelong learning is simply futile.

We present a summary of our results in Tables 1 and 2 in Appendix A.

1.1. Related Work

Related work in multi-task or transfer learning (Kumar and III, 2012; Maurer and Pontil, 2013; Pan
and Yang, 2010) considers the case where tasks are drawn from an easily learnable distribution or
are presented to the learner all at once. The theoretical results in that setting are sample complexity
results that guarantee low error averaged over all tasks (Baxter, 1997, 2000). On the other hand,
research in lifelong learning has been mostly empirical (Thrun and Mitchell, 1995; Koenig et al.,
2004; Drachsler et al., 2008; Thrun and Pratt, 1997). There has been a small amount of recent
theoretical work (Balcan et al., 2015; Pentina and Urner, 2016). Balcan et al. (2015) consider fairly
simple targets and commonalities such as linear separators that lie in a common low-dimensional
subspace. Pentina and Urner (2016) consider a setting where except for a small subset of target
functions, each target can be written as a weighted majority vote over the previous ones. Balcan
et al. (2015) also consider conjunctions that share a set of conjunctive metafeatures, but assume that
the metafeatures contain a unique “anchor variable”. Though decision trees have a more elaborate
combinatorial structure than conjunctions, in this work we are able to achieve strong guarantees for
lifelong learning of decision trees (and other classes) without making such unrealistic assumptions
about the metafeatures. We also note that one of main technical challenges addressed by Balcan
et al. (2015) is that of controlling error propagation during lifelong learning. However, for the
problems considered in this paper, it is possible to learn targets exactly from scratch, so we do not
have to deal with error propagation.

Feature-efficiency has been considered in the single-task setting, often under the name of bud-
geted learning (Lizotte et al., 2003; Kapoor and Greiner, 2005; BLw, 2010), where one has to
learn an accurate model subject to a limit on feature evaluations, somewhat like bandit algorithms.
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Obozinski and Taskar (2006); Argyriou et al. (2006) consider a related problem in a multi-task
setting with all tasks present up-front, where the learner has free access to all features but uses
commonalities between targets to identify useful common features in order to be sample-efficient.

2. Preliminaries

In this section, we define our notations and present a high level protocol which will provide a
framework for presenting our algorithms in the later sections. We consider a setting in which the
learner faces a sequence of m related target functions g(j) over the same set of N features/variables
(where both m and N are very large). The target functions arrive one after the other, each with its
own set of training data S(j) with at most S examples to learn from. Also, feature evaluation (or
equivalently, feature query or feature examination) is costly: if we view our training data for g(j) as
an S ×N matrix, we pay a cost of 1 for each cell probed in the matrix.

Our belief is that the targets are related to each other through an unknown set F of metafeatures
that are parts of functions. More specifically, all targets in the series can be expressed by combining
metafeatures in F using a known set of legal combination rules, such as concatenating lists or
trees. Our algorithms will learn a set of hypothesized metafeatures F̃ that allows them to learn new
targets using a small number of feature evaluations except for a limited number of targets learned
from scratch i.e., by examining all features on all examples. We call F̃ our learned representation.
Note that we will refer to F̃ as just metafeatures if it is clear from context that it does not refer to
the true metafeatures F .

Then, our lifelong protocol is as follows. We make use of two basic subroutines: a USEREP

routine that uses F̃ to learn new related targets, and an IMPROVEREP routine that improves our
representation F̃ whenever the first subroutine fails. We begin with an empty F̃ . On task j, using F̃
and S(j), we attempt to cheaply learn target g(j) with USEREP. If USEREP fails to learn the target,
we evaluate all features in S(j) and learn g(j) from scratch. Then, we provide F̃ and g(j) as input
to IMPROVEREP to update F̃ . For clarity, we present this generic approach, which we will call as
(USEREP, IMPROVEREP)-protocol, in Algorithm 3 in Appendix B. In the following sections, we
will present concrete approaches for these subroutines, specific to each class of targets. We will then
analyze the performance of the protocol in terms of the total number of feature evaluations (across
all samples over all the tasks) given an adversarial stream of tasks.

Our setting can be viewed as analogous to that of dictionary learning (Lewicki and Sejnowski,
2000; Elad and Aharon, 2006; Arora et al., 2014) in which the goal is to find a small set of vectors
that can express a given set of vectors via sparse linear combinations. Here, we will be interested in
broader classes of objects and richer types of combination rules.

3. Decision Trees

We first formally define decision tree metafeatures and describe our learning model. Based on this
we describe our problem concretely in Problem Setup 1. To simplify our discussion, we consider
decision trees over Boolean features, though we later present a simple extension to real values.
Formally, in a decision tree g : {0, 1}N → {+,−}, each internal node corresponds to a split over
one of N variables and each leaf node corresponds to one of the two labels {+,−}. No internal
node and its ancestor split on the same variable.
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Now, we define a metafeature to be an incomplete decision tree, a tree where any of the leaf
nodes can be empty i.e., the labels of some leaf nodes are left unspecified. Then, there are two
natural ways of combining metafeatures to form a (complete) decision tree. Let u be one of the
empty leaf nodes of a metafeature f . We may combine f with another incomplete tree f ′ using an
AFFIX(f, u, f ′) operation which simply affixes the root node of f ′ at u (as illustrated in Figure 1).
As a result, u now becomes an internal node of a larger incomplete tree. The variable at u and
its descendants correspond to the variables in f ′. Alternatively, we may perform a LABEL(f, u, l)
operation which assigns a label l ∈ {+,−} to the empty node u in f . We can then pick an arbitrary
element f ∈ F , apply an arbitrary sequence of LABEL and AFFIX operations (affixing only trees
from F) and eventually grow f into a decision tree. In this manner, we define below what it means
to be able to represent a decision tree using a set of metafeatures F . Both LABEL and AFFIX are
described for completeness in Appendix C.

Definition 1 Let F = {f1, f2, . . .} where each metafeature fi is an incomplete decision tree. We
define DT(F) to be the set of all decision trees that can be grown by using the elements of F and
sequentially applying LABEL and AFFIX operations on them. We say that a decision tree g can be
expressed using F if g ∈ DT(F).

x1

x3

x2

x4

Node u

x1

x3 x2

x4

f f ′

AFFIX(f, u, f ′)

Figure 1: Illustration of AFFIX

A modeling challenge here is that there are no known polynomial-time algorithms to learn
decision trees, even ignoring the issue of costly features and even for trees of depth d = O(logN).
On the other hand, there are popular top-down tree-learning algorithms (like ID3 and C4.5) that
work well empirically (Rokach and Maimon, 2008; Quinlan, 1986; Breiman et al., 1984). Therefore,
we will assume that we are given such an algorithm that indeed correctly produces g(j) from S(j)
if we are willing to evaluate all the features in all the examples. More specifically, these methods
are defined by a “gain function” Gain(S, i) that given a set of labeled examples S and a feature
i, returns a score indicating the desirability of splitting the set S using feature i. For instance, ID3
uses information gain as its splitting criterion,1 and an elegant theoretical analysis of the use of
different such gain functions is given in Kearns and Mansour (1996). The algorithm begins at the
root, chooses the variable of highest gain to put there, and then recurses on the nodes on each side.
This process continues until all leaves are pure (all positive or all negative).

Problem Setup 1 The decision tree targets g(1), . . . g(m) and data sets S(1), . . . ,S(m), each of at
most S examples, satisfy the following conditions:

1. There exists an unknown set F of K metafeatures (K � N ) such that ∀j, g(j) ∈ DT(F).

1. If feature i splits data set S into two sets L and R, its information gain of feature i is then Ent(S)− [ |L||S|Ent(L) +
|R|
|S|Ent(R)]. Here, Ent is the binary entropy of the label proportions in the given set; that is, if a p fraction of the
labels in S′ are positive, then Ent(S′) = p log2(1/p) + (1− p) log2(1/(1− p)).
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2. The target g(j) can be learned by running top-down decision-tree learning on S(j) using a
given Gain function. In other words, always choosing to recursively split on the variable of
highest Gain based on S(j) produces g(j).

3. We are given s, d (d � N ) such that g(j) has at most s internal nodes and depth at most d.
Then, S = O (s logN) examples are sufficient to guarantee that g(j) has high accuracy over
the underlying distribution over data.

A straightforward lifelong learning approach would be as follows: IMPROVEREP simply adds to
F̃ features seen in tasks learned from scratch and USEREP examines only those features in F̃
when learning a target. Since each metafeature in F can have at most s distinct features, we show
in Appendix C that this learns at most K targets from scratch and evaluates only Ks features per
example on the rest i.e., O (S(KN +mKs)) feature queries overall. However, when s = Ω (N)
this is no better than learning all tasks individually from scratch. In this section, we will present a
significantly better protocol:

Theorem 2 The (USEREP Algorithm 1, IMPROVEREP Algorithm 2)-protocol for decision trees
makes O (S(KN +mKd)) feature evaluations overall and runs in time poly(m,N,K, S, s, d).2

This is a significant improvement especially in the case of shallow bushy trees for which d� s
e.g., when d = O (logN) but s = Ω (N). To achieve this improvement, we need a computation-
ally efficient approach that extracts bigger decision tree substructures from previous tasks and also
knows how to learn future tasks using such a representation. We first address the latter problem:
we present an USEREP routine, Algorithm 1, that takes as input a set of hypothesized metafeatures
F̃ and a training dataset S consistent with an unknown tree g and either outputs a consistent tree
g̃ or halts with failure. To appreciate its guarantees, define Pref(f) to denote the set of all “pre-
fix” trees (prunings) of some incomplete tree f . For any set of hypothesized metafeatures F̃ , let
Pref(F̃) = {Pref(f̃) |f̃ ∈ F̃}. We show that Algorithm 1, given F̃ , can effectively learn a target
that can be represented using not only F̃ , but also the exponentially larger metafeature set Pref(F̃).
That is, our USEREP algorithm can effectively learn trees from a much larger space DT(Pref(F̃))
compared to just DT(F̃).

Though we limit our discussion of Algorithm 1 to Boolean feature values for simplicity, we later
extend it to real values. In Algorithm 1, we basically grow an incomplete decision tree g̃ one node
at a time, by picking one of its empty leaf nodes u, and either assigning a label to u or splitting u
on a particular feature. Before doing so, we first make sure that we have not failed already (Step 4).
More specifically, if u is at a depth greater than d or if g̃ already has more than s nodes, we halt with
failure because we were not able to find a small tree consistent with the data. If not, we proceed
to examine samples from the training set that have reached u, which we will denote by Su. If all
x ∈ Su have the same label, we make u a leaf with that label and proceed to other nodes in g̃.

Otherwise, we evaluate a small set of features on Su to compute their Gain and pick the best
of those features to be the variable at u (denoted by var(u)). The way we pick this set of features
at u, which we will call I, is based on the following intuition. Assume we have grown g̃ identically
to g so far and let u′ be the node in g that corresponds to u. Then the correct variable to be assigned

2. It may seem that this result can be equivalently stated in terms of the average number of features examined per
example i.e., O (KN +mKd). However, such a performance metric is different from what we defined. Under
certain independence conditions it may be possible to learn a target simply by drawing a large number of examples
and examining only a single feature per example while still making many feature evaluations in total.
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at u is var(u′) which is in fact the gain maximizing variable on Su (as assumed in the second point
of Problem Setup 1). Thus, our goal is to ensure var(u′) ∈ I.

If indeed g ∈ DT(Pref(F̃)), this variable must in fact correspond to the variable in some node
in some f̃ ∈ F̃ . In other words, we should be able to “superimpose” some f̃ over g̃ with the root
of f̃ at either u or one of its ancestors such that the variable in f̃ that has been superimposed over
u is in fact the correct variable for u. Additionally, the variables in f̃ should not conflict with those
that have already been assigned to the ancestors of u in g̃. Since we do not know which f̃ and
which superimposition of f̃ “induces” the correct variable at u, we add to I the variable induced
at u by every possible superimposition: we pick every f̃ ∈ F̃ and every node w that is either an
ancestor of u or u itself, and then superimpose f̃ over g̃ with its root at w. We add to I the variable
thus induced at u, provided the variables in f̃ do not conflict with those in the ancestors of u. In
Algorithm 1, we use helper routines, INDUCE(g̃, w, u, f̃) which outputs the induced variable and
CONFLICT(g̃, w, u, f̃) which outputs false if there is no conflict (both these simple subroutines are
described for completeness in Appendix C and illustrated in Figure 2). Finally, since no variable
should repeat along any path down the root, we remove from I any variable already assigned to an
ancestor of u. Then, we assign the gain maximizing feature from I to u. Observe that, at u, in total
over all f̃ we may examine O(|F̃ |d) features on Su. Therefore, for a particular sample, considering
all nodes along a path from the root, we may examine O(|F̃ |d2) features. However, with a more
rigorous analysis we prove a tighter bound:

Theorem 3 USEREP Algorithm 1 has the property that given F̃ and data S, a) if the underlying
target g ∈ DT(Pref(F̃)), the algorithm outputs g and b) conversely, if the algorithm outputs g̃
without halting on failure, then g̃ has depth at most d, size at most s and is consistent with S, c) the
algorithm evaluates O(|F̃ |+ d) features per example.

