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Abstract

Pattern languages have been an object of study in various subfields of computer science for decades.
This paper introduces and studies a decision problem on patterns called the finite distinguishability
problem: given a pattern 7, are there finite sets 7" and T~ of strings such that the only pattern
language containing all strings in 7+ and none of the strings in 7"~ is the language generated by 7?
This problem is related to the complexity of teacher-directed learning, as studied in computational
learning theory, as well as to the long-standing open question whether the equivalence of two
patterns is decidable. We show that finite distinguishability is decidable if the underlying alphabet is
of size other than 2 or 3, and provide a number of related results, such as (i) partial solutions for
alphabet sizes 2 and 3, and (ii) decidability proofs for variants of the problem for special subclasses
of patterns, namely, regular, 1-variable, and non-cross patterns. For the same subclasses, we further
determine the values of two complexity parameters in teacher-directed learning, namely the feaching
dimension and the recursive teaching dimension.
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1. Introduction

Database theory, pattern matching, computational learning theory, formal language theory—in
these and other subfields of computer science a set L of strings is often represented by some string
expression that “matches” all the strings in L. Regular expressions (as well as variants of regular
expressions) are perhaps the most prominent such type of expression, but another kind of expression
of relevance to many applications is the pattern. A pattern 7 is a finite string of constant symbols
(often called terminal symbols) and variables, where the constant symbols are taken from some
alphabet 2. A string w over X matches 7 (or m matches w) if w can be obtained by substituting the
variables in 7 with finite strings over X; the language of 7, denoted L (), is then the set of all strings
matching 7. Angluin’s original definition of pattern languages (Angluin, 1980) required that no
variable be erased, i.e., substituted by the empty string, when matching a string; the corresponding
pattern languages are hence called non-erasing pattern languages. In this paper, we study the case of
so-called erasing or extended pattern languages (Shinohara, 1982b), where substitutions with the
empty string are allowed. For example, the pattern axx1abzy over ¥ = {a, b} matches all strings
starting with the symbol a, followed by a (possibly empty) square and the string ab, and ending in
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any (possibly empty) suffix. Unless stated otherwise, we will use the term “pattern languages” to
refer to erasing pattern languages.

Several fundamental problems on pattern languages have been addressed in the literature pertinent
to learning theory, as they are of relevance to the design of learning methods that identify pattern
languages from examples or from queries. For instance, the membership problem, i.e., to decide
whether a given pattern matches a given string, is NP-complete (Jiang et al., 1994), and only a
few interesting special cases are known in which it has a polynomial-time solution (Fernau and
Schmid, 2015). Worse yet, the inclusion problem, to decide whether one given pattern generates
a language contained in that of another, is undecidable (Freydenberger and Reidenbach, 2010). A
prominent open question concerns the problem to decide whether two given patterns generate the
same language, known as the equivalence problem. To date, it is not known whether this problem is
decidable; notable decidable special cases were published around 20 years ago (Jiang et al., 1994;
Ohlebusch and Ukkonen, 1997), but rather limited progress has been made on this problem since,
cf. (Freydenberger and Reidenbach, 2010) for a discussion.

The focus of this paper is on the following decision problem, which we call the finite distin-
guishability problem: is a given pattern 7 finitely distinguishable (w.r.t. the class of all patterns), i.e.,
are there finite sets 7" and T~ of strings such that L(7) is the only pattern language that contains
all of the strings in 7" and none of the strings in 7'~ ? This problem is of relevance to computational
learning theory as well as to formal language theory; previously it has been studied in computational
biology (Brazma et al., 2009) and in a recursion-theoretic context (Beros et al., 2016). For the
non-erasing case, the problem is trivial since every pattern is finitely distinguishable w.r.t. the class
of all patterns (Angluin, 1980). As it turns out, the erasing case is more complex.

In computational learning theory, finite distinguishability is equal to the property that L(7) has a
finite feaching set w.r.t. the class of all pattern languages. A teaching set 7' for a language L w.r.t. a
class £ containing L is a set of strings, each labeled either 4+ or —, such that L is the only language
in £ that contains all the +-labeled and none of the —-labeled strings in 7". The size of a smallest
teaching set is a lower bound on the number of labeled strings a learning algorithm would require to
exactly identify L within £ (Goldman and Kearns, 1995; Shinohara and Miyano, 1991).

From a language-theoretic point of view, the finite distinguishability problem is interesting in
its own right, since the structure of teaching sets reveals structural properties of language classes.
In the context of pattern languages in particular, there is another potential benefit of studying the
finite distinguishability problem, due to its relevance to the unsolved equivalence problem. Firstly, if
a pattern 7 is finitely distinguishable as witnessed by sets 7" and 7T~ that can be algorithmically
derived from 7 , then the problem of equivalence of 7 to any other pattern 7’ is decidable: it suffices
to test whether 7/ matches all strings in 7" and no strings in 7"~. Secondly, if neither of two patterns
m, 7' is finitely distinguishable, then we know that a procedure deciding the equivalence problem on
the instance (7, ') cannot solely rely on membership testing using the entire teaching set of either 7
or 7.

Our contributions are as follows: (i) We show that the finite distinguishability problem is
decidable for all alphabet sizes other than 2 and 3. In doing so, we reveal some connections to the
problem of deciding whether a pattern generates a regular language, which has previously been
proven decidable for alphabet sizes other than 2 and 3 (Jain et al., 2010). (ii) For alphabet sizes 2 and
3, we provide partial results, again aligning with the existing literature on regular languages generated
by patterns (Reidenbach and Schmid, 2014). (iii) We study variants of the finite distinguishability
problem, namely, the question whether a pattern in class II is finitely distinguishable from all patterns
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in class II, for subclasses II of the class of all patterns over a fixed alphabet. It turns out that
this problem is decidable for the well-known classes of regular patterns, 1-variable patterns, and
non-cross patterns.! Furthermore, for each of these classes, we prove that any finitely distinguishable
pattern 7 has a teaching set of size polynomial in the length of 7 (linear for regular patterns, cubic
for 1-variable patterns, while for non-cross patterns there is only one pattern, up to equivalence, with
finite distinguishability). (iv) Due to the links to computational learning theory, we further explore
the worst-case complexity of teaching pattern languages in two popular models of computational
teaching, namely the teaching dimension model (Goldman and Kearns, 1995; Shinohara and Miyano,
1991) and the recursive teaching dimension model (Zilles et al., 2011), thus complementing an earlier
such study on non-erasing pattern languages (Gao et al., 2016).

All our proofs establishing the finite distinguishability of some form of patterns are constructive
in that they provide finite teaching sets rather than just proving their existence. They are thus
meaningful for the design of strategies for algorithmic teaching and learning.

2. Preliminaries

Nj denotes the set of natural numbers {0, 1,2,...} and N = Ny \ {0}. For any set A, | A| denotes
the cardinality of A. If a,b € Ng and a < b, [a, b] denotes the interval {z € Ny : a < = < b}. Let
X = {x1,x9,23,...} be an infinite set of variable symbols. An alphabet is a finite or countably
infinite set of symbols, disjoint from X. Given an alphabet 3, a pattern is a non-empty finite string
over XU X. The language L(7) generated by a pattern 7 over X consists of all strings generated from
7 when replacing variables in 7 with any string over Y, where all occurrences of a single variable
must be replaced by the same string. For example, if 7 = z1x2abxy and ¥ = {a, b}, then L(m)
contains the strings ab, aab, abbabbb, but not the string aabb. This type of language is usually called
extended or erasing pattern language (Shinohara, 1982b), to distinguish it from Angluin’s notion of
pattern language, which does not allow for a variable to be replaced by the empty string (Angluin,
1980). Patterns 7 and 7 over ¥ are said to be equivalent iff L(m) = L(7). We often omit any
reference to > when the choice of alphabet is clear from the context.

For any alphabets A and B, a morphism is a function h : A* — B* with h(uv) = h(u)h(v) for
all u,v € A*. A substitution (or assignment) is a morphism h : (X U X)* — ¥* with h(a) = a for
all a € . Given strings wy, ..., w, € (¥ U X)* and a pattern 7 € (X U X )* containing variables
Ti,...,Tk, T[X] — W1,...,T; — wg] denotes the string derived from 7 by substituting w; for z;
whenever i € [1, k].

For any set I of symbols, '™ = T'* \ {} is the set of non-empty words over I'. For w € T'", |w|
denotes the length of w. For any p € [1,..., |w|], w[p] is the p'* symbol of w. For a symbol a and
any n € Ng, a” denotes the string equal to n concatenated copies of a. (Thus, a is the empty string.)

Let II* denote the class of patterns over some specific alphabet 3 such that |¥| = z. For any
m € II7, let Var(m) denote the set of all distinct variables occurring in 7, Const(7) denote the set of
all constant symbols occurring in 7, and let 7w(¢) denote the string obtained from 7 by substituting
the empty string for all variables in 7. Similarly, if a is any symbol, 7(a) denotes the string obtained
when substituting the symbol «a for all variables in 7. We will often assume that a pattern = € 17 is
normalised in the sense that the k variables occurring in 7 are named z1, .. ., xj in order of their
first occurrences from left to right (or = if £ = 1).

1. See Section 4 for a definition of these pattern classes.
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Any pattern in X7 is a constant pattern; those in X * are called constant-free. IIZ; C II* denotes
the subclass of constant-free patterns. A regular pattern contains no variable more than once; by
“regular pattern languages” we refer to languages generated by regular patterns.

Let ¥ be any alphabet. A labelled example is a pair (w, £), where w € ¥* and ¢ € {4, —}. If
¢ = +, the example is called a positive example, otherwise it is called a negative example. Given
any set T of labelled examples, let T denote the set of positively labelled strings in 7" and let 7~
denote the set of negatively labelled strings in I'. A pattern 7 is consistent with 7" (or 7" is consistent
with ) if 77 C L(m) and T~ C (X* \ L(m)).

This paper is concerned with a decision problem we call the finite distinguishability problem:
given an alphabet ¥, a pattern 7, and a reference class II of patterns, is there a finite set 7" such
that 7 is the only pattern up to equivalence in II that is consistent with 7?7 If yes, we call 7 finitely
distinguishable w.r.t. II. In the terminology of computational learning theory, one would rephrase the
question as whether 7 has a finite teaching dimension w.r.t. I1. The teaching dimension of 7 w.r.t.
I1, denoted by TD(,II) is defined as TD(7,II) = min{|T| | T is a teaching set for 7 w.r.t. IT}.
A teaching set for m w.r.t. I is a set 7' that is consistent with m, but with no other pattern in II
(up to equivalence). This notion was originally defined in the more general context of concept
learning (Goldman and Kearns, 1995; Goldman and Mathias, 1996; Shinohara and Miyano, 1991).

3. Pattern Languages with Finite Teaching Dimension

In this section, we investigate the structural properties of patterns that are finitely distinguishable.
We first give some preparatory definitions.

Definition 1 Fix any alphabet ¥, of size z < co. Forany w € II? withm = X161 X2 ... cp_1 Xy,
X1,..., X, €X*andcy,...,chn1 € XY, call each nonempty block X; a maximal variable block
of m. Call a set {Y1,..., Yy} of maximal variable blocks of m independent with respect to 7 iff every
variable x in some block Y; does not occur in any maximal variable block Z ¢ {Y1,...,Y} of m.
In particular, the set {Z1, ..., Z} of all maximal variable blocks of 7 is independent w.r.t. 7. Call a
variable x free w.r.t. 7 iff x occurs in 7 exactly once. A pattern 7 is called block-regular if each of
its maximal variable blocks contains a free variable w.r.t. 7 (Jain et al., 2010).

Jain et al. (2010) showed that any block-regular pattern 7 is equivalent to the pattern obtained from 7
by dropping all the variables that occur at least twice in 7.

Theorem 2 (Jain et al., 2010, Theorem 6(b)) Fix an alphabet 3., and let m = c1 X130 X3 ... Xp—10p
be a block-regular pattern, where c1,c, € X%, X1,..., X, € X andcy,...,ch_1 €XT. Then
is equivalent to the regular pattern ™’ = c1x1C2T . .. Tp_1Cn.

We now present the main result of this paper. It states that for 2 = 1 and z > 4, finite distinguishability
is decidable. For z € {2, 3}, it shows that the finite distinguishability problem is decidable when
restricted to constant-free patterns.

Theorem 3 Ler m € II%.

1. Suppose z = 1. Let 1, . .., x; be all the distinct variables occurring in 7. For all i € [1,1],
let p; denote the number of times that x; occurs in w. Then T is finitely distinguishable w.r.t.
I1% iff 1 > 1 and ged(py, ..., p1) = 1.



FINITELY DISTINGUISHABLE ERASING PATTERN LANGUAGES

2. Suppose z > 2. If m € Hﬁf, then T is finitely distinguishable w.r.t. 117 iff ™ contains some
variable exactly once.

3. Suppose z > 4. Then 7 is finitely distinguishable w.r.t. 117 iff the following conditions are
satisfied:

(a) 7 is block-regular,
(b) 7 does not contain any substring o € X1 such that || > 2;

(c)  starts and ends with variables.

In particular, 7 is finitely distinguishable w.r.t. 11* iff 7 is equivalent to a pattern 7' of the
shape y1a1y20s . . . ag Yx+1, where k > 0, a1, a9, ...,ax € X and y1,y2, ..., Ypr1 are k +1
distinct variables.

Thus, if z = 1 or z > 4, there is a polynomial-time decider for the set {m € II* : TD(m,1I*) < oco}.
Furthermore, if z > 2, there is a polynomial-time decider for the set {m € I, TD(m,11%) < oo}

Proof (Sketch) Proof of (1). (1) follows from generalised forms of Colloraries 9 and 10 in (Gao et al.,
2015); further details are given in Appendix A.