Algorithm 1 USEREP - Learning a decision tree using metafeatures

1: Input: Metafeatures F̃ , samples S consistent with unknown g, depth bound d, size bound s.
2: Initialize the tree g̃ to be an empty leaf node. Let Z be the set of empty leaf nodes in g̃.
3: while ∃ u ∈ Z do
4: Halt with failure if a) u is at depth > d or b) the size of g̃ is > s.
5: Let Su be the examples that have reached u.
6: if all x ∈ Su have the same label l then
7: Make u a leaf with the label l.
8: else
9: Let I be the set of features to be examined at u. Initialize I to be empty.

10: for each f̃ ∈ F̃ and each node w in the path starting from the root of g̃ to u do
11: If CONFLICT(g̃, w, u, f̃) is false, add INDUCE(g̃, w, u, f̃) to I.
12: Remove from I any variable assigned to an ancestor of u.
13: Evaluate only the features I on Su. Assign var(u)← arg maxi∈I Gain(Su, i).
14: Output g̃.

Proof Sketch a) We show by induction that g̃ is always grown correctly i.e., g̃ ∈ Pref(g). This is
trivially true at the beginning. For the general case, let u be the node of g̃ that is to be grown and
let u′ be its counterpart in g. By induction, note that Su′ = Su. Thus, if u′ is a leaf, all x ∈ Su′
have the same label. Therefore, all x ∈ Su have the same label, and hence we will label u as a
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leaf with the correct label. If u′ is an internal node, let var(u′) be the variable it splits on i.e.,
arg maxi∈[N ] Gain(Su′ , i). To show that we assign var(u′) to u in Step 13, we only need to prove
that var(u′) ∈ I. To prove this, we use the fact that g ∈ DT(F̃). Hence in g, var(u′) belongs to
the prefix of some metafeature f̃∗ from F̃ that is rooted either at u′ or at one of its ancestors. Thus,
during some execution of Step 11 we will add var(u′) to I.

b) This follows immediately from the Algorithm, more specifically from Step 4 and 6. We need
this guarantee so that when the learner does not fail, its output is guaranteed to be correct.

c) Each example corresponds to a particular path in g̃. Hence, the features examined on that
example correspond to INDUCE(g̃, w, u, f̃) for different nodes v and u on that path, computed in
Step 11 at different points during the run of the algorithm. Firstly, in the case that w = u, this could
have been computed to be one of the |F̃ | fixed set of features that occur at the root of each element of
f̃ ∈ F̃ . Now, to count the number of features examined for the cases wherew is an ancestor of u, we
prove the following. If for a particular u∗, we examine ku∗ different features INDUCE(g̃, w, u∗, f̃)
each corresponding to different ancestor-metafeature pairs (u, f̃), then we will “eliminate” at least
ku∗ − 1 metafeatures from resulting in feature evaluations for nodes u that are descendants of u∗.
We use this conclusion to prove that we make only O(|F̃ |+ d) such queries down any path.

We present the full proofs in Lemma 10 and 11 in Appendix C.

Now, to provide a lifelong learning protocol for Problem Setup 1, the challenge is to design a
computationally efficient IMPROVEREP routine3. To this end, we present Algorithm 2 that creates
useful metafeatures by adding to F̃ well-chosen subtrees from target functions. In particular, after
learning a target g from scratch, we identify a root-to-leaf path in g that we failed to learn using F̃ .
We add to F̃ the subtrees rooted at every node in that path. The intuition is that one of these subtrees
makes the representation more useful. To describe how the path is chosen, let g̃ be the incomplete
tree learned using F̃ just before we halted with failure. Since either the depth or the node count was
exceeded in g̃, there must be a path from the root of g̃ longer than the corresponding path in g. We
pick the corresponding path in g which was incorrectly learned in g̃ (see Figure 3).

Finally, as we see below in the proof sketch for Theorem 2, the resulting protocol evaluates only
O (Kd) features per example when learning from F̃ , besides learning K trees from scratch. Recall
that this is a significant improvement of our straightforward USEREP which evaluates O (Ks)
features per example.

Algorithm 2 IMPROVEREP - Decision Trees

1: Input: Old representation F̃old and a tree g ∈ DT(F) learned from scratch and the (incorrect)
incomplete tree g̃ learned using F̃old.

2: F̃ ← F̃old
3: Identify a path from root of g̃ such that the corresponding path in g has fewer internal nodes.
4: For each node in the corresponding path in g, add the subtree rooted at that node to F̃ .
5: Output F̃

3. As a warm-up, consider a semi-adversarial scenario where each element of F has a reasonable chance of being the
topmost metafeature in any target. We can then learn the first few targets from scratch and simply add them to F̃ so
that with high probability, each metafeature from F is guaranteed to be the prefix of some element in F̃ . Then we
can use Algorithm 1 to learn the remaining targets using F̃ as all those targets will lie in DT(Pref(F̃)). We provide
a careful analysis of this simpler case in Appendix C Theorem 12.
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Proof Sketch (for Theorem 2) We show by induction that at any point during the protocol, if
k targets have been learned from scratch, then ∃ F ′ ⊆ F such that |F ′| = k and for each
f ∈ F ′, some element from F̃ contains f as its prefix. Then, after K failures of USEREP,
DT(F ′) ⊆ DT(Pref(F̃)). Then from Lemma 10, USEREP is guaranteed not to fail. To prove the
induction hypothesis, we note that when USEREP fails to learn g, there must be an element from
F − F ′ rooted somewhere in any root-to-leaf path in g that was not correctly learned. On adding
to F̃ the subtrees rooted at each node in one such path, we are sure to add an element whose prefix
is a metafeature from F − F ′. Thereby we “learn” a new metafeature from F . Now, each time
USEREP fails, we add at most d elements to F̃ , so |F̃ | ≤ Kd. From Theorem 3, our result follows.

x1

x2 x3

x4

x3

x4

x5x7

Node u

Node w

f f ′

CONFLICT(f, w, u, f ′) = false
INDUCE(f, w, u, f ′) = x5

Figure 2: Superimposing f ′ over f with
its root at w

x1

x2x3

+ +− −x5

True target gIncomplete tree g̃

Corresponding path
in boldx1

x3

−

Figure 3: Path chosen by IMPROVEREP Algo-
rithm 2.

Extension to real-valued features: Our results hold also for decision trees over real-valued fea-
tures, where nodes contain binary splits such as “x1 ≥ 7”. In particular, we reduce this to the
Boolean case by viewing each such split as a Boolean variable. While this reduction involves an
implicitly infinite number of Boolean variables, our bounds still apply. This is because we make
onlyN feature evaluations per example when learning from scratch (and not infinitely many). Also,
the feature evaluations made by our USEREP is independent of the number of Boolean variables.

Decision Lists While we can use the above protocol for decision lists too, it does not effectively
provide any improvement over the baseline approach because for lists, s = d. However, by making
use of the structure of decision lists, we provide a protocol that learns K2 lists from scratch and on
the rest examines onlyO

(
K2 + d

)
features per example. The high level idea is that when we fail to

learn a target using F̃ , we add to F̃ only a single suffix of the target list as a new metafeature instead
of adding all d suffixes like in Algorithm 2. To prove our bound, we have a technically interesting
argument which we present in the appendix.

Theorem 4 The (USEREP Algorithm 1, IMPROVEREP Algorithm 7)-protocol for deci-
sion lists makes O

(
S(K2N +m(K2 + d))

)
feature evaluations overall and runs in time

poly(m,N,K, S, d).

4. Monomials

We consider lifelong learning of degree-d monomials under the belief that there exists a set of K
monomial metafeatures like {x1x2, x21x3, . . .} and each target can be expressed as a product of
powers of these metafeatures e.g., (x1x2)

2(x21x3). This is similar to the lifelong Boolean monomial
learning discussed in Balcan et al. (2015) where each monomial is a conjunction of monomial
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metafeatures. Since that is an NP-hard problem, they assume that the metafeatures have so-called
“anchor” variables unique to each. We will however not need this assumption.

We first describe our setup more formally. For any input x = (x1, x2, . . . xN ) ∈ RN , we
denote the output of a d-degree target monomial g = (g1, g2, . . . , gN ) by the function Pg(x) =
xg11 x

g2
2 . . . xgNN where gi ∈ N ∪ {0} and the degree

∑
i gi ≤ d. The unknown metafeature set

F = {f1, f2, . . . fK} consists of K monomials. To simplify notations, we also consider F to be a
matrix where column i is fi. Therefore, if g can be expressed using F , then g lies in the column
space of F denoted by C(F). Then, our problem setup is as follows:

Problem Setup 2 The m d-degree targets g(1), . . .g(m) and the training data (each of at most S
examples) drawn from unknown distributions D(1), . . . ,D(2) satisfy the following conditions:

1. There exists an unknown N ×K matrix F (K � N ) such that g(j) ∈ C(F).
2. Each D(j) is a product distribution (as assumed in Balcan et al., 2015; Andoni et al., 2014)

that is not too concentrated (explained in Appendix D).

Unlike the decision tree problem, where we only consider an abstraction of the learning routine,
here we present a particular technique for learning a monomial exactly. We show that under product
distributions that are not too concentrated, it is possible to exactly learn the power of a given feature
in a target by examining only that feature on polynomially many samples (Lemma 16). Naturally,
we can learn the monomial exactly from scratch (Algorithm 8 in Appendix D). Then, in the lifelong
learning model, by merely keeping a record of the features that have been seen so far, it is fairly
straightforward to learn only K targets from scratch while learning the rest by examining O (Kd)
features per example (Theorem 18). Here, we present a significantly better protocol that learns
only K targets from scratch and on the rest, evaluates only O (K) features on all examples and d
features on one example. This is an improvement especially for cases where d is large. We present
a summary of our approach in the following proof sketch.

Theorem 5 The (USEREP Algorithm 10, IMPROVEREP Algorithm 9)-protocol for monomials
makes O (S(KN +mK) +md) feature evaluations overall and runs in time poly(m,N,K, S, d).

Proof Sketch The key idea is that we store a list of targets that have been learned from scratch as
columns of the matrix F̃ . Also, we learn a new target from scratch only if g /∈ C(F̃). Therefore,
after learning K targets from scratch, we can show that we have a K rank matrix F̃ such that
C(F̃) = C(F). Therefore all future targets can be learned using F̃ .

Now, the idea for USEREP is as follows. If we have learned k targets from scratch, then
F̃ is of rank k. Then, we identify a set of k features I that correspond to linearly independent
rows in F̃ . We first learn only the powers of I (which we will denote by g[I]) by examining
I on all samples. Then we learn a monomial g̃ by using the equation g̃ = F̃(F̃ [I])−1g[I]. If
indeed g ∈ C(F̃), then g̃ equals g. This is because the power of each monomial metafeature in
g is recovered through (F̃ [I])−1g[I]. However, we do not know if g ∈ C(F̃) and it may be that
g̃ 6= g. To address this, we can show using Lemma 20 that we only need to draw a single sample
x, examine d features relevant to g̃ and check if our prediction Pg̃(x) equals the true label Pg(x).
If this fails, we conclude that g̃ 6= g and therefore, g /∈ C(F̃). We learn g from scratch and add it
to F̃ . Thus, USEREP examines only at most K features on all but one sample and d features on
one final sample. In fact, after learning K targets from scratch, we do not need to examine the d
features and do the verification step because we are guaranteed that g ∈ C(F̃).

10
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4.1. Polynomials

We consider lifelong learning of real-valued polynomial targets each of which is a sum of at most t
degree-d monomials. Similar to the Boolean model in Balcan et al. (2015), our belief is that there
exists a set of monomial metafeatures such that each monomial in the polynomial can be expressed
as a product of these metafeatures like we described in the previous section. As an example, given
F = {x1x2, x21x3, . . .}, one possible target is 3(x1x2)(x

2
1x3)−5(x1x2)

2(x21x3). Again, we assume
that each D(j) is a product distribution over RN . Since polynomial learning is a hard problem, we
will have to make a strong assumption that each D(j) is known, which then enables us to adopt the
polynomial learning technique from Andoni et al. (2014). Note that we can relax this assumption
when all the distributions are common (like it is assumed in Balcan et al., 2015), so that the common
distribution can first be learned usingO (poly(N)) feature evaluations. However, if the distributions
were all different, learning them may need O (poly(mN)) feature evaluations, which would be
feature-inefficient.