Proof of (2). Suppose that z > 2. Fix any distinct a,b € X. If 7 contains some variable exactly
once, then L(w) = L(z1), so that {(a, +), (b, +)} is a teaching set for 7 w.r.t. IT*. If 7 contains no
variable and T is a finite set of examples labelled consistently with 7, then 7’ = 7w is consistent
with T, where m > max{|a| : a« € TT UT~}; i.e., TD(m,I1¥) = co. Now suppose that 7
contains at least one variable and every variable occurring in 7 appears in 7 at least twice. Assume
towards a contradiction that 7 has a finite teaching set 7" w.r.t. IT*. Choose m > max({|a| : a €
TTUT~}U{|r|}). Consider the string

Y

B = g™ ag™ am—l—lbm—i—lam-i-l o a2mb2ma2m
——

which is a concatenation of the strings a™ 6" +1a™*" for i increasing from 0 to m. We will show
that for some appropriately chosen block Y of variables,

(@) pr(e) € L(Ym) \ L(m);

D L(Y'7) 2 L(m);
(M) w € L(Yr) \ L(w) implies |w| > m.
Notice that items (I), (II) and (IIT) together imply that Y 7 is consistent with 7" while L(Y 7) # L(w),
which contradicts the fact that 7" is a teaching set for 7 w.r.t. IT*. We first prove that S () ¢ L(7).
Assume otherwise. Fix a substitution A : (X U X)* — ¥* witnessing S7(¢) € L(m). Given any
strings « € ¥* and p € (X U X)*, say that p covers o w.r.t. A iff v is a prefix of A(p). Our method

of proof is to show by induction that for all i € {—1,...,m} (where 5_; is defined to be ¢), the
shortest prefix p; of m that covers

ﬁi = a™pmg™ ... am+zbm+zam+1

w.r.t. A satisfies |p;| > i + 1. For i = m, this will imply that |7| > |p,,| > m + 1, a contradiction.
There is nothing to prove for ¢ = —1 since 5_; = €. Now suppose the statement to be proven holds
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for n = k, that is, if py, is the shortest prefix of 7 that covers 3, = a™b™a™ . ..a™TFpmTkgm+k,
then |pr| > k + 1. Consider S = a™b™a™ ... a"thymthgmtkgmtktlpmtktlgmthtl 1 et
s be the last symbol of pj; note that s is a variable (as 7 is constant-free). Suppose the string
Brg1 = Bra™ThHL prtktlgmtk+l g covered by pg, w.rt. A. Then, since no proper prefix of py,
covers [ and s occurs in 7 at least twice, A(7) must contain at least two copies of the string
amtktIpmEktl gmAk+l which is impossible. Hence there is a nonempty string 6 for which the
shortest prefix of 7 covering B+ w.r.t. A is equal to pif, so that by the induction hypothesis,
|pk+1| > k + 2. This proves S (e) ¢ L(m). Now pick distinct variables y; and y2 not occurring in

7, and set

Y = ylygy g s Ryt s
——

Observe that fm(e) € L(Y ), proving (I). Further, (II) and (III) follow directly from the choice of
m and Y. Thus T is not a teaching set for 7 w.r.t. IT*, so that TD (7, IT?) = oc.

Proof of (3). The proof that 7 is finitely distinguishable if it satisfies (a), (b) and (c) will be deferred
to Appendix B, where it will be shown, more generally, that over any finite alphabet of size at least 2,
Conditions (a), (b) and (c) together imply finite distinguishability.

It remains to show that if 7 does not satisfy either (a), (b) or (c), then TD(7, IT?) = oc.
Case (i): 7 is not block-regular. Then one can fix some interval [j1, j2] such that 7[j;] ... 7[j2] is a
maximal variable block of 7 and for all j' € [j1, ja, 7[j’] occurs in 7 at least twice.

Suppose T" were a finite teaching set for L(m) w.r.t. II*>. Choose m > max({|a| : o €
Tt UT~}U{|r|}), and let 7’ be the pattern obtained from 7 by inserting

Y = yysy gy Tyt s g
—_—

which is a concatenation of y{””y’é"“y{"“ for ¢ increasing from 0 to m, into 7 just before the

44" symbol of 7, where 1, y2 ¢ Var(r) are distinct variables. Choose distinct dy, ds € X that are
different from the last constant before the jfh symbol of 7 (suppose this occurs at the ptlh position of
7; p1 = 0 if no such constant exists) and the first constant after the jéh symbol of 7 (suppose this
occurs at the pgh position of 7; po = |m| + 1 if no such constant exists). Such d; and ds exist because
|3 > 4. Let (3 be the string obtained from Y by substituting d; for y; and ds for yo. Let 7y be the
string obtained from 7 by substituting d; for y1, da for y2, and € for every = € Var(w). Then 7 is
of the form C;3C5, where C;Cy € ¥* is the constant part of 7. We claim that v ¢ L(7). Suppose
otherwise, and that A” : (X U X)* — X* witnesses v € L(r).

Case (i.1): 7 contains at least one constant and C'y # €. Suppose

Y= a1 ... Q4 B Qi1 ... Ap (1)
~—~ A N

where a; € ¥ U {e} for j € [1,]] and a; € X; note that C = a;...q; and Cy = a;y1...q.
A" induces a mapping I 4~ from the set of all intervals of positions of 7 to the set of all intervals
of positions of + such that if [p), p}] and [p}, p] are mapped to ¢}, ¢5] and [¢5, ¢}] respectively,
then T4~ maps [p, p4] to [¢}, ¢}]. Since it is a bit more convenient to speak of mappings from a
specific occurrence of a subpattern of 7 to a specific occurrence of a substring of v, we shall fix the
convention that for any subpattern 7’ = 7 [p}] ... 7[p;] of mand any o € {a; : 1 < j <1} U{B},
“I't, maps 7" to o’ means that I4» maps [p}, p}] to the interval of positions corresponding to the
specific occurrence of « in -y indicated by braces in the decomposition (1).
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If 14+ maps the p{" symbol of 7 to some aj;, with h < 4, then it must also map the second to
last constant symbol before the jfh symbol of 7 to some a;s with i’ < h; applying this argument
successively then leads to a contradiction. A similar argument shows that I 4» cannot map the p}"
symbol of 7 to some a, with h > 7. Furthermore, by the choice of d; and da, I 4» cannot map its p}"
position to any symbol in 3. Hence 14~ maps the p{" symbol of 7 to a;. In particular, I 4 maps the
suffix of 7 starting from its (p; + 1)“ symbol to the suffix 5C5 of «y. Since d; and ds are different
from the constant symbol in 7’s thh position, I 4» maps the maximal variable block of variables
m[j1] ... w[je] to B. Note that I 4» cannot map 7[j1] ... w[jo] to any proper extension of /3 because
otherwise + (as reasoned above) would not be “long enough”. By the choice of [j1, j2], for every
J" € [j1, 2], w[§'] € X and 7[j’] occurs in 7 at least twice. Note that for every j' € [j1, jo] such
that 14 (j') # €, 7[j'] neither occurs before the ji* position of 7 nor occurs after the 5" position of
7 because otherwise the length of v would have to increase by at least one. Hence the subpattern
m[j1 + 1] ... w[j1 + ip] of 7 that 14~ maps to 3 such that 4 (j1 + ¢;) # € whenever 1 < j < his
of the shape ¢} ¢5? . .. ¢l's, where g1, g2, . . ., ¢s € X and each g; occurs in 7[j1 + i1] ... 7[j1 + in)
at least twice. But an argument similar to that in the proof of statement (2) above shows that /3 cannot
match any such block @ of variables ¢;" ¢52 . .. ¢, where each ¢; occurs in @ at least twice and
|Q| < m. Thus v ¢ L(7), indeed.

Case (i.2): C'1 = € but C5y # . This case can be argued similarly to Case 1.

Case (i.3): 7 is constant-free. Then 7 is of the shape r}'r5? ... rls, where r1,ro,... 75 € X and

(since 7 is not block-regular) each r; occurs in 7 at least twice; hence an argument similar to that in
the proof of statement (2) shows that v ¢ L(7).

By construction, v € L(7’). As 7’ is consistent with T', TD(, IT?) = cc.