We now briefly discuss the algorithm in Andoni et al. (2014) for learning a polynomial from
scratch from a known distribution. Note that we have modified the algorithm slightly for our pur-
poses. The basic idea is to perform t iterations extracting one of the t monomials from the given
polynomial at a time. After a few iterations, consider the residual set of monomials that have not yet
been extracted yet. For the next iteration, we extract the “lexicographically largest” monomial from
this set; namely, the monomial that has the highest power of x1, say xd11 , the highest power of x2 of
all monomials in the residual set containing xd11 and so on. To extract the monomial identified this
way, we compute the value of this monomial on each training sample and subtract the value from
the output of that sample. Note that the running time of this approach is exponential in d (as is the
case in other polynomial learning approaches).

Then, in the lifelong learning model, we can learn the targets by making O (S(KN +mKd))
feature evaluations by simply remembering what features have been seen so far (Theorem 21). We
present an approach in Appendix D that makes onlyO (S(KN +m(K + td))) feature evaluations.
This is an improvement for sparse polynomials t < K e.g., when t = O (1).

Theorem 6 The (USEREP Algorithm 12, IMPROVEREP Algorithm 11)-protocol for polynomials
makesO (S(KN +m(K + dt))) feature evaluations overall and runs in time poly(m,N,K, S, t).

Proof The high level idea is to maintain a metafeature set of “linearly independent monomials”
picked from previously seen targets, like we did in the previous section. When learning a target
using F̃ , we perform t iterations to extract the monomials, but now in each iteration we find the
lexicographically largest power restricted to at most K features. These K features correspond to
linearly independent rows in F̃ . Given the powers of these features, we can determine powers of all
the features like we did before. Based on this we can extract a complete monomial from the residual
polynomial. Note that the restricted lexicographic search examines only a fixed set of K features
per example. Besides this, in each of the t iterations, we evaluate d features relevant to the extracted
monomial, accounting for K + td feature evaluations per example.

5. The Agnostic Case

We propose a novel agnostic lifelong learning model where the learner facesm+r learning tasks of
which m tasks are guaranteed to be related through the K metafeatures in F while the other r tasks

11
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are arbitrary. Note that this is different from the conventional sense of agnostic learning where each
individual task may involve model misspecification or noisy labels. What makes this challenging is
that the r “bad” targets can be chosen and placed adversarially in the stream of tasks. Since in the
worst case there is no hope of minimizing feature evaluations done on the bad targets, we adopt the
natural goal of reducing the feature evaluations on the training data of the m good targets.

We focus our discussion on learning decision trees with depth d = O (1) noting that it is
straightforward to extend it to learning more general decision trees and to other targets. In fact,
in the following discussion, it may be helpful to imagine the targets to be decision stumps over just
one feature and the metafeature set F̃ to simply be a set of K features. Now, recall that in the
original setup, F̃ consisted of O (K) useful metafeatures from at most K targets that were learned
from scratch USEREP failed to learn them. A problem that arises now is that F̃ may have been
updated with metafeatures from bad targets. Then, even if F̃ contained K metafeatures, we cannot
guarantee that future good targets can be learned using F̃ . What should we do then?

To address this, we present two simple computationally-efficient solutions (described in detail
in Appendix E) that highlight an interesting trade-off between the number of targets learned from
scratch and the number of features evaluated on the remaining targets. In the r-expansion technique,
we allow the learner to update F̃ on every failure of USEREP. Doing so, we learn at most K good
targets from scratch (and possibly all the r bad targets too, which we do not care about). Since F̃
can expand to as many as O (K + r) metafeatures this way, we learn the remaining targets using
F̃ evaluating O (K + r) features per example. In the r-restart technique, the key idea is to restrict
the representation to O (K) metafeatures. Whenever the representation reaches this limit and still
USEREP fails, we restart lifelong learning with an empty representation. This technique learns
more targets from scratch, O (rK) targets in particular, but evaluating only O (K) features per
example on the remaining targets. When r = O

(
max

(
m
N ,

KN
m ,K

))
, it is easy to see that one of

these two techniques makes only O (S(KN +mK)) feature evaluations, which is as good as the
performance when r = 0. To deal with larger values of r, in Appendix E, we describe a combined
technique that deals with the trade off carefully and does better than both the above:

Theorem 7 In the agnostic model where we face m + r decision tree targets such that m trees
belong to DT(F), the number of feature evaluations on the training data for the m trees:

• the r-expansion technique is O (S(KN +m(K + r))).
• the r-restart technique is O (S(rKN +mK)).
• a combination of c-expansion and r/c-restart isO(S(

√
rKNm+Km)), for c =

√
rKN/m

provided r = Ω (max (m/n,KN/m,K)).

6. Lower bounds

We prove lower bounds on the performance of any lifelong learner under different ranges of r in the
agnostic model. In particular, we prove tight lower bounds for sufficiently small and large values
of r, ignoring other problem-specific parameters and the sample size parameter S (that scaled only
logarithmically with N for most of our target classes). An interesting insight here is that when r
is too large, we prove that no learner is guaranteed to succeed by making O (mN) feature queries,
which means that lifelong learning is no longer meaningful for really large values of r. We state our
results formally below, with more discussion in Appendix F.
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Theorem 8 Let rmin = max
(
m
N ,

KN
m ,K

)
, rmax = min

(
mN
K , (N−K)2m

KN

)
. In the agnostic model

of Section 5, there exists an adversary such that, on the m good trees, any lifelong learner makes:

• Ω (NK +Km) feature evaluations when 0 ≤ r ≤ rmin.
• Ω

(
max

(
r

N−K , 1
)
KN +Km

)
feature evaluations when rmin ≤ r ≤ rmax.

• Ω (mN) feature evaluations when rmax ≤ r.
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Appendix A. Summary of results

Problem Total number of feature evaluations
Decision trees of depth d O (S(KN +mKd))

Decision trees of depth d in semi-adversarial model O
(
S( logKpmin

N +m(K + d))
)

Decision trees of depth d with anchor variables O (S(KN +m(K + d)))

Decision lists of depth d O
(
S(K2N +m(K2 + d))

)
Monomials of degree d Õ (KN +m(K + d))

Polynomials of degree d, sparsity t O (S(KN +m(K + td)))

Table 1: Performance of our approaches

Range of r Performance of algorithm Lower bound
0 ≤ r ≤ rmin O(S(NK +Km)) Ω (NK +Km)

r ∈ [rmin, rmax] O(S(
√
rKNm︸ ︷︷ ︸

≤
√

rmax
r

max( r
N−K

,1)KN

+Km)) Ω
(

max
(

r
N−K , 1

)
KN +Km

)
r ≥ rmax O (SmN) Ω (mN)

Table 2: Performance of our algorithms for different values vs the lower bounds for different values
of r. Recall that rmin = max

(
m
N ,

KN
m ,K

)
and rmax = min

(
mN
K , (N−K)2m

KN

)

Appendix B. Notations

Notation Meaning
m No. of targets in sequence
N No. of features/variables
F True metafeature set/representation
F̃ Learned representation
K No. of true metafeatures
S No. of samples for each task
S(j) Training data for task j

Table 3: Important notations
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Algorithm 3 (AUR,AIR)-protocol for lifelong learning

1: Input: A sequence of m training sets S(1),S(2), . . . , corresponding to targets g(1), g(2), . . .,
each of which can be represented using an unknown set F of K metafeatures.

2: Let F̃ be our current learned representation. Initialize F̃ to be empty.
3: for j = 1, 2, . . .m do
4: Using F̃ and S(j), attempt to cheaply learn g(j) with USEREP algorithm AUR.
5: If learning was not successful, extract all features in S(j) and learn g(j) from scratch; provide

F̃ and g(j) as input to IMPROVEREP algorithm AIR to update F̃ .

Appendix C. Decision Trees

We first present proofs from Section 3. In Appendix C.2 we prove our main result for decision lists.

C.1. Proofs from Section 3

Theorem 9 (Naive lifelong learning of decision trees) There exists a naive lifelong learning pro-
tocol for decision trees in the model of Problem Setup 1 evaluates O (S(KN +mKs)) features
overall.

Proof The naive approach follows from a simple observation. If we knew beforehand the set of
features that are involved in a tree g(j), then in order to learn the tree, at any given node we require
the learner to evaluate Gain only over these features to determine the best split at that node. Thus,
our protocol will just maintain the set of features present in any tree learned from scratch so far, so
that USEREP can use these as “metafeatures” to carry out its evaluations limited to these features.
Then, any target that can be represented using metafeatures f ∈ F that have been seen before in
some other target, will be learned using our metafeatures. In other words when USEREP fails, the
target is guaranteed to contain an “unseen” metafeature from F . Thus, we will learn targets from
scratch at most |F| = K times. Since each metafeature in F has at most s distinct features, we will
have to evaluate only at most Ks features when not learning from scratch.

We now present the pseudocode for the different subroutines described informally in our dis-
cussion.

Algorithm 4 AFFIX(f, u, f ′): Affix f ′ to f at empty leaf node u in f

1: Input: Incomplete decision trees f, f ′, empty leaf node u in f
2: Assign to var(u) the root variable of f ′.
3: Create descendants nodes of u and assign variables to them such that the tree rooted at u is

identical to f ′.

Algorithm 5 LABEL(f, u, l): Assign l to u in f

1: Input: Incomplete decision tree f , empty leaf node u in f , label l ∈ {+,−}
2: Assign to leaf node u the label l.
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Algorithm 6 CONFLICT(f, w, u, f ′) and INDUCE(f, w, u, f ′)

1: Input: Incomplete decision trees f, f ′, node w in f , node u that is a descendant of w or equal
to w itself.

2: Let V be the set of nodes in f that are ancestors of u but not of w.
3: Map w in f to the root node of f ′.
4: Similarly map all descendant nodes of w from V to the nodes in the corresponding path in f ′.
5: Output of CONFLICT(f, w, u, f ′): If there are two internal nodes v ∈ f and v′ ∈ f ′ mapped to

each other but v ∈ V , var(v) 6= var(v′), output true. Else output false.
6: Output of INDUCE(f, w, u, f ′): Let u′ be the node from f ′ mapped to u. Output var(v′).

Now we prove Lemma 10 and Lemma 11, which together prove guarantees about our powerful
USEREP Algorithm 1. Lemma 10 states that as long as the underlying target g can be constructed
using the exponentially large representation Pref(F̃), Algorithm 1 will output g. Lemma 11 states
that this algorithm examines O

(
|F̃ |+ d

)
features per example.

Lemma 10 If g ∈ DT(Pref(F̃)) , Algorithm 1 outputs g̃ = g.

Proof We are given that g ∈ DT(Pref(F̃)). We will show by induction that g̃ is always grown
correctly i.e., g̃ ∈ Pref(g). This is trivially true at the beginning. Consider the general case. Let u
be the node in g̃ that is chosen in Step 3 to be grown. By our induction hypothesis that g̃ is a prefix
of g, there exists u′ in g that corresponds to u and furthermore, Su = Su′ . Now to show that u
will be grown identical to u′, since g̃ is only a prefix, the size and depth constraints will be satisfied
and so we are guaranteed to not halt with failure at this node. Next, if u′ was a leaf node, since
Su = Su′ , we are guaranteed to label u as a leaf and assign it the correct label.

If u′ is not a leaf node, let var(u′) be the variable present in u′ i.e., var(u′) =
arg maxi∈[N ] Gain(Su′ , i). Therefore, to show that we assign var(u′) to u in Step 13, we only
need to prove that var(u′) ∈ I i.e., we consider this feature for examination. To prove this, note
that in g, var(u′) belongs to the prefix of some metafeature f̃∗ from F̃ that is rooted either at
some v′ which is either u′ itself or at one of its ancestors (because g ∈ DT(Pref(F̃))). We can
show that in Step 11, when w = v and f̃ = f̃∗, we end up adding var(u′) to I. First, if v is
the corresponding node in g̃ we will have that CONFLICT(g̃, v, u, f̃∗) is false. Furthermore, clearly
INDUCE(g̃, v, u, f̃) = var(u′). Now since g has no variable repeating along any root-to-leaf path,
var(u′) does not occur in any of the ancestor nodes of u′, and similarly in g̃, it does not occur in
any of the ancestor nodes of u. Thus, the conditions in Step 11 succeed, following which var(u′)
is added to I.

Lemma 11 Algorithm 1 makes at most O(|F̃ |+ d) feature queries per example.