Case (ii): 7 contains a substring of the form ab, where a,b € .. (a and b are not necessarily
distinct.) Since |X| > 4, one can fix some ¢ € X with ¢ ¢ {a,b}. Let j3 be a position of 7 such that
m[j3]m]js + 1] = ab. If L(7) had a finite teaching set 7" w.r.t. IT?, then one can argue as in Case (i)
that there is a positive m so large that if 7’ is obtained from 7 by inserting 3™ between the jgh and
(43 + 1)% positions of 7 for some variable y ¢ Var(r), then 7’ would be consistent with 7". On the
other hand, let +y be the string derived from 7’ by substituting ¢ for y and ¢ for every other variable;
note that the number of times the substring ab occurs in 7 is strictly less than the number of times
that ab occurs in 7, which implies v ¢ L(7) and so L(n’) # L(r). Therefore TD(rr, I1*) = co.

Case (iii): 7 starts or ends with a constant symbol (or both). Suppose 7 starts with the constant
symbol a. The proof that L(7) has no finite teaching set w.r.t. II* is very similar to that in Case (ii);
the only difference here is that one chooses some b € X\ {a} and considers 7’ = y™7 for some
variable y ¢ Var() and a sufficiently large m. In this case, b7 (g) € L(n’) \ L(r), and therefore
L(n’) # L(7). An analogous argument holds if 7 ends with a constant symbol.

This completes the proof of the characterisation.

Finally, note that there are polynomial-time algorithms to (i) determine whether or not the greatest
common divisor of a set of positive integers is equal to 1, (ii) determine whether or not a given pattern
m € I, contains a variable that occurs exactly once, and (iii) determine whether or not any given
m € 117 satisfies conditions (a), (b) and (c) in statement (3). For (iii), note that 7 is block-regular iff
every maximal block Y of 7 contains a free variable, and this condition can be checked in O(||)
steps. Further, it takes O(|r|) steps to check whether or not 7 contains a substring o € ¥ such that
|| = 2 and another O(|r|) steps to determine whether or not 7 starts and ends with variables. Thus
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for any given z > 2, the set {m € IIZ, : TD(,II*) < oo} has a polynomial-time decider; similarly,
for z ¢ {2, 3}, the set {m € II* : TD(m, II*) < oo} is polynomial-time decidable. [

In fact, the conditions in Theorem 3(3) are sufficient for any pattern over an alphabet of size at least
2 to be finitely distinguishable. We prove this in Appendix B.

Proposition 4 Let m € 117 and z > 2. Then ~ is finitely distinguishable w.r.t. 117 if 7w is equivalent
to a pattern of the shape y1a1ys . . . axYiy1, where ay,...,a; € X and y1,...,Yyx+1 are distinct
variables.

Jain et al. (2010) showed that for every pattern 7 over any finite alphabet with at least 4 letters, L(7)
is a regular language iff 7 is block-regular. This yields the following corollary.

Corollary 5 Suppose 4 < z < oo and w € 1I*. Then 7 is finitely distinguishable w.r.t. 117 iff all of
the following conditions are satisfied:

1. L(m) is regular;
2.  does not contain any substring o € X7 such that || > 2;

3. w starts and ends with variables.

The remaining part of this section is devoted to the question of whether Theorem 3(3) (or some slight
variation) extends to alphabets ¥ with |3| € {2, 3}. We shall illustrate with examples the failure of
Theorem 3(3) for alphabets that have exactly two or three letters. In particular, over such alphabets,
it will be seen that the structure of finitely distinguishable patterns can be fairly complex, which
suggests that the problem of deciding finite distinguishability of 7 w.r.t. II* for z € {2, 3} and any
7 € II” may be more difficult than for the case z > 4.

Example 1 Let Y = {a,b} and ™ = z1ax3bx3. Note that  is not block-regular. Let ™' = x1abxs.
We claim that L(7') = L(w). L(x') C L(w) is immediate. Consider any 3 € ¥* obtained from
m by substituting «; for x;, where i € {1,2,3}. Since aa%b must contain the substring ab, 3 is of
the shape ~1abya, where 1,72 € X%, and so 3 € L(r'). Therefore L(x') = L(w). Furthermore,
observe that {(ab, +), (a, —), (b, —), (baba, +)} is a (finite) teaching set for 7' w.r.t. 112, Thus the
characterisation obtained in Theorem 3(3) does not apply to alphabets with exactly two letters.

The next example shows that Theorem 3(3) does not apply to the class of erasing pattern languages
over any alphabet of size 3. The corresponding proof is given in Appendix C.

Example 2 Let Y = {a,b,c} and m = x1x2x3a$2x2$§x6bx7$6x& Then T is finitely distinguish-
able w.r.t. II? but L(7) cannot be generated by any regular pattern. Note that while T is not regular, it
generates a regular language, namely, L(1) = $*abX*UX*cX*achX*UX*achX* X * U *ac’c by ™,

The next example shows that over any alphabet of size exactly 2, there is a pattern 7 that is finitely
distinguishable w.r.t. IT> while L(7) cannot be generated by any regular pattern.

Example 3 Let S = {a,b} and 1 = m1x90292303 05025236 Then T is finitely distinguishable w.r.t.
12 but L(7) cannot be generated by any regular pattern.
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Proof (Sketch.) One may show that {(aa,+), (a, —), (baa,+), (aab, +), (ab’a,+), (aba,+),
(aba, —), (abab, +), (ababa, +), (baba,+)} is a teaching set for m w.r.t. IT2. Furthermore, if L(r)
were generated by some regular pattern 7, then 7 must be of the shape xjax2ax3. But aba €
L(ziazxgazs) \ L(m), and so L(m) # L(7). [

Theorem 3(1), Example 2 and Example 3 together imply that one direction of the characterisation
in Theorem 3(3) — that TD (7, IT*) < oo = 7 satisfies Conditions (a), (b) and (c) — applies only to
the case z > 4. The next two examples from (Reidenbach and Schmid, 2014) and (Jain et al., 2010)
show that the reverse direction of Theorem 3(3) fails for z € {2, 3} as well if one relaxes Condition
(a) by only requiring that L() be a regular language. Their proofs are in Appendices E and F, resp.

Example 4 Let Y = {a,b} and 7 = z1ax3ax3. Then (a) L() is regular, (b) T does not contain
any substring o € X7 such that || > 2, and (c) 7 starts and ends with variables, but T is not finitely
distinguishable w.r.t. T12.

Example 5 Let Y = {a,b,c} and 7 = x1329730220305b762577. Then (a) L(w) is regular; (b) T
does not contain any substring o € 3 such that la| > 2, and (c)  starts and ends with variables,
but T is not finitely distinguishable w.r.t. TI3.

According to Examples 2 and 3, a pattern language over any alphabet of size 2 or 3 may be finitely
distinguishable without being generable by a block-regular pattern. Our next result shows, on the
other hand, that over any finite alphabet, a finitely distinguishable pattern language must necessarily
be regular. The converse of the latter statement (even with restrictions on the length of every constant
block of the pattern and on the first as well as last symbols of the pattern) is false, as we have seen in
Examples 4 and 5. The proof of Theorem 6 is given in Appendix G.

Theorem 6 Let 1 < z < oo and w € 1I°. If 7 is finitely distinguishable w.r.t. 1%, then L(r) is
regular.

The following theorem provides necessary conditions for a pattern to be finitely distinguishable w.r.t.
the whole class of patterns over any alphabet of size 2 or 3. It is proven in Appendix H.