Proof First of all note that each example corresponds to a particular path in g̃. Thus, the features
examined on that example as g̃ was grown, correspond to the different features computed from
INDUCE(g̃, w, u, f̃) for different nodes v and u on that path. These feature queries can be classified
into two types depending on whether A) w = u or B) w is an ancestor of u. For type A, since
w = u, INDUCE(g̃, w, u, f̃) can only be one of the fixed set of features that occur at the root of
metafeatures in F̃ . In total this may account for at most |F̃ | feature examinations.
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Now consider the type B features queries corresponding to w 6= u. Each feature examined in
this case corresponds to a 3-tuple (w, u, f̃) where w is an ancestor of u. We claim that for a given
f̃ , w has to be unique in this path. This is because if such a 3-tuple results in a feature query, it
should also satisfy the condition in Step 11 that CONFLICT(g̃, w, u, f̃) is false. Then, this means
that var(w) is equal to the root variable in f̃ . However since the algorithm never considers a feature
already assigned to an ancestor (as seen in Step 12), there can only be at most one node w in this
path that contains the variable var(w).

Thus type B feature query effectively corresponds to a 2-tuple (u, f̃) instead of a 3-tuple
(w, u, f̃) because f̃ corresponds to a unique w. Let wf̃ denote this unique node for f̃ . Now, let
ku be the number of type B feature queries made at u. We can divide this case further into type
B(a) consisting of nodes u, such that ku = 1 and type B(b) corresponding to ku > 1. In total
over the d nodes in g̃, we would examine only d type B(a) features. Now, for type B(b), at node
u, where we evaluate ku features at u, we claim that this effectively “eliminates” at least ku − 1
different metafeatures from resulting in feature examinations of type B further down this path. This
is because each of the ku features that we examine at u correspond to INDUCE(g̃, wf̃ , u, f̃) for some
f̃ ∈ F̃ . Let this set of metafeatures be F̃u, where |F̃u| = ku. Now, we assign only one feature to
u that corresponds to say, f̃∗ ∈ F̃u. After this, when we are growing a descendant node v, for the
ku − 1 other metafeatures f̃ ∈ F̃u and f̃ 6= f̃∗, CONFLICT(g̃, wf̃ , v, f̃) will be true as there will be
a conflict at u. However, since CONFLICT(g̃, wf̃ , v, f̃) needs to be false in Step 11 for f̃ to result
in a feature query, we conclude that there are ku − 1 different metafeatures that do not result in a
feature query beyond this point.

Using the above claim, we can now bound
∑

u:ku>1 ku, which will account for the total feature
queries of type B(b) along the path. Since ku − 1 denotes the number of eliminated metafeatures
beyond u, and since only at most |F̃ | can be eliminated, we have

∑
u:ku>1(ku − 1) ≤ |F̃|. Now,

since
∑

u:ku>1 1 ≤ d, we have that
∑

u:ku>1 ku ≤ |F̃|+ d i.e., we make at most |F̃ |+ d type B(b)
feature queries of the last kind on this path. Thus, in summary, we examine at most O(|F̃ | + d)
features on each example.

We now prove our result for the semi-adversarial model, where in any given target, each f ∈ F
has at least a pmin probability of being the topmost metafeature.

Theorem 12 (Lifelong learning of decision trees in semi-adversarial model) There exists a
lifelong learning protocol for decision trees that evaluates O

(
1

pmin
log K

δ ·N +m(K + d)
)

fea-
tures overall in a semi-adversarial model where each element of F has at least a pmin probability
of being the topmost element of any target. The protocol learns only the first O

(
1

pmin
log K

δ

)
tar-

gets from scratch, adds them to F̃ and then uses USEREP Algorithm 1 to learn all the subsequent
targets from F̃ .

Recall that direct application of Lemma 11 implies that we will learn the subsequent targets
examining O

(
1

pmin
logK + d

)
features per example. However, a more careful analysis making

use of the fact that each element in F̃ is in fact from DT(F) shows that we will examine only
O (K + d) features per example. Note that this is an improvement because 1

pmin
logK ≥ K logK.

Proof (for Theorem 12) Consider the protocol from Theorem 12 that learns the firstO
(

1
pmin

log K
δ

)
targets from scratch, and adds them all to F̃ . Then with probability at least 1 − δ, each metafea-
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ture from F will be at the top of some metafeature from F̃ . That is, DT(F) ⊆ DT(Pref(F̃)).
Then, from Theorem 3 clearly Algorithm 1 can learn any future target from DT(F) as the target
will also lie in DT(Pref(F̃)). Now, by a direct application of Theorem 3 this means we evaluate
O
(

1
pmin

log K
δ + d

)
features per example.

However, we can prove a tighter bound of O(K + d) by following the proof technique for
Lemma 11 but using to our advantage the fact that the metafeatures in F̃ are not arbitrary trees, but
in fact members of DT(F). First of all, observe that the number of type A costs along any path is
in fact K and not |F̃ | because the metafeatures in F̃ can have only one of at most K variables at its
root. Now, for the first case within type B, we will pay a cost of d as before. However, for the second
case, observe that any variable that is induced at u by a metafeature f̃ ∈ F̃ , is in effect induced by a
metafeature f ∈ F . That is, when we compute INDUCE(g̃, wf̃ , u, f̃) for some metafeature f̃ ∈ F̃ ,
we effectively compute INDUCE(g̃, wf , u, f) for some metafeature f ∈ F . Similarly we ca argue
that whenever we make ku distinct feature queries at a particular node u during the algorithm, for
all nodes beyond u in that path, we effectively eliminate queries arising from ku − 1 metafeatures
from F (and not F̃ as before). This will result in a total cost of |F| = K for this case.

We now prove our main result, Theorem 2 for decision trees which presented a protocol for
learning decision trees which learns at most K targets from scratch, and learns the rest examining
only O (Kd) features per example.

Theorem 2 The (USEREP Algorithm 1, IMPROVEREP Algorithm 2)-protocol for decision trees
makes O (S(KN +mKd)) feature evaluations overall and runs in time poly(m,N,K, S, s, d).4

Proof (for Theorem 2) We will show by induction that at any point during a run of the protocol, if
k targets have been learned from scratch, then there exists a subset of k true metafeatures F ′ ⊆ F
that have been “learned” in the sense that f ∈ F ′ is the prefix of some metafeature in F̃ , implying
that DT(F ′) ⊆ DT(Pref(F̃)). Then after learning K targets from scratch, it has to be the case that
F ′ = F after which DT(F) ⊆ DT(Pref(F̃)) and hence from Lemma 10 it follows that the protocol
can never fail while learning from F̃ .

The base case is when F̃ ′ is empty for which the induction hypothesis is trivially true. Now,
assume at some point we have metafeatures F̃old and these correspond to true metafeaturesF ′old ⊆ F
such that DT(F ′old) ⊆ DT(Pref(F̃)) and |F ′old| = k. Now, from Theorem 3, we can conclude that
any target that lies in DT(F ′old) will be successfully learned by USEREP Algorithm 1. Hence, when
USEREP does fail on a new target g, it means that the g contains metafeatures from F − F ′old. In
fact, along any path in g in which learning failed (that is, the tree g̃ that is output differs from g on
this path), there must be a node at which some metafeature from F − F ′old is rooted. If this was
not true for a particular failed path, we can show using an argument similar to Lemma 10 that this
path would have been learned correctly. Therefore, when we add to F̃ all the subtrees rooted at the
nodes in some failed path in g, we are sure to add a tree which has some f ∈ F − F ′old as one of
its prefixes. This means that for the updated set of metafeatures, there exists F ′ = F ′old ∪ {f} of
cardinality k + 1 that satisfies the induction hypothesis.

4. It may seem that this result can be equivalently stated in terms of the average number of features examined per
example i.e., O (KN +mKd). However, such a performance metric is different from what we defined. Under
certain independence conditions it may be possible to learn a target simply by drawing a large number of examples
and examining only a single feature per example while still making many feature evaluations in total.
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Now, each time USEREP fails, we add at most d metafeatures to F̃ , so |F̃ | ≤ Kd. From
Theorem 3, it follows that we evaluate only O (Kd) features when learning using F̃ .

C.2. Decision Lists

Recall that we have a protocol for decision lists (Theorem 4) that learns only O
(
K2
)

targets from
scratch and on the remaining targets, evaluates O

(
K2 + d

)
features per example. In this section,

we present the corresponding IMPROVEREP algorithm. In the following discussion, we will use
the term suffix to denote a subtree (i.e., sublist) of a list. In other words, a suffix of a list would be
a path beginning anywhere on the list and ending at the leaf. Similarly, we use the term prefix to
denote a path beginning at the root of the list and ending anywhere on the list.

Recall that for USEREP we use the same algorithm we did for decision trees, namely Algo-
rithm 1. However, for IMPROVEREP we present Algorithm 7 which is simpler than Algorithm 2.
More specifically, given a decision list g learned from scratch (that we could not learn from F̃), we
examine g and the actual list g̃ we learned from F̃ . Then we simply ignore the first few nodes of
g that we managed to learn using F̃ , and add the remaining suffix to F̃ . The intuition is that the
representation is improved by introducing a part of g that we could not learn using F̃ . Note that
here g̃ might not even be a complete decision list as USEREP may have simply failed in finding a
decision list using F̃ that fits the data. However, it may have still been successful in learning the
first few nodes of g.

Algorithm 7 IMPROVEREP - Decision Lists

1: Input: Old representation F̃old, target g learned from scratch, g̃ learned using F̃old.
2: Let g = (gp, gs) where gp is the longest common prefix of g̃ and g.
3: F̃ ← F̃old ∪ {gs}
4: Return F̃

We now show that the resulting protocol learns only O
(
K2
)

targets from scratch. We will use
the notation u∈dl f to denote that node u is present in the list f , and f ′⊂dl f to denote that f ′

is an incomplete list (like an incomplete decision tree) which corresponds to a path within f , not
necessarily a prefix or a suffix. Furthermore, if g is a concatenation of other lists g1, g2, . . . we will
say g = (g1, g2, . . .).

Lemma 13 In the model of Problem Setup 1 for decision lists, the (USEREP Algorithm 1 , IM-
PROVEREP Algorithm 7 )-protocol for decision lists learns O

(
K2
)

targets from scratch.

Proof
We need to understand how adding the suffix gs from a target g on which USEREP failed,

makes the representation more useful. As a warm up, we can show that when the protocol faces
the same target g in the future, the updated representation F̃ = F̃old ∪ {gs} will be able to learn
it. A crucial fact from which this follows is that USEREP Algorithm 1 learns any list if and only
if the list can be represented as a concatenation of prefixes of elements from F̃ . This fact holds
because Lemma 10 and the way the algorithm works. Thus, since we were able to learn gp when
we first saw g, gp is a concatenation of prefixes from F̃old i.e., gp ∈ DT(Pref(F̃old)). Then, since
g = (gp, gs) ∈ DT(Pref(F̃old ∪ {gs})), we can learn g using F̃ .
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Of course, we should show that the updated representation is more powerful than just allowing
us to learn repeated tasks in the future. To see how, note that since the target g is a concatenation
of metafeatures from F , its suffix gs must begin with the suffix of a metafeature from F . More
formally, since g ∈ DT(F), gs must begin with a suffix fs of an element f ∈ F . Let fp be the
corresponding prefix of f . Now, consider a future target that contains f . If the learner is able to
identify all nodes in the target upto the end of prefix fp, the learner is also guaranteed to identify f
completely in the target. This tells us a little bit more about the power of the updated representation.

Now, to prove our lemma, we use the fact that each failure of USEREP Algorithm 1 must
correspond to a specific element f ∈ F as seen above. That is, there must exist an f = (fp, fs) ∈ F
such that f ⊆dl g and furthermore, USEREP was able to learn upto a prefix fp of f after which it
failed. We claim that there can only beO(K) failures of USEREP that corresponds to a particular f
in this manner. From here, our lemma immediately follows. To prove this claim, we will categorize
the failures of USEREP corresponding to f into two different cases and bound the number of
failures in each case. Throughout the following discussion, we will simply use the term failure to
denote failure of USEREP.

We will divide failures corresponding to f based on whether fp can be represented as a concate-
nation of prefixes from F̃old or not. If it can be, we show that it is easy to argue that in any future
target there will not be a failure corresponding to f . If not, we present a more involved argument to
show that there can be at most K failure events corresponding to a particular f . Then, the bound of
O
(
K2
)

on the total number of failures follows.
Case 1: For the first case we assume that fp ∈ DT(Pref(F̃old)). Then, clearly, this is true for

the new representation F̃ i.e., fp ∈ DT(Pref(F̃)). Furthermore, since there is a new element gs
with fs as its prefix, fs ∈ Pref(F̃). This implies that f ∈ DT(Pref(F̃)). This means that we
can henceforth learn an occurrence of f in a new target if learning has been successful until the
beginning of f in that target. In other words, there can never be another failure that corresponds to
f . This case can hence occur only once.

Case 2: The second case corresponds to fp /∈ DT(Pref(F̃old)). We will now subdivide this case
further based on another metafeature f ′ ∈ F , a part of which lies in some hypothesized metafeature
in F̃old and was used to learn/match a part of f in gp. We will fix f ′ and argue that there can be at
most two failure events characterized by f and f ′ during the lifelong learning protocol. Since there
are only K different f ′, then for a fixed f , there can only be 2K failure events of this type, thus
completing our proof.

We begin by informally explaining how we choose f ′ to classify a given failure event. We first
note that there are two ways in which gp can be represented in terms of the true metafeatures F .
The “direct” representation corresponds to the fact that g ∈ DT(F). On the other hand, there is
also an “indirect” representation: since Algorithm 1 could learn the prefix gp using F̃old, gp can be
represented as a sequence of prefixes from F̃old. Since each element in F̃old are parts of older targets
from DT(F), we can represent this sequence of prefixes in terms of parts of true metafeatures (that
are not necessarily prefix/suffix parts).

Now, let the root variable of f be if . There must be a unique element in the sequence of
prefixes that contains if . We let f ′ be the metafeature in F that contributes to the last bit of this
unique element in the above-described indirect representation. Before we proceed to describe this
more formally, we note that this is all possible only because if indeed belongs to fp. If it did not, it
means fp is an empty string, which we have dealt with in Case 1.
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We now state our choice of f ′ more formally. Since we were able to learn gp using F̃old we can
write gp = (Pref?(f̃l1),Pref?(f̃l2), . . .) for f̃l1 , f̃l2 , . . . ∈ F̃old where we use the notation Pref?(f̃)
to denote a particular prefix of f̃ . Let Pref?(f̃lr) be the unique element in the above sequence that
contains if (we use the index r to denote that it contains the root). Like we stated before, since f̃lr
is also the suffix of some old target in DT(F), f̃lr must be made up of parts of true metafeatures
F . The same holds for Pref?(f̃lr) too. We will focus on the true metafeature that makes up the last
bit of Pref?(f̃lr). That is, let f ′ ∈ F be the metafeature that occurs in an older target, such that a
non-empty suffix of Pref?(f̃lr) comes from f ′ i.e., there exists suffix Suff?(Pref?(f̃lr)) such that
Suff?(Pref?(f̃lr))⊆dl f ′. Here, again Suff?(f̃) is used to denote a particular suffix of f̃ . Thus each
failure event in this case can be characterized by a particular f and f ′.

Note that Suff?(Pref?(f̃lr)) need not necessarily be a suffix of f ′ because f̃lr may have stopped
matching with g somewhere in the middle of f ′. It need not necessarily be a prefix of f ′ either
because f̃lr is only a suffix of some target in DT(F) and this suffix may have begun somewhere in
the middle of f ′ in that target.

To show that there are at most two failure events for a given f and f ′, we will consider two sub-
cases depending on whether if /∈dl Suff?(Pref?(f̃lr)). That is, when we use a part of f ′ to learn gp,
we see whether we learn if or not. These two cases are illustrated in Figure 4 and Figure 5. For both
these scenarios, we first analyze the structure behind the failure i.e., the locations of the different
variables and how the different metafeatures align with each other. Based on this, we show that for
each type, there can be at most one failure.

Case 2a: if /∈dl Suff?(Pref?(f̃lr)). Let us call this an (f, f ′)(1)-type failure event. We first look
at how the different elements are positioned when such a failure occurs, by aligning the elements in
a way that the variables match. First, recall that by the definition of Pref?(f̃lr), if ∈dl Pref?(f̃lr).
Thus, if ∈dl f̃lr . Furthermore, by definition of f ′, and because f̃lr is the suffix of an older tar-
get from DT(F), either a suffix or the whole of f ′ must occur in f̃lr . We claim that 1) it is the
latter, i.e., f ′⊆dl f̃lr and furthermore, 2) the root of f ′ is located below if in f̃lr (as illustrated
in Figure 4). If only a suffix of f ′ occurred in f̃lr , it means that f̃lr begins with that particular
suffix and therefore by definition of Suff?(Pref?(f̃lr)) being the last bit of Pref?(f̃lr) that comes
from f ′, Pref?(f̃lr) = Suff?(Pref?(f̃lr)). Then, since if ∈dl Pref?(f̃lr), if ∈dl Suff?(Pref?(f̃lr))
which is a contradiction. Now, if indeed f ′⊆dl f̃lr but the root of f ′ was not located below if
in f̃lr again by definition of Suff?(Pref?(f̃lr)) being the last bit of Pref?(f̃lr) that comes from f ′,
if ∈dl Suff?(Pref?(f̃lr)) which is a contradiction. Note that conclusions 1) and 2) above mean that
Suff?(Pref?(f̃lr)) is a prefix of f ′.

Given this, assume on the contrary that we do face a later target g′ with an (f, f ′)(1)-type failure
event. Then, we can define notations similar to the first failure. Let g′p be the prefix we were able to
learn correctly using F̃ . Then, g′p can be similarly expressed as a sequence of prefixes from F̃ , say
(Pref′?(f̃l′1),Pref′?(f̃l′2), . . .). By definition of this failure type, f ⊆dl g′. So consider the prefix that
contains if , call it Pref′?(f̃l′

r′
). Furthermore, Pref′?(f̃l′

r′
) has a suffix Suff′?(Pref′?(f̃l′

r′
)) that is also

a part of f ′ but is not necessarily the same as Suff′?(Pref?(f̃lr)).
We will now show that a prefix longer than g′p that includes f completely can be represented

using prefixes from F̃ which contradicts the fact that the algorithm failed somewhere in between f .
To do this, we will make use of the fact that the algorithm was able to learn until if ′ in the second
failure, beyond which it can learn the rest of the target until the end of fp like it did the previous
time, after which we can append fs from the representation. More specifically, observe that there
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fp

gp

fs

gs

g

f ′

gp

∈ F

∈ Pref(Fold)

Notations

if

f̃lr

f̃l1

f̃l2

f̃l3

if ′

Suffix of an old target

Suff?(Pref?(f̃lr))

Pref?(f̃lr)

Figure 4: (f, f ′)(1)-type failure where if /∈dl Suff?(Pref?(f̃lr)): We represent the decision list g
on the left. Each subrectangle in this corresponds to some element from F with f marked in red.
In the middle column, we represent the prefix of g, gp in terms of the elements of Pref(F̃old) each
denoted by a thick subrectangle. We can do this because we were able to learn gp from F̃ . Now each
of these thick subrectangles can in turn be represented using parts of metafeatures from F because
these are suffixes of actual targets. In particular, we choose the thick subrectangle that matched with
the root of f and show the complete metafeature from F̃old on the right. In this metafeature, the
thin rectangles correspond to its representation in F . Observe that we have marked f ′ in blue, and
a part of it is what makes the last bit in the rectangle marked as Pref?(flr) in gp. Also if is marked
in magenta below which if ′ is marked in green.
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is exactly one position at which if ′ in f ′ can match with f and hence the failure will look similar
to Figure 4 again; f ′ will be contained in f̃l′

r′
and if will be located above if ′ . Now, since we also

know that f ′⊆dl f̃l′
r′

, we can extend/shorten the prefix Pref′?(f̃l′
r′

) that is used to match with g′p
to another prefix Pref′′?(f̃l′

r′
) that has the same suffix as before, Suff?(Pref?(f̃lr)). On doing this,

the rest of fp in g′p can be represented using the same prefixes from F̃ used to represent that part
in gp. Furthermore, we can append fs to this sequence because fs is a prefix of gs that was added
to the representation. Thus, we take the sequence (Pref′?(f̃l′1),Pref′?(f̃l′2), . . .) 1) we retain the first
r′ − 1 elements, 2) modify the r′th element so that its suffix matches with Suff?(Pref?(f̃lr)), 3)
append the rth, r + 1th, . . . elements from the representation for gp, 4) and finally append fs. This
represents a larger prefix of g that includes f completely, using only prefixes from F̃ . Namely, this
is (Pref′?(f̃l′1),Pref′?(f̃l′2), . . .Pref′′?(f̃l′

r′
),Pref?(f̃lr+1),Pref?(f̃lr+2), . . . , fs). This contradicts the

fact we failed to learn f completely in g′.
Case 2b: if ∈dl Suff?(Pref?(f̃lr)). Let us call this an (f, f ′)(2)-type failure event. We now

make a similar argument. The only difference is that now Suff?(Pref?(f̃lr)) is not necessarily a
prefix of f ′ and therefore, if ′ is not necessarily present in Suff?(Pref?(f̃lr)) (see Figure 5. However
it is guaranteed that a suffix of f ′ containing if is present in f̃lr . Now let Suff??(Pref?(flr)) be an
alternative shorter suffix of Pref?(flr) that begins only at if .

Now, consider a new target with a similar failure with a similar Suff′??(Pref′?(fl′
r′

)) that begins
with if . We will again show how we can use the updated representation to represent a larger prefix
of g′ , specifically a prefix that extends until the end of f in g′. In particular, we make use of the fact
that the algorithm was able to learn at least before if in this target, beyond which we can learn fp the
way we did in the previous target, and then append fs from the representation. More specifically, we
first extend/shorten the prefix Pref′?(fl′

r′
) that is used to match with g′p to another prefix Pref′′?(fl′

r′
)

that it has the suffix Suff??(Pref?(flr)) (which is only possible because if ∈dl Pref′′?(fl′
r′

)). On

doing this, we can represent the rest of f using F̃ like in the previous case.
Thus, we take the sequence (Pref′?(f̃l′1),Pref′?(f̃l′2), . . .) 1) we retain the first r′ −

1 elements, 2) modify the r′th element, 3) append the rth, r + 1th, . . . elements
from the representation for gp, 4) and finally append fs. This represents a larger pre-
fix of g that includes f completely, using only prefixes from F̃ . Namely, this is
(Pref′?(f̃l′1),Pref′?(f̃l′2), . . .Pref′′?(f̃l′

r′
),Pref?(f̃lr+1),Pref?(f̃lr+2), . . . , fs). This contradicts the

fact that we failed to learn f completely in g′.

Appendix D. Monomials

In this section, we elaborate on our results for lifelong learning of monomials and polynomials. In
Appendix D.1, we present a simple algorithm for learning monomials exactly from scratch under
some assumptions. Then in Appendix D.2, we present proofs from Section 4. Finally, in Ap-
pendix D.3 we provide a detail discussion of sparse polynomials.

Recall that for any input x = (x1, x2, . . . xN ) ∈ RN , we denote the output of a d-degree target
monomial g = (g1, g2, . . . , gN ) by the function Pg(x) = xg11 x

g2
2 . . . xgNN where gi ∈ N ∪ {0} and

the degree
∑

i gi ≤ d. We denote the unknown metafeature set F = {f1, f2, . . .} also as a matrix
where column i is fi. Therefore, saying that g can be expressed using F is equivalent to saying g
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Notations

f̃lr

Suff??(Pref?(f̃lr))

Pref?(f̃lr)

Figure 5: (f, f ′)(2)-type failure where if ∈dl Suff?(Pref?(f̃lr))

lies in the column space of F denoted by C(F). Then for any k−rank (k ≤ K), N × k matrix F̃
and for any g ∈ C(F̃), we define wF̃ (g) ∈ Rk to denote the unique vector of column weights such
that F̃wF̃ (g) = g.

D.1. Learning Monomials from scratch

Recall that for each monomial target, we assumed thatD(j) is a product distribution i.e., the features
are independent. We now state some specific assumptions about D(j). In particular, we assume that
the variance of each variable xi is not too small. The rationale is that if the variance was very small
(in the extreme case, imagine xi being a constant), the factor xgii would essentially be a constant
factor in the monomial target. While it may be possible to design a more careful learning algorithm
that can extract these nearly constant factors, that is beyond the scope of our discussion.

Secondly, we assume that the probability density function is finite at every point i.e., the prob-
ability distribution is not too concentrated at any point. We will use this assumption to apply
Lemma 20 when we draw a single sample to verify whether the monomial we have learned matches
the true monomial.

Finally, we assume that the support of xi is [1, 2]. While the upper bound of 2 is to simplify
our discussion, the lower bound is to avoid dealing with values of xi that are close to zero. This
is essential because as we will see later, we will deal with logarithmic values of xi in the learning
process. We now state our assumptions formally.

Assumption 1 Each D(j) is a product distribution. Let D(j) = µ
(j)
1 × · · · × µ

(j)
N . We assume that

for all features i:

• Minimum variance V ar
µ
(j)
i

(log xi) ≥ c.

• Bounded probability density ∀xi ∈ R, µ(j)i (xi) ∈ R.
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• Bounded support The support of µ(j)i is [1, 2].