Theorem 7 Let z € {2,3}, X1 = {a,b}, X2 = {a,b,c} and 7 = X161 X2c2... Xy_10p—1Xp,
where Xo,..., Xp_1 € X1, ¢1,...,cn_1 € Zf ifz=2¢,...,Ch_1 € E;r if z = 3, and
X1, X, € X*. If mis finitely distinguishable w.r.t. 117, then the following conditions hold for all
iel,n—1].

1. If z =2, then ¢; € {a,b,ab,ba}; if = = 3, then ¢; € L.

2. If z = 2, then for all o € {Xl,Xn,égfid, 6X;0X;416,00X;6,6X;06} such that o is a
substring of m, where 6,0 € ¥ and § # 0, there is a k > 1 for which o contains variables

Y1, ..., Yk such that for all j € [1,k], y; occurs q; times in o for some q; > 1, y; does not
occur outside the block o and ged(qu, . . ., qx) = 1. If z = 3, then the latter statement holds
fora = X;.

3. If z = 2, then 7 contains at least one free variable; if z = 3, then X and X,, each contains at
least one free variable.
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4. Interesting Subclasses of Pattern Languages

This section presents some results on various subclasses of the class of all pattern languages,
namely the classes of (i) regular pattern languages, (ii) 1-variable pattern languages, and (iii) non-
cross pattern languages. These have previously been studied in the literature on erasing pattern
languages (Erlebach et al., 2001; Shinohara, 1982b; Reidenbach, 2006), because certain decision
problems or learning problems that are infeasible or unsolvable in the general case have simple
solutions for these subclasses.

A 1-variable pattern is a pattern that contains at most 1 variable (possibly with repetitions), while
a non-cross pattern’ is of the shape x’f x? .-~z for some n > 1. Pattern languages generated by
1-variable patterns (non-cross patterns, resp.) are called 1-variable pattern languages (non-cross
pattern languages, resp.). The class of all 1-variable (non-cross, regular, resp.) patterns over an
alphabet of size z is denoted by 1I1* (NCII?, RII?, resp.).

Characterizing finitely distinguishable patterns turns out somewhat simpler for these special
cases. In particular, finite distinguishability w.r.t. any such reference class is decidable.

The class of regular erasing pattern languages is learnable with polynomially many membership
queries (i.e., questions of the kind “does the string w match the unknown pattern?”) iff the learner is
initially given a string from the target language (Nessel and Lange, 2005). Note that the membership
query complexity is also an upper bound on the teaching dimension. The next theorem, which is
proven in Appendix I, gives a linear upper bound on TD(7, RII?) for any regular pattern 7.

Theorem 8 Let z € NU {oo} and let w be a regular pattern over ¥.. Then TD(m, RIT*) < 2|m| + 1.

The class 1117 of 1-variable patterns has been treated quite extensively in the literature. In particular,
the corresponding class of non-erasing languages is efficiently learnable from queries (Erlebach
et al., 2001) while its membership problem is decidable in polynomial time (Angluin, 1980). By
contrast, the class of erasing 1-variable pattern languages is not learnable in various models of
query learning (Nessel and Lange, 2005). Theorem 9 shows that the finite distinguishability problem
restricted to 1I1* has a simple decision procedure; further, any 1-variable pattern 7 with finite
teaching dimension w.r.t. 1I1* has a teaching set of size at most cubic in |r|.

Theorem 9 Ler z € NU {oo} and let 7w be a 1-variable pattern over ¥. Then TD(m, 1117) < oo
iff ™ contains a variable. If © contains a variable, then TD(w,111*) = O(|n|) if = = 1 and
TD(m, 111?) = O(|7|?) if z > 2 (including z = o).

Proof (Sketch) If 7 contains no variable and T is a finite set of examples labeled consistently with
7, then 7’ = w2’ is a 1-variable pattern consistent with 7', where m > max{|a| : « € TT UT ™ }.
Consequently, TD(7r, 1I1*) = oo. If 7 contains a variable, pick a € X. Then 7 is one of only
finitely many 1-variable patterns consistent with the set T = {(n(¢),+), (w(a),+)} and thus
TD(7, 111*) < co. To see this, suppose 7’ is any 1-variable pattern consistent with 7". Obviously,
|7(¢)| upper-bounds the number of constants in 77" and the value |7 (a)| — |7 (e)|, which is greater
than zero by the choice of 7, upper-bounds the number of variable positions in 7. Thus, there are
only finitely many such 7. The rest of the proof is in Appendix J. |

Non-cross patterns were introduced by Shinohara (1982a) as a form of pattern for which the mem-
bership problem is polynomial-time solvable, in contrast to the NP-completeness of the membership

2. In this paper, a “non-cross pattern” will always refer to a constant-free non-cross pattern.

10
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problem for the general class of patterns (Angluin, 1980; Jiang et al., 1994). Non-cross erasing
pattern languages are also learnable in the limit for any alphabet (Reidenbach, 2006). The finite
distinguishability problem restricted to the class of all non-cross patterns turns out to be quite
straightforward; in fact, over any alphabet ¥ with z = || > 2, there is only one non-cross pattern
(up to equivalence) with finite teaching dimension w.r.t. NCII?.

Theorem 10 Let z € NU {oo} and let 7 = " ...x}" be a non-cross pattern over .
1. Let z = 1. Then TD (7w, NCII?) < oo iff the greatest common divisor of ny, ..., n is 1.

2. Let z > 2. Then TD(mw,NCII*) < oo iff n; = 1 for some i € [1, k], i.e., iff ™ contains at least
one non-repeated variable.

Proof (Sketch) Statement 1 was proven in (Gao et al., 2015, Corollaries 9 and 10). To prove 2, first
suppose n; = 1 for some @ € [1,k]. Then L(w) = ¥* and {(¢,+), (a,+)} is a teaching set for 7w
w.r.t. NCIT*. Next suppose n; > 2 for all i € [1, k] and let T" be a finite set of labeled examples
consistent with 7. Pick the first variable not occurring in 7 (say xy.1) and define 7/ = ﬂwﬁﬁl
where ng1 > max{|a| : « € TT UT"} and ng41 > |7|. Note that L(w) C L(7’). Indeed,
choose a sequence my, . .., Mg, Mmp+1 such that m;n; < m;41n;y; forall ¢ < k. Let a and b be two
distinct letters in 3 and assume that 7 is normalised. Then the string obtained from 7’ by replacing
every odd-indexed variable x9; 1 with 2! and every even-indexed variable xo; with b2 is in
L(7") \ L(=) (for a formal proof, see Appendix K). 7’ cannot generate any of the negative examples

in T, so that 7’ is a non-cross pattern consistent with 7. We conclude that TD(7, NCII?) = co. W

5. Worst-Case Teaching Complexity

In computational learning theory, the teaching dimension of a class of concepts refers to the worst-
case number of examples a teacher needs to present to the learner in order to teach any concept in the
class. If I is any class of patterns, the teaching dimension of the class of languages generated by
patterns in I, denoted by TD(II), is defined as TD(IT) = sup{TD(x,II) : = € II}. This parameter
indicates how difficult it is to distinguish single languages in the class from all others. The value of
TD(II) is finite iff there is an upper bound on the number of strings needed for solving this task.

All proofs in this section will be relegated to the appendix.

Since, by Theorem 3, for any alphabet size there are patterns with an infinite teaching dimension
with respect to the class of all (erasing) pattern languages, it is obvious that TD(I1*) = oo for all
z € NU {oo}. The same holds for 1-variable pattern languages and for non-cross pattern languages,
by Theorems 9 and 10, which yields the following theorem.