We now present our simple poly-time technique for learning monomials from scratch with poly-
nomially many samples. Recall that the output of the monomial g on an input x is denoted by Pg(x).
Let us denote the logarithm of this output log |Pg| by Qg. Observe that learning g is equivalent to
learning the coefficients of the ‘linear’ function Qg. To see how this can be done, we will define a
notion of correlation/inner product of two functions h(x) and h′(x):

〈h(x), h′(x)〉 , E[h(x)h′(x)].

Then, we claim that gi can be expressed as the following inner product.

Lemma 14
〈Qg(x), log(xi)− E[log(xi)]〉

E[log2 xi]− E2[log xi]
= gi

Proof Since xi is picked independent of the other variables, so is the random variable (log xi −
E[log(xi)]). Thus, when j 6= i

E[log xj(log xi − E[log(xi)])] = E[log xj ]× E[log xi − E[log(xi)]] = 0

However,
E[log xi(log xi − E[log(xi)])] = E[log2 xi]− E2[log xi]

Then, the claim follows from our definition of Qg.

Observe that using the above fact, we can calculate gi for each i ∈ [N ] exactly if we were
provided the exact values of each correlation term in the equality. However, the best we can hope
for is to approximate these terms using sufficiently many samples. Fortunately, we can actually
approximate each of these correlation terms to a small constant error such that these errors together
imply a constant error smaller than 1/2 in estimating gi. Then we can round off our estimate to the
closest natural number to find the exact value of gi. We now summarize our simple algorithm for
learning a monomial from scratch, and then prove our polynomial sample complexity bound.

Algorithm 8 Learning a monomial from scratch

1: Input: Distribution D over RN
2: Draw S samples (x, Pg(x)) from D and query all the features on all samples.
3: for i = 1, 2, . . . N do
4: Estimate E[log2 xi], E[log2 xi]− E2[log xi], and 〈Qg(x), log(xi)− E[log(xi)]〉 empirically.

5: Round off
〈Qg(x), log(xi)− E[log(xi)]〉

E[log2 xi]− E2[log xi]

to estimate gi.
6: Return g̃

Clearly the above algorithm has polynomial running time and sample complexity as long as S
is polynomial. The crucial guarantee we need now is that polynomially many samples are sufficient
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to estimate each gi exactly, which we show in Theorem 17. We first begin by bounding the error
in estimating the numerator 〈Qg(x), log(xi)− E[log(xi)]〉 in Lemma 15. Then, in Lemma 16 we
show how this error and the error in the denominator terms, add up to result in an error of at most
1/2 in estimating gi. Using these, we prove in Theorem 17 that the algorithm estimates each power
exactly. In the following notation we will use Ẽ to denote the empirical estimate of an expected
value.

Lemma 15 Using a sample set S of size O
(
d
ε23

log 1
δ′

)
, for a given i ∈ [N ], if |Ẽ[log xi] −

E[log xi]| ≤ ε1, then we can guarantee that

Pr

[∣∣∣∣∣ 1

|S|
∑
x∈S

Qg(x)(log(xi)− Ẽ[log(xi)])− 〈Qg(x), log(xi)− E[log(xi)]〉

∣∣∣∣∣ ≤ dε1 + ε3

]
= O

(
δ′
)

.

Proof Consider the random variable Qg(x) · (log(xi) − Ẽ[log(xi)]). It is easy to show that
Qg(x) log(xi) ∈ [0, d] with the extreme values attained at x = (2, 2, . . .) and x = (1, 1, . . .).
Then, Qg(x)E[log(xi)] ∈ [0, d]. Thus, the random variable Qg(x) · (log(xi)− Ẽ[log(xi)]) lies in a
range of size 2d. Then, by Chernoff bounds, we can show that

Pr

[∣∣∣∣∣ 1

|S|
∑
x∈S

Qg(x)(log(xi)− Ẽ[log(xi)])− 〈Qg(x), log(xi)− Ẽ[log(xi)]〉

∣∣∣∣∣ ≤ ε3
]

= O
(
δ′
)

from which the above claim follows because the absolute difference be-
tween 〈Qg(x), log(xi) − E[log(xi)] and 〈Qg(x), log(xi) − Ẽ[log(xi)] is at most∣∣∣maxxQg(x) · (E[log(xi)])− Ẽ[log(xi)]))

∣∣∣ ≤ dε1 (because the first term is at most d and
the next is at most ε1).

Lemma 16 Using a sample set S of size O

(
d(

min( c
2

d
, c
d
,1)

)2 log 1
δ′

)
with a high probability of

1− δ′ for a given i ∈ [N ] we can learn g̃i such that |g̃i − gi| ≤ 1
2 .

Proof Let ε1 and ε3 be as defined in Lemma 15. Additionally let |Ẽ[log2 xi]−E[log2 xi]| ≤ ε2. From
the previous results and from Chernoff bounds, we have that ε1, ε2, ε3 are all O

(
min( c

2

d ,
c
d , 1)

)
given the size of S. We now have a fractional expression on the right hand side of the equation
in Lemma 14 for which we can derive the error in estimating the numerator and the denominator
individually. We need to show that the overall error in estimating the fraction is 1/2 i.e.,O(1). Now,
the error in estimating some fraction G

H using G̃
H̃

given that |G − G̃| ≤ εG and |H − H̃| ≤ εH can
be upper bounded by: ∣∣∣ G±εGH±εH −

G
H

∣∣∣ =
∣∣∣ εGH ± GεH

(H−εH)H

∣∣∣
≤ εG

minH + (maxG+εG)εH
(minH−εH)minH

In our case, we haveH = E[log2 xi]−E2[log xi] andG = 〈Qg(x), log(xi)−E[log(xi)]〉, minH =
c and maxG = d. Also, εG = ε1d+ ε3 and εH ≤ ε2 + 2ε1 + ε21. The latter inequality follows from
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the fact that the error in estimating E[log2 xi] is ε2 and the error in estimating E2[log xi] is at most
(E[log xi] + ε1)

2 − E2[log xi] ≤ ε1(2E[log xi] + ε1) ≤ ε1(2 + ε1). By a simple calculation, it can
be verified that this results in a total error of O (1) in estimating gi.

Theorem 17 Algorithm 8 exactly learns a target g from scratch with high probability 1 − O
(
δ
K

)
with S = O

(
d(

min( c
2

d
, c
d
,1)

)2 log Nm
δ

)
samples.

Proof From Lemma 16 we have that each gi is accurately estimated with probability at least 1 −
O
(

δ
Nm

)
. By a union bound, g is accurately estimated with probability at least 1−O

(
δ
m

)
.

D.2. Proofs from Section 4

We first present our straightforward approach for lifelong learning which merely keeps a record of
features that have been seen in earlier targets.

Theorem 18 (Naive lifelong learning of monomials) In the model of Problem Setup 2, there ex-
ists a naive algorithm for lifelong learning of monomials that evaluates O (S(KN +mKd)) fea-
tures overall.

Proof Sketch (Theorem 18) We use IMPROVEREP Algorithm 9 that essentially stores the list of
targets that have been learned from scratch as the columns of the matrix F̃ . Now, consider the set of
features that have been “seen” so far i.e., these correspond to rows in F̃ that have at least one non-
zero entry. Then, for a new target g, we define a USEREP algorithm that determines the powers
of only these features. This can be done by evaluating only those features on the data set using the
technique in Algorithm 8. The unseen features are assumed to have zero power.

Now, consider a new target g that is “linearly dependent” on the targets that have been learned
so far i.e., g ∈ C(F̃). In this case, the unseen features should have a zero exponent in g as it is zero
in all earlier targets. Thus, our USEREP technique would not fail on such targets. Now, if g was
linearly independent, it is possible that an unseen feature has a non-zero exponent in g. To verify
whether this is the case, we can draw a single sample and check whether our prediction matches the
true output. If this fails, we learn the target correctly from scratch and add it to F̃ .

Thus, since we add only linearly independent targets to F̃ , in a manner similar to the proof of
Theorem 5, we can show that USEREP will not fail more than K times. Our result follows from
here because each of the targets that we learn from scratch have at most d non-zero exponents.
Then, in total we only have at most Kd “seen” features i.e., features with non-zero powers that we
always examine.

We now prove our main result for monomials, Theorem 5 where we presented a lifelong learn-
ing protocol that makes O (S(KN +mK) +md) feature evaluations overall. We first prove guar-
antees about USEREP Algorithm 10 below in Lemma 19. Note that this is similar in spirit to
Theorem 3 for decision trees. The reader can recall the proof sketch of Theorem 5 for an informal
description of USEREP Algorithm 10.
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Lemma 19 Let F̃ be an N × k matrix. Then, with high probability 1 − O
(
δ
m

)
, a) if g ∈ C(F̃),

then Algorithm 10 correctly learns and outputs g̃ = g b) if Algorithm 10 does output some g̃, then
g̃ = g, c) Algorithm 10 examines only at most k features per sample point and at most d features
on a single sample.

Proof a. Given that F̃ is of rank k, then if g ∈ C(F̃), there exists a unique solution for wF̃ (g)

in F̃wF̃ (g) = g. Note that this is a system of N linear equations in k. Therefore, if the Algo-
rithm picked any set of k linearly independent rows I = {i1, i2, . . . ik} from F̃ , there must exist
a unique solution to F̃ [I]wF̃ [I](g[I]) = g[I] where the solution is wF̃ [I](g[I]) = wF̃ (g). Thus,
solving this system will give us the value of wF̃ (g) from which we can compute g correctly using
F̃wF̃ (g) = g. This however requires that we determine the values of gi1 , gi2 , . . . , gik from scratch,
which we can do accurately with high probability of 1−O

(
δ
m

)
from Lemma 16 using polynomially

many samples.
b. To prove our second claim, observe that the only event in which the learner may potentially

have an incorrect output is when g /∈ C(F̃) but we still do learn a wF̃ [I] because it so happens that

g[I] ∈ C(F̃ [I]). However, g̃ = F̃wF̃ [I](g[I]) 6= g. If g̃ has a degree greater than d, the algorithm
halts with failure. Otherwise, we can show using Lemma 20 that by drawing a single sample and
checking whether Pg̃(x) = Pg(x) we can conclude whether g = g̃.

c. This follows directly from the design of the algorithm: we examine only K features on all
samples, and then on a single new sample we examine features relevant to g̃ provided g̃ has degree
at most d.

Recall that for monomials we stated that using USEREP Algorithm 10 and IMPROVEREP

Algorithm 9 we learn at mostK targets from scratch. On each of the remaining targets, we examine
only K features per example, and d features on exactly one sample.

Theorem 5 The (USEREP Algorithm 10, IMPROVEREP Algorithm 9)-protocol for monomials
makes O (S(KN +mK) +md) feature evaluations overall and runs in time poly(m,N,K, S, d).

Proof Applying Lemma 19 over at mostm problems, we have that with probability 1−O (δ), every
target added to F̃ increases the rank of F̃ by one as it does not lie in the column space of the rest.
Assume we fail to learn from our representation on more than K targets. This means that there will
be at least K + 1 targets (that is the columns of F̃) that are linearly independent. However, since
all targets belong to C(F), there cannot be more than K targets that are linearly independent. Thus,
we achieve a contradiction. Now, since we learn only at most K targets from scratch, applying
Theorem 17 over these we get that we learn them correctly with probability 1− O (δ). Also, since
F̃ has at mostK columns, from Lemma 19 we have that each time we learn using the representation,
we examineK features per example. Besides, we examine d features that are relevant to g in Step 8.

We note that it is easy to refine our application of union bounds to use slightly fewer samples
than in the bound of Theorem 17. In particular, it is possible bring the logNm factor down to
logNK while learning from scratch, and to logKm on all other targets.
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Algorithm 9 IMPROVEREP - Monomials

1: Input: Old representation F̃old and g learned from scratch
2: Return F̃ = [F̃old,g]

Algorithm 10 USEREP - Learning a Monomial from Metafeatures

1: Input: Metafeatures F̃ = [f̃1, . . . , f̃k] (k ≤ K), sample set S of size S.
2: Halt with failure if F̃ is empty.
3: Let I be the indices of those rows in F̃ that are linearly independent and let F̃ [I] be the corre-

sponding k × k sub-matrix of F̃ .
4: Examine features I on all samples and use Lemma 16 to learn and round off estimates g̃i for

each i ∈ I.
5: Solve for wF̃ [I](g[I]) in F̃ [I]wF̃ [I](g[I]) = g[I]. If no solution exists, halt with failure.

6: Estimate g̃← F̃wF̃ [I](g[I]).
7: Halt with failure if the degree of g̃ is greater than d.
8: Draw a single sample (x, Pg(x)), examine the features relevant to g̃. If Pg(x) 6= Pg̃(x), halt

with failure.
9: Return g̃.

D.2.1. MONOMIAL IDENTITY TESTING

Lemma 20 If for every feature i, the marginal probability density function at xi is finite for all
values of xi then we have that for any g′ 6= g, Pr[Pg′(x) 6= Pg(x)] = 1.