Theorem 11 Let z € NU {co}. Then TD(I1*) = TD(111*) = TD(NCII?) = oc.

By contrast, for z > 7 as well as for z = 1, the corresponding class of regular pattern languages has
a finite teaching dimension (whose exact value depends on z).

Theorem 12

1. TD(RII') = 3.

11
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2. Forall z > 2 (including z = oo), TD(RII?) > 5.

3. Forall z > 7 (including z = o), TD(RIT*) = 5.

The teaching dimension model is just one of several models of teacher-directed learning that has
been studied in the literature. A related model that has attracted the attention of the learning
theory community due to its connections to the VC dimension (Vapnik and Chervonenkis, 1971)
(arguably the most important complexity parameter studied in statistical learning theory) and to
sample compression (Floyd and Warmuth, 1995) is the recursive teaching model (Zilles et al., 2011).
Recursive teaching can be conceived to proceed in (possibly infinitely many) stages: in the first stage,
one teaches (some or all of) the concepts that have a small enough teaching dimension w.r.t. the
whole concept class. One then removes those concepts from the class and proceeds recursively with
the remaining concepts. We here formulate the definition specifically for pattern languages.

Definition 13 (Zilles et al. (2011); Gao et al. (2015, 2016, 2017a)) Let 11 be a class of patterns. A
recursive teaching sequence for Il is a sequence S = ((So, do), (S1,d1), . . .), where | J;cn Si = 11
is a disjoint union and, for all i € N and all T € S;, we have d; < oo, where

d; = sup{TD(, U Sj):me Si}.
Jj=i

A teaching set for m € S; w.rt. Uj>i S is then called a recursive teaching set for m w.r.t. S. The order

ord(S) of S is defined by ord(S) = sup{d; | i € N}. Finally, the recursive teaching dimension
of 11, denoted by RTD(I1), is the smallest order over all recursive teaching sequences for 11, i.e.,
RTD(IT) = min{ord(S) | S is a recursive teaching sequence for 11}.

For the classes of one-variable and of non-cross pattern languages, it turns out that recursive
teaching is not a suitable model and does not improve on the negative results from Theorem 11
concerning the teaching dimension. Depending on the class and alphabet size, either the RTD is
infinite or no recursive teaching sequence exists.

Theorem 14
1. If z € NU {oo}, then no recursive teaching sequence for 111* exists.
2. If z e NU{oo} and z > 2, then no recursive teaching sequence for NCI1? exists.

3. RTD(NCIT') = oo.

For regular pattern languages, recursive teaching is provably more efficient than teaching according
to the classical model, for alphabet sizes different from 2, as the next theorem shows. Determining
RTD(RII?) remains an open problem.

Theorem 15 Let z € NU {oo}. If z # 2, then RTD(RII?) = 2.

12
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6. Conclusions

Finite distinguishability of patterns is a decision problem of relevance to computational learning
theory and to the open question of whether the equivalence problem for erasing pattern languages
is decidable. Since Ohlebusch and Ukkonen (1997) already proved decidability of the equivalence
problem restricted to the types of patterns for which our paper proves finite distinguishability, our
results do not directly yield new results on the equivalence problem. However, they establish that
any equivalence test for two patterns failing our test for finite distinguishability must necessarily use
more information than that provided solely by the membership of a finite set of strings.

Our study on the teaching dimension/recursive teaching dimension of classes of erasing pattern
languages complements an earlier such study on non-erasing pattern languages (Gao et al., 2016).

We leave a number of open problems, most notably: (i) for alphabet sizes 2 and 3, characterize the
patterns that are finitely distinguishable and determine whether finite distinguishability is decidable,
(ii) determine TD(RII?) for 2 < z < 6, and (iii) determine RTD(RII?). Recently, the new model
of preference-based teaching was proposed, in particular to address cases of concept classes for
which no recursive teaching sequence exists (Gao et al., 2017a). One can show that for alphabets of
size at least 3, non-cross patterns can be taught in the preference-based model using just a single
example (Gao et al., 2017b), while we have shown above that they do not possess a recursive teaching
sequence. A detailed study of preference-based teaching of pattern languages may lead to further
interesting insights into their structural properties.

Acknowledgements. We thank the referees of ALT 2017 for their helpful comments and suggestions;
special thanks go to one referee for pointing out a flaw in an earlier proof of Theorem 10(2).
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Appendix A. Proof of Theorem 3(1)

Theorem 3(1). Let 7 € II'. Let x1,...,2; be all the distinct variables occurring in 7. For all
i € [1,1], let p; denote the number of times that x; occurs in . Then 7 is finitely distinguishable
w.r.t. 1TV iff [ > 1 and ged(p1,...,p) = 1.

Proof It was shown in (Gao et al., 2015) (Corollaries 9 and 10) that the linear set {fuTa: Tx €
Ng} forany n > 1 and v = (v1,...,v,) € Nj has finite teaching dimension w.r.t. the class
{{v'x : 2z € NI} : v € N} An > 1} iff ged(vy,...,v,) = 1. Notice that for any ¢ € N%,
{c+v'z:zc NG } is the commutative image (or Parikh image) of the erasing pattern language
generated by a®x{* z3% ... xl» over any unary alphabet {a}. Theorem 3(1) is thus a consequence of
the following ““shift lemma”.

Lemma A.1 Let L be a class of nonempty subsets of Ny such that 0 € L for all L € L. Define the
shift-extension L' of L by L' = {¢+ L : (c € No) A (L € L)}. Then forall c € Ny and L € L,
TD(L,L) <TD(c+ L,L') < c+1+TD(L,L).

Proof of Lemma A.1. We first prove TD(L, L) < TD(c + L, L’). Suppose for a contradiction
that there exists a teaching set T" for ¢ + L w.r.t. £’ that has size smaller than TD(L, £). Define
T'={(zr—c,+):z€TT}U{(x —¢,—) 2z € T~ ANz > c}. Note that 7" is consistent with L.
Since |T"| < TD(L, L), there exists some L' € L such that L' is consistent with 7" and L' # L.
Consequently, ¢ + L’ is consistent with {(c+y,+) :y € T""}U{(c+y,—) :y € T" U {(x,—) :
x €T~ Nz < c} =T, acontradiction.

We next prove TD(c + L, L") < ¢+ 1+ TD(L, L). Let T} be a teaching set for L w.r.t. L.
Define T = {(c, H)}U{(z,—) 2 < ctU{(c+z,+) 2 € T/} U{(c+z,—) 2 € T]}
(recall that 0 € L by the definition of £). Note that 75 is consistent with ¢ + L. Suppose that
for some ¢ € Ny and L' € L, ¢ + L’ is consistent with T5. The consistency of ¢’ + L’ with
{(e, H)} U{(z,—) : # < ¢} implies that ¢ = ¢ + min(L’) = ¢. Thus L’ is consistent with
{(z,+):x €T} U{(z,—) : # € T{ } = Ty, and therefore L' = L. 0 (Lemma A.1) [

Appendix B. Proof of Proposition 4

Proposition 4. Let 7 € II* and z > 2. Then 7 is finitely distinguishable w.r.t. II* if 7 is equivalent
to a pattern of the shape y1a1y2 . .. aryx+1, where a1,...,ar € X and y1, ..., Yk are distinct
variables.