Proof We will prove by induction on N ′ ≤ N and d′ ≤ d that for any polynomial P ′ of degree d′

over N ′ variables Pr[P ′(x) = 0] = 0. Then, we only need to plug in P ′ = Pg − Pg′ to complete
the proof.

For the base case assume the polynomial is only over one variable and any degree i.e., N ′ = 1
and any d′ ≤ d. Then the event [P ′(x) = 0] corresponds to picking one of at most d′ zeroes of
P ′ from R (since N ′ = 1), which amounts to a probability of 0 according to the assumption on the
probability density function.

Now assume for all N ′ < N and d′ ≤ d, our induction hypothesis is true. The polynomial
P ′ can be expressed as a summation of terms in x1:

∑k
i=0 P

′′
i (x2, . . . xn)xi1 where k is the highest

degree of x1 and P ′′i is the coefficient of xi1. Then, for a fixed value of x2, . . . xN , P ′ reduces to a
polynomial of degree k ≤ d over one variable. Then, our induction assumption implies that condi-
tioned on some arbitrary values of x2, . . . , xN , the polynomial in x1 attains zero with probability 0
i.e., Pr[P ′(x) = 0 |x2, . . . xN ] = 0. Then it follows that Pr[P ′(x) = 0] = 0.

D.3. Polynomials

In this section we present a more elaborate discussion of our results for lifelong learning of poly-
nomials. We first set up our notations. For any input x ∈ RN , we denote the output of a
t-sparse d-degree target polynomial G = {(g1, ag1), (g2, ag2), . . .} (|G| ≤ t) by the function
PG(x) =

∑
(g,ag)∈G agPg(x) where for each (g, ag) ∈ G, g is a monomial of degree d and
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co-efficient ag ∈ R. Our belief is that there exists a set of monomial metafeatures F , and each
polynomial can be represented as a sum of monomials, each of which can be represented using F
as described in Section 4. More formally, a polynomial G can be represented using F if for each
(g, ag) ∈ G, g ∈ C(F). More compactly, G(j) ⊂ C(F)×R. Then, our problem setup is as follows.

Problem Setup 3 (Lifelong polynomial learning) The m d-degree t-sparse targets G(j) and data
S(j) (each of at most S examples) satisfy the following conditions:

1. There exists an unknown N ×K matrix F (K � N ) such that each G(j) ∈ C(F)× R.
2. The samples in S(j) are drawn i.i.d from a known product distribution D(j) 5.

We will now describe the method for learning polynomials from scratch, after which we describe
our baseline lifelong learning result in Theorem 21 and the proof for our main result.

We adopt a modification of the approach in Andoni et al. (2014) to learn polynomials from
scratch. The basic idea is to use correlations between the target and some cleverly chosen functions
to detect the presence of different monomials in G. For the sake of convenience, assume there
exist correlation oracles that when provided as input some function P ′, return the exact value of
the correlations 〈P ′(x), PG(x)〉, 〈P ′(x), P 2

G(x)〉 etc., In practice these oracles can be replaced by
approximate estimates based on the sample S. We will limit our analysis to the exact scenario noting
that it can be extended to the sample-based approach in a manner similar to Andoni et al. (2014).
Our guarantees will then hold good with high probability, given sufficiently many samples.

To simplify the discussion we will assume like in Andoni et al. (2014) that the distribution over
each variable is identical i.e.,D = µN . Then, as a first step, givenD, the learner creates an inventory
of polynomials in each variable xi such that these polynomials represent an “orthornormal bases”
with respect to D. More formally, the inventory will consist of polynomials Hd′(xi) of degree d′

(identical for each i ∈ [N ]) for each 0 ≤ d′ ≤ d, such that E[Hd′(xi)Hd′′(xi)] is zero when d′ 6= d′′

and is one when d′ = d′′.
Equipped with this inventory, we then set out to perform t iterations extracting one monomial

from G at a time. Assume that from the iterations performed so far, we have extracted a set of
monomials and their coefficients G̃ ⊆ G. Now, for the next iteration, we first find the largest power
of x1 that is present in G − G̃ by testing whether 〈H2d′(x1), (PG − PG̃)2〉 > 0 for d′ = d, d− 1, . . .

to detect the presence of xd1, xd−11 , . . . in that order, respectively. We stop when the test is positive
for some xd11 . The curious reader can refer Andoni et al. (2014) to understand why this particular
test works, but all we need to know for our discussion is that if these tests are done in this particular
order, we are guaranteed to find the highest power of xd11 in G − G̃. Then, we find the largest power
of x2 that “co-occurs” with xd11 in some monomial, by testing whether 〈H2d1(x1)H2d′(x2), (PG −
PG̃)2〉 > 0 for d′ = d, d − 1, . . . to detect the presence of xd11 x

d
2, x

d1
1 x

d−1
2 , . . . and so on in that

particular order. In this manner, the algorithm builds a monomial over N sub-iterations which turns
out to be the lexicographically largest g present in G − G̃. Now, to compute the co-efficient ag
we find 〈

∏N
i=1(bgiHgi(xi)), PG〉 where bgi is the co-efficient of xgii in Hgi(xi). The algorithm then

adds (ag,g) to G̃ before proceeding to the next of t iterations.
The above summary differs from that original algorithm presented in Andoni et al. (2014) in

the precise quantity that it extracts in each iteration. Andoni et al. (2014) consider a representation
of the polynomial in the orthornormal bases such that it is a weighted sum of terms of the form
Hd1(x1)Hd2(x2) . . . HdN (xN ), and in each iteration they extract one such term. We however use

5. This is the model considered in Andoni et al. (2014). An upper bound on S can be found in Andoni et al. (2014).
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the representation in the orthonormal bases only to detect the lexicographically largest monomial
and its corresponding co-efficient and then remove the monomial itself.

We now describe our straightforward lifelong learning approach for polynomials which remem-
bers only the features that have been seen so far.

Theorem 21 (Naive lifelong learning of polynomials) In the model of Problem Setup 3, there ex-
ists a naive algorithm for lifelong learning of t-sparse polynomials that makesO (S(KN +mKd))
feature evaluations in total.

Proof Sketch This approach is very similar to the naive approach for lifelong learning of mono-
mials. IMPROVEREP Algorithm 11 maintains a list of linearly independent monomial targets that
have been seen in the polynomials learned from scratch so far. Now, for a new target G, we will
perform the “lexicographic search” method from Andoni et al. (2014) over only the features that
have been seen i.e., during the search we skip features that correspond to an all zero row in F̃ . Es-
sentially, we assume that the unseen features do not occur in the target polynomial. We again check
whether the polynomial computed this way is correct by verifying it on a single sample.

Using this approach we are guaranteed that if G ⊂ C(F̃) × R, USEREP does not fail because
such a target will not contain unseen features in any of its monomials. Then, we can use an
argument similar to Theorem 18 and show by contradiction that USEREP can fail at most K times,
and hence evaluate only Kd features per example.

We now prove our main result, Theorem 6. Recall using IMPROVEREP Algorithm 11 and
USEREP Algorithm 12, we claimed we learn at most K polynomials from scratch, and on the rest
we examine at most O (K + td) features per example. We first prove guarantees about USEREP

Algorithm 12.
Recall that our representation consists of linearly independent monomials from previously seen

polynomials. Then our main idea was to run the lexicographic search restricted to K features that
are chosen based on K linearly independent rows in the learned representation. More specifically,
if I is the set of chosen features, in each iteration we find the lexicographically largest powers
restricted to I, say g[I]. Then, we use our technique for monomials, to estimate the remaining
powers in the monomial g that contains g[I]. Then, as before, we extract g from the polynomial
and proceed to the next iteration. After t iterations, our estimate of the polynomial is complete,
so we draw a single example to verify it. If our verification fails, we learn the polynomial from
scratch and update the representation with more linearly independent monomials from the learned
polynomial.

Lemma 22 Let F̃ be an N × k matrix. Then, with high probability a) if G(j) ∈ C(F̃), then
Algorithm 12 correctly learns and outputs G̃(j) = G(j) b) if Algorithm 12 does output some G̃(j),
then G̃(j) = G(j). Also, Algorithm 12 examines only at most k + td features per sample point.

Proof a. Assume G(j) ∈ C(F̃). The fact that in each iteration, we find the lexicographically largest
value for the features I follows directly from the discussion in Andoni et al. (2014). However,
we do have to prove that there is a unique g in G such that g[I] corresponds to the above value.
This follows from the proof of Lemma 19 where we showed that for I corresponding to linearly
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independent rows, wF̃ [I](g[I]) = wF̃ (g) and hence given wF̃ [I](g[I]) there is a unique g ∈ C(F)

defined by g = F̃wF̃ [I](g[I]).
Now, we need to prove that we find a co-efficient ag̃ for the to-be-extracted monomial, that satis-

fies ag̃ = ag. We first note that 〈
∏N
i=1Hgi(xi), (PG−PG̃)〉 returns the co-efficient of

∏N
i=1Hgi(xi)

in (PG − PG̃), say a′g, in the basis representation of the polynomial. Next, we claim that the co-
efficient a′g in the bases representation is contributed to purely by the co-efficient ag in the monomial
representation. If there was any other monomial that contributed to a′g, then it had to have a lexi-
cographically larger value than g with respect to I or equal to g with respect to I. However, this
contradicts the fact that g was chosen to be the unique lexicographically largest value with respect
to I. Thus, we only need to account for the contribution of the co-efficient of

∏N
i=1Hgi(xi) with

an extra factor of bgi which corresponds to the co-efficient of xgii within Hgi(xi).
b. This follows from the proof of Lemma 19 and Lemma 20 applied to polynomials.
c. First of all, we examine k features when we query I on all samples. Now, note that when we

execute the algorithm using samples for the correlation oracles, we will have to compute PG̃(x) on
each sample x. This however will only require evaluation of features relevant to G̃. Since G consists
of at most t monomials each of degree at most d, this can be only as large as td.

Now, we prove Theorem 6 in which we stated that the (USEREP Algorithm 12, IMPROVEREP

Algorithm 11)-protocol for polynomials makes O (S(KN +m(K + dt))) feature evaluations
overall.
Proof (for Theorem 6) From Lemma 22, we have that we increase the rank of F̃ by at least one
every time we fail to learn using F̃ on some target. If USEREP has failed on more than K targets
it means that there are at least K + 1 monomials from C(F) that were added as columns to F̃ and
are linearly independent. However, since C(F) is a K-dimensional subspace in RN , this results in
a contradiction, thus proving that at most K failures of USEREP can occur. The result then follows
from Lemma 22 and the fact that |F̃ | contains only at most K targets.

We note that when we replace the oracles by estimation using random samples, we should be
careful about approximation errors that may affect the lifelong learning protocol. For example, if
we were to infer that a monomial term exists in G, when in reality it does not, we may incorrectly
add it to our representation F̃ when it should not be. However, if the co-efficients of each term in
the polynomial were not too small, we can overcome this problem by learning the co-efficient of
the monomial, and checking whether it is above a small threshold, before deducing that it indeed is
a term in the polynomial.

Algorithm 11 IMPROVEREP - Polynomials

1: Input: Representation F̃old and a target G learned from scratch.
2: F̃ ← F̃old
3: for g ∈ G do
4: If g /∈ C(F̃), add g as a column to F̃ .
5: Return F̃
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Algorithm 12 USEREP - Learning Polynomial from Metafeatures

1: Input: Metafeatures F̃ = [f̃1, . . . , f̃k] (k ≤ K), distribution D
2: Halt with failure if F̃ is empty.
3: Let I be the indices of those rows in F̃ that are linearly independent and let F̃ [I] be the corre-

sponding k × k sub-matrix of F̃ .
4: Query for only the features I on all samples.
5: Initialize G̃ to be empty.
6: for t iterations do
7: Let g be the lexicographically largest monomial in G − G̃ with respect to I. Find g[I] using

the lexicographic search technique from Andoni et al. (2014) using the correlation oracle (in
practice, estimate this using the S).

8: Solve for wF̃ [I](g[I]) in F̃ [I]wF̃ [I](g[I]) = g[I]. If no solution exists, halt with failure.

9: Estimate g̃← F̃wF̃ [I](g[I]).
10: Halt with failure if the degree of g̃ is greater than d.
11: ag̃ ← 〈

∏N
i=1(bgiHgi(xi)), (PG − PG̃)〉

12: G̃ ← G̃ ∪ {g̃}
13: Draw a single sample (x, PG(x)) from D, query the td features that are relevant to G̃. If

PG(x) 6= PG̃(x), halt with failure.
14: Return G̃.

Appendix E. The agnostic case

Let us recall the scenario in the agnostic case:

Problem Setup 4 In the agnostic model, the learner is faced with a series of m + r targets such
that:

1. m (good) targets are guaranteed to be related to each other through a set of at most K
metafeatures, while the remaining r (bad) targets can be adversarially chosen and placed.

2. the learner has to reduce the feature evaluations done on the samples for the m related tar-
gets.

Recall that we presented two simple techniques to address this. For the sake of simplicity, we
consider decision trees of constant depth.

r-expansion technique Since m targets belong to DT(F), observe there exists a representation of
at most O (K + r) metafeatures that is sufficient to describe all the m+ r targets: a representation
that is the union of F̃ and the r bad targets as they are. Thus, we allow the lifelong learner to update
F̃ whenever its USEREP fails. Essentially, we allow F̃ to expand to O (K + r) metafeatures;
USEREP will fail on at most K good targets (and possibly on all the r bad targets which we do not
care about) and learn the rest successfully evaluating O (K + r) features per example.

r-restart technique Alternatively, we enforce |F̃ | ≤ K as before but USEREP fails on a K + 1th

target, we learn that target from scratch after which we simply erase F̃ and effectively restart our
lifelong learning from the next task. Every time USEREP fails on a K + 1th target after the most
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recent restart, we restart similarly.

Below we prove Theorem 7 which formally describes how well the above techniques work and
in what ranges of r.

Theorem 7 In the agnostic model where we face m + r decision tree targets such that m trees
belong to DT(F), the number of feature evaluations on the training data for the m trees:

• the r-expansion technique is O (S(KN +m(K + r))).
• the r-restart technique is O (S(rKN +mK)).
• a combination of c-expansion and r/c-restart isO(S(

√
rKNm+Km)), for c =

√
rKN/m

provided r = Ω (max (m/n,KN/m,K)).

Proof (for Theorem 7) In r-expansion, we allow F̃ to have as many as O (K + r) metafeatures.
Now, every bad target may result in adding O (1) metafeatures to F̃ while the m bad targets will
result in addingO (K) metafeatures to F̃ . Thus, we will be able to learn all butm good targets using
F̃ by examining only O (K + r) features per example i.e., O (S(rKN +mK)) features overall.

In r-restart, every time USEREP fails on a K+ 1th target, we learn that target from scratch and
then erase F̃ effectively restarting our lifelong learning. Now, at least one of theK+1 trees learned
from scratch must be a bad target. This is because if none of the K trees that were used to update
F̃ were bad, F̃ would have been rich enough to represent all the good targets. This means that
the K + 1th target has to be a bad target. Thus, every restart corresponds to a failure of USEREP

on at least one bad target and at most K good targets. Then, we will face at most r such restarts,
learning at most rK targets from scratch during the process and the rest from only O (K) features
per example i.e., O (S(KN +m(K + r))) features overall.

Now when r = O
(
max

(
KN
m ,K

))
observe that r-expansion makes only O (S(KN +mK))

feature evaluations. Similarly, when r = O
(
m
N

)
, r-restart makes O (S(KN +mK)) feature eval-

uations. This is as good as our performance when r = 0.
To deal with r = Ω

(
max

(
m
N ,

KN
m ,K

))
, we can combine the above techniques, in particular,

we combine r
c -restart with c-expansion. That is, between every restart we allow F̃ to accommodate

O (K + c) metafeatures and when USEREP fails on the K + c + 1th target we restart the repre-
sentation. Recall that each bad target may contribute O (1) metafeatures while all the good targets
contribute to O (K) metafeatures. Thus, between every restart USEREP would have failed on at
most K good targets and at least c + 1 bad targets. Since there are only r bad targets, we then
face only O

(
r
c

)
restarts. Since we learn only O

(
r
c

)
·K targets from scratch and learn the rest by

examining only O (K + c) features per example, we evaluate O
(
S( rcKN +m(K + c)

)
) features

overall.
The value of c that optimizes the above bound is c∗ =

√
rKN
m and the minimum is

O
(
S(
√
rKNm+mK)

)
. But note that c∗ must take a meaningful value for this bound to

hold good. That is, for c-expansion to make sense, we need c∗ ≥ 1 and for r
c∗ -restart to

make sense, r
c∗ ≥ 1. That is, we need c∗ ∈ [1, r], which can be verified to hold good when

r = Ω
(
max

(
m
N ,

KN
m ,K

))
.
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Appendix F. Lower Bounds

We now present detailed proof for our lower bound results:

Theorem 8 Let rmin = max
(
m
N ,

KN
m ,K

)
, rmax = min

(
mN
K , (N−K)2m

KN

)
. In the agnostic model

of Section 5, there exists an adversary such that, on the m good trees, any lifelong learner makes:

• Ω (NK +Km) feature evaluations when 0 ≤ r ≤ rmin.
• Ω

(
max

(
r

N−K , 1
)
KN +Km

)
feature evaluations when rmin ≤ r ≤ rmax.

• Ω (mN) feature evaluations when rmax ≤ r.

Our main idea is a randomized adversary that poses decision stumps (trees with only the root
node) or degree-1 monomials to the learner. In particular, we use Lemma 23 where we show that
when the adversary picks one feature at random from a pool of N ′ features to be the decision
stump/monomial, if the learner examines only o(N ′) features, the learner will fail to identify the
correct feature for the target with probability Ω (1). Thus, for the learner to successfully complete
the task, it must examine Ω (N ′) features. Then to force a learner to examine O (KN +mK)
features, the adversary picks K distinct features at random from the pool of N features for the first
K targets. Then it assigns these K features as the metafeatures and picks the remaining targets at
random from this chosen set of K features.

Lemma 23 (Randomized adversary) For a particular task, if the adversary picks a feature from a
pool of N ′ features (N ′ ≤ N ) 6 to pose a single-feature target, if the learner examines only o(N ′)
features, the learner will fail (i.e., pick the wrong feature) with probability Ω (1).

Proof Let i∗ be the feature chosen by the adversary at random from a pool of N ′ features I∗,
and I be the set of features examined by the learner. The random choice of i∗ corresponds to
different possible outcome events. But observe that from the perspective of the learner the events
corresponding to i∗ /∈ I (the adversary picking a feature not examined by the learner) are all
indistinguishable. This crucial observation tells us that in all such events, the learner will adopt the
same strategy. Let Prl(i) denote the probability that the learner outputs feature i in this strategy.
Let Pra(i) denote the probability that the adversary chose feature i at random from its pool of N ′

features.
Then, the probability that the learner fails is at least the sum of probability of the event that the

adversary picks an i from I∗ − I and the learner does not pick i. We lower bound this probability∑
i∈I∗−I Pra(i)(1− Prl(i)) as follows:

∑
i∈I∗−I

Pra(i)︸ ︷︷ ︸
1
N′

(1− Prl(i)) =
1

N ′

∑
i∈I∗−I

(1− Prl(i)) ≥
1

N ′

(
|I∗ − I| −

∑
i∈I∗−I

Prl(i)

)

≥ 1

N ′
(
N ′ − o(N)− 1

)
= Ω (1)

The second inequality follows from the fact that
∑

i∈I∗−I Prl(i) ≤ 1 and the number of examined
features |I| = O (N ′).

6. It does not matter if the learner knows these N ′ features or not.
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Now we prove Theorem 8 in the following three lemmas one for each range of r. First in
Lemma 24 we prove a lower bound of Ω (KN +mK) that holds for any value of r. Then in
Lemma 25 we prove a lower bound for intermediate values of r and finally in Lemma 26, we prove
a lower bound for large values of r.

Lemma 24 There exists an adversary such that any lifelong learning algorithm makes
Ω (KN +mK) feature evaluations.

Proof For the firstK single-feature targets, our adversary randomly picksK distinct features which
will be the metafeatures. Each of the remaining m − K tasks are targets that correspond to one
of these K chosen features at random. Now note that for a task j where j ≤ K, the adversary
effectively picks a feature at random from a pool of N − j + 1 features (which excludes the j − 1
features already chosen). Thus, the learner has to examine Ω (N − j + 1) features in order to not
fail in this task with probability Ω (1). Thus, over the first K tasks, the learner has to examine
O
(∑K

j=1N − j + 1
)

= Ω (KN) features over all. Then, in each of the following m −K tasks,
the learner has to examine Ω (K) features per task i.e., Ω ((m−K)K) features overall, which is
Ω (mK) since m is large.

Now we prove a better bound for values of r greater than rmin = max
(
m
N ,

KN
m ,K

)
but less than

rmax = min
(
mN
K , (N−K)2m

KN

)
. Here, instead of precisely choosing m good targets and r targets,

the adversary will pose a set of targets and then choose K features to be the metafeatures. We then
show that Θ (m) of the targets are good targets and Θ (r) targets are bad targets that correspond to
the remaining N −K features.

Lemma 25 (Lower bound for intermediate values of r) When r ≤ rmax, there exists an adversary
such that any lifelong learning algorithm makes Ω

(
max

(
r

N−K , 1
)
KN +Km

)
feature evalua-

tions.

Proof When r
N−K ≤ 1, the lower bound of Ω (KN +Km) follows from Lemma 24. Hence,

consider r
N−K > 1. Let m′ = rN

(N−K) . The adversary first presents m′ single-feature targets picked
at random from the pool of all N features. Then the adversary chooses K random features to be the
metafeatures, hence marking targets corresponding to these K features as good targets, and the rest
as bad.

Now, we can show that there are in fact Θ (m) good targets and Θ (r) bad targets, thus ensuring
that this is a legal sequence of adversarial targets. Since m′ = r

N−KN ≥ N , using Chernoff
bounds, with high probability 1−O(1), we have Θ

(
m′N−KN

)
= Θ (r) bad targets and Θ

(
m′KN

)
=

Θ
(

rK
(N−K)

)
good targets. Since, r ≤ (N−K)2m

KN , this translates to Θ
(
(N−K)m

N

)
= O (m) good

targets. Thus, this is a valid sequence of targets.
Now, from Lemma 23, we get that the learner has to evaluate Ω

(
rK

(N−K) ·N
)

features overall.
In addition to this, the adversary presents a sequence of m good targets chosen at random from the
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K metafeatures. Note that this is legal because we still pose only θm good targets. This accounts
for Ω (mK) more feature evaluations.

In total, the learner examines Ω
(

rK
(N−K) ·N +mK

)
features.

We finally show that for sufficiently large r i.e., r ≥ rmax and r ≥ rmin, the learner has to
evaluate Ω (mN) features.

Theorem 26 (For large r) Given r ≥ rmax and r ≥ rmin, there exists an adversary such that any
lifelong learning algorithm makes Ω (mN) feature evaluations.

Proof The range of values of r such that r ≥ rmax = min
(
mN
K , (N−K)2m

KN

)
can be split into the

interval r ≥ mN
K and the interval (N−K)2m

KN ≤ rmNK . We will consider these two intervals separately
and provide adversarial strategies for both.

Case 1: r ≥ mN
K . Let m′ = mN

K . The adversary poses m′ targets to the learner chosen at
random from all the N features. Thus, the learner is forced to examine Ω (N) features on each
target. Then, the adversary chooses K features to be good features, thereby marking some of the
targets as good targets. We show that, of the m′ targets, there are Θ (m) good targets and only
O (r) bad targets. Therefore, this is a valid sequence of targets and furthermore, on this sequence
the learner examines Ω (m ·N) features.

To count the number of good targets, we observe thatm′ = Ω
(
N
K

)
. Then from Chernoff bounds,

with high probability 1 − O(1), we have that Θ
(
m′KN

)
i.e., Θ (m) targets are good targets. Since

m′ ≤ r, we have only O (r) bad targets.

Case 2: r < mN
K , r ≥ (N−K)2m

KN . Now, we set m′ =
√

rNm
K and sample m′ targets at random

from the pool of all N features. Then we pick K random features to be the metafeatures and then
present m good targets choosing randomly from the pool of K metafeatures.

To count the number of good targets in the first sequence of m′ targets, observe that m′ ≥ N
because r ≥ KN

m . Hence, with high probability 1−O(1), the number of good targets is Θ
(
m′KN

)
=

Θ

(√
rKm
N

)
. Since r ≤ mN

K , this is O(m). Similarly, with high probability 1−O(1), the number

of bad targets is Θ
(
m′N−KN

)
= Θ

(√
rNm
K · N−KN

)
= Θ

(
√
r ·
√

(N−K)2m
KN

)
. Then using the

inequality r ≥ (N−K)2m
KN , we get that the number of bad targets is O(r). Thus, this is a valid

sequence of targets. Furthermore, on Θ

(√
rKm
N

)
good targets, the learner is forced to examine

Ω (N) features. Thus, on the first sequence the learner examines Ω
(√

rKmN
)

features overall.

Since r ≥ (N−K)2m
KN , this is Ω (m(N −K)). On the second sequence the learner examinesO (mK)

features overall. In total, this is Ω (mN) feature evaluations.
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