Proof We start with the case z > 3. Assume that 7 is of the form yja1ys ... aryir1, Where

ai,...,ar € X and yi,...,Yyrs+1 are distinct variables. To build a teaching set T for m w.r.t.
IT7, first put (w(e),+) into 7. Next, for each w € (Const(w(¢)))* with |w| < |7(e)| such that
w = mw(e)[i1]...m(e)[ix] for some subsequence (iy,...,ix) of (1,...,|m(¢)|), put (w,—) into T’

no more than 2™l — 1 of such w exist. These additional examples in 7" ensure that any 7' € II*
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consistent with 7" satisfies 77/ (¢) = 7(g). Now for each i € [1, k+1], fix some b; € X that is different
from all the constants adjacent to y;, and put (/3;, +) into 7', where

ﬁi: aq ...ai,lbi a; ... Qg (2)
~—~ ~— =~ ~—~

is obtained from 7(¢) by inserting b; between a;_1 and a;. (If ¢ = 1, then b; is the first symbol of j;;
if i = k + 1, then b; is the last symbol of 3;.)

Suppose 7' is consistent with the examples in 7" so far. Suppose A" : (X U X)* — X* witnesses
Bi € L(n"). Since n’(¢) = m(e) and |B;| = |n(e)| + 1, there is some variable y in 7’ that occurs
exactly once in 7’ such that A’ maps y to exactly one symbol in 3; and A’ maps constants in 7’ to
the remaining symbols in j3;. Suppose A’ maps y to the symbol a; in 3; (where the a;’s are indicated
by braces in (2)) for some j < i. Since 7'(¢) = 7(e), one has that a;; = a; for all j’ € [j,i — 1]
and a;_1 = b;. But b; was chosen so that b; # a;_1—a contradiction. Similarly, if A’ maps y to the
symbol a; in 3; (where the a;’s are indicated by braces in (2)) for some j > 4, then one has b; = a;,
which again contradicts our choice of b;. Hence A’ maps y to b; in the decomposition (2), so that 7/
contains a variable y; between a;_1 and a; that occurs in 7w’ exactly once. Repeating this argument
foreach i € [1, k + 1] implies that 7" must be of the form

X Xo a1 XgyaXgas ... ap Xogy1Yrr1Xokt2,
—_——  —

where each y; occurs in 7’ exactly once and X1, Xo, . .., Xop 11, Xogro € X*. But 7’ is equivalent
to the pattern y1a1y2as . . . agyr+1, and so L(7’) = L(7). Hence TD(7, IT*) < oo, indeed. *

Now assume that z = 2 and let ¥ = {a, b}. We will use the following lemma, which was shown
in (Nessel and Lange, 2005, Lemma 2).

Lemma B.1 Let X = {a,b} and 7w be any pattern over ¥ U X. Given any substring of 7 that has
one of the following shapes: x;ax;b™xy, x;b™ xjaxy, x;brja™ vy or vija™xjbxy, wherem € N,
is equivalent to the regular pattern 7' obtained from m by deleting x ;.

To keep the proof of Proposition 4 self-contained, we shall prove Lemma B.1. Suppose that
s = z;ax;b™xy, is a substring of 7; if s has one of the shapes x;b™ x;axy, x;bxja™ ), or x;a™ x by,
then a similar proof applies. Since 7’ = 7[z; — €], L(n’) C L(n). Thus it suffices to show that for
any w € L(7) such that w is derived from 7 by substituting a nonempty string for z;, w € L(n).
Suppose ¢ : (¥ U X)* — X* is a substitution witnessing w € L(7). We define ¢ : (¥ U X)* — ¥*
so that ¢(7') = w. Consider three cases.

Case (a): ¢(z;) = wa™, where w € X* and n € N. Define ¢(z;) = ¢(x;)awa™ ' and ¢(z;) =
() for all z; € Var(n') \ {z;}.

Case (b): ¢(z;) = wab™, where w € ¥* and n € N. Define ¢(x;) = (x;)aw, ¢(xy) = b"¢(xk)
and ¢(z;) = p(x) for all z; € Var(n') \ {z;, x1 }.

Case (¢): p(x;) = b", where n € N. Define ¢(z;) = b p(xy) and ¢(z;) = () for all
x; € Var(r') \ {x}.

3. Note that the size of the teaching set for 7= w.r.t. II* constructed in this proof is 0(2"rI ).
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I Lemma B.1)

By Theorem 2, it may be assumed that 7 is of the form y1a1y2 . . . agyx+1, Wwhere ay, ..., ar € X
and y1, ..., Yk, 1 are distinct variables. To build a teaching set T for 7 w.r.t. I12, first put (7(¢), +)
into T". Next, for each w € (Const(7(g))* such that w is a proper subsequence of 7(¢), put (w, —)
into T'; no more than 2™ — 1 of such w exist. These additional examples in 7" ensure that any
7’ € TI2 consistent with T satisfies 7/(g) = 7(¢).

Pick b1, bg+1 € X such that by # a1 and bgq # ag. For each i € [2, k| such that a;—1 = a;, fix
b; € ¥ such that b; # a; (= a;—1). Define

,Bi: ay ...ai_lbi a; ... Qf (3)
~—~ ~— =~ ~—~

whenever b; is defined, and put (3;, +) into 7'. For each ¢ € [2, k] such that a;—1 # a;, put both
(a1 ce Q1005 . .. A, +) and (a1 c.o.a;_1ba; ... ag, +) into 7.

Suppose 7’ is consistent with the labelled examples in 7" so far. One can argue as in the proof for
the case z > 3 that 7v/(¢) = m(¢) and for each i such that i € {1, k} or a;—; = a;, the consistency
of ' with (3;, +) implies that there is a free variable of 7’ between a;_1 and a;. Now consider any
i € [2, k] such that a;_; # a;. By symmetry, it may be assumed that a;_1 = a and a; = b. Suppose
A (X UX)* — X* witnesses

Yi= ai ...ai—1a a; ... ap € L(7). 4)
—~  ~—— ~— =~

As was argued in the proof for the case z > 3, there is some free variable y in 7’ such that A maps
y to exactly one symbol in 7;. Suppose A maps y to the symbol a; in ; (the specific occurrence
of a; in y; indicated by the sequence of braces in (4)) for some j < 4. If a;_o = a, then (as was
argued above) 7’ contains a free variable between a;_o and a;_1. If ¢ = 2, then (as argued above)
7' contains a free variable just before a;_1. If a;_o = b, then an argument very similar to that in
the proof for the case z > 3 shows that a free variable of 7’ occurs either between a;_o and a;_1 or
between a;_1 and a;. Further, it may be argued as in the proof for the case z > 3 that A cannot map
y to any a; in y; with j > 4.
Suppose B : (X U X)* — ¥* witnesses

ai ...a;_1b a; ... ap EL(ﬂ'/). &)
~N ~~ N =~

One can apply an argument parallel to that in the previous paragraph to show that a free variable of 7/
occurs either between a; and a;41 or between a;_1 and a;. Thus it holds that either a free variable of
7" occurs between a;_1 and a;, or there exist free variables x, y of 7 such that x occurs just before
a;—1 and y occurs just after a;; in the latter case, an application of Lemma B.1 shows that a free
variable may be inserted between a;_1 and a; in 7/, yielding a pattern that is equivalentto 7. W

Appendix C. Example 2

Example 2. Let X = {a,b, c} and 7 = z 29730722503 06bx72678. Then T is finitely distinguish-
able w.r.t. IT? but L() cannot be generated by any regular pattern.
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Proof Suppose L(m) were equal to L(7) for some regular pattern 7. Since |X| > 3, it follows from
a result in (Jiang et al., 1995) that 7 and 7 are similar, that is, the constant parts of m and 7 are
identical and occur in the same order in the patterns, so that (after normalisation) 7 = xjax2bxs.
But achb € L(7) \ L(), and so L(7) # L(m).

Now we show that TD(r, I13) is finite. We claim that T = {(ab, +), (a, —), (b, =), (ac?b, +),
(ac®b,+), (ach, —), (beacb, +), (acb*ca, +)} is a teaching set for 7 w.r.t. TI3. Let 7/ be any pattern
that is consistent with 7". Note that the consistency of 7’ with (ab,+), (a, —) and (b, —) implies that
7' is of the shape X;aX2bX3, where X1, Xo, X3 € X*. Furthermore, 7’ must fulfil the following
conditions:

1. 7 contains a variable y; such that y; occurs in X5 exactly twice and does not occur in any
other maximal variable block of 7’.

2. 7/ contains a variable y such that o occurs in X exactly thrice and does not occur in any
other maximal variable block of 7.

3. Every variable that X5 contains occurs in 7’ at least twice.

4. There is a variable y3 that occurs in X; exactly once, occurs in X5 exactly once, does not
occur in X3, and there are variables y5 and ¥, each of which occurs in 7’ exactly once, such
that X; = Y1y5Y2y3Y3ysYs for some Y1, Yo, Y3, Yy € X*.

5. There is a variable y4 that occurs in X3 exactly once, occurs in X5 exactly once, does not
occur in X1, and there are variables y7 and yg, each of which occurs in 7/ exactly once, such
that X5 = Z1y7Zoys Z3ys 24, Where 21, Zo, Z3, Z4 € X*.

Note that Condition 1. is implied by the consistency of 7’ with {(acb, —), (ac®b, +)}, Condition
2. by the consistency of 7’ with {(acb, —), (ac3b, +)}, Condition 3. by the consistency of 7/ with
{(acb,—)}, Condition 4. by the consistency of 7’ with {(acb, —), (bca®ch, +)} and Condition 5.
by the consistency of 7/ with {(acb, —), (acb®ca, +)}. We claim further that any 7’ satisfying the
preceding set of conditions generates the same language as ™ = x12oz3am203756bT7T6T8. It Will
be shown that L(7") C L(m); the reverse inclusion may be proved similarly.

Consider any 3 € L(n’), and let A : (X U X)* — X* be a substitution witnessing 5 € L(7’).
Note that a.A(X2)b must contain a substring of the shape ac¥b for some least k& > 0. In each of the
following cases, we specify a substitution o : X — 3* that witnesses 3 € L(r).

Case 1: k = 0. Let 8 = vy1abya, where 71,72 € ¥*. Define
N ifd = 3

o(x;)) =4 72 ifi=38;
e ifi ¢ {3,8}.

Case 2: k = 1. Since every variable of X5 occurs in 7’ at least twice (Condition 3.), at least one of
the following cases must hold.

18
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Case 2.1: [ is of the shape vicy2acbys, where v1, 72,73 € £*. Define

Y1 ifi = 1;
¢ ifi=2;
o(x;)) =< 72 ifi=3;
v3 ife =T,

e ifig{1,2,3,7}

Case 2.2: [ is of the shape yiacbyscys, where v1, 72,73 € 3*. Define

o ifi=3;
¢ ifi =6;
o(xi)) =4 72 ifi=T;
g ifi=8;

e ifi¢{3,6,7,8).

Case 3: k£ > 1. Givenany k > 1, there are nonnegative integers my, and ny such that 2my+3n; = k.
Let 8 = ~1ackby,, where 71,72 € X*. Define

Y1 ifi = 3;
"k ifi =4,
o(x;) =14 ™ ifi=25;
Y2 ifi = 7;

e ifie{3,4,5,7}

This completes the case distinction, showing that 5 € L(m). [ |

Appendix D. Example 3

Example 3. Let ¥ = {a,b} and 7 = $1$2(L.’E2[E§(IT2(E5CLJE5ZE6. Then 7 is finitely distinguishable w.r.t.
I12 but L() cannot be generated by any regular pattern.

Proof We have already shown that L(7) cannot be generated by any regular pattern. It remains
to show that T = {(aa, +), (a, —), (baa, +), (aab, +), (ab*a, +), (ab®a,+), (aba, —), (abab, +),
(ababa, +), (baba, +)} is a teaching set for 7 w.r.t. TI2.

Claim 1. For all patterns 7', 7’ is consistent with 7" iff L(7’) consists of all finite strings s =
b a™2pm3q™M4p™s . | such that

1. mo,my > 0;

2. if m3 = 1, then (b occurs at least twice in s \V a? is a substring of s).
Proof of Claim 1. Let 7’ be any pattern. If L(7’) consists of all finite strings s = b™a™2p™3 "4 H™5
... satisfying Conditions 1. and 2., then one may directly verify that {aa, baa, aab, ab’a, ab’a, abab,

ababa, baba} C L(7') while L(7") N {a, aba} = (). Thus 7’ is consistent with 7. Now suppose that
7 is consistent with 7. Then the following hold:
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(i) (aa € L(7") Aa ¢ L(n")) = 7’ = X1aX2aX3 for some X1, Xo, X3 € X*.
(i) baa € L(7") — X; contains a free variable.
(iii) aab € L(7") — X3 contains a free variable.

(iv) (ab?a € L(n') Aaba ¢ L(x')) — = contains a variable occurring exactly twice in X, and
not occurring in any other maximal variable block.

() (ab’a € L(n') A aba ¢ L(n')) — = contains a variable occurring exactly thrice in X, and
not occurring in any other maximal variable block.

(vi) aba ¢ L(7') — X9 does not contain any free variable.

(vii) (baba € L(n") Aaba ¢ L(n")) — 7’ contains a variable y occurring once in X1, once in X5
and not occurring in any other maximal variable block.

(viii) (abab € L(7') A aba ¢ L(r")) — n’ contains a variable y occurring once in X5, once in X3
and not occurring in any other maximal variable block.

(ix) (ababa € L(n') Aaba ¢ L(n')) — (x contains a variable y occurring exactly once in Xy,
exactly once in X3 and occurring in no other maximal variable block, and a free variable occurs
in X3 after the occurrence of y in X3) V (7’ contains a variable y occurring exactly once in X7,
exactly once in X5 and not occurring in any other maximal variable block, and a free variable
occurs in X7 before the occurrence of 4 in X).

First, consider any o € L(7’). By (i), « has the shape b1 a™2b™3a™4b™ . . ., where mg, m4 > 0.
Furthermore, if m3 = 1, then (vi) implies that (b occurs at least twice in @ \V a? is a substring of o).
Now suppose s is a string of the shape b™1a"2p™3a™4p™5 . .. §™* satisfying Conditions 1. and 2,
where 0 € {a,b} and m; > Oforalli € {1,...,k} \ {1,3}. We show that s € L(n’) by means of
the following case distinction.

Case (a): a? is a substring of s. Let s = 31a%f2, where (31, B2 € ¥*. By (ii) and (iii), one may
substitute 31 for the free variable occurring in X; and (3o for the free variable occurring in X35.

Case (b): a?isnota substring of s and mo;_1 > 2 for some j such that 25 — 1 < k. First, suppose
ma;—1 > 2 for some j such that 25 — 1 ¢ {1, k}. Then mo;_o, mg; > 1. Let n;y and ny be
nonnegative integers such that 2nq + 3ns = mg;_1. By (iv) and (v), one may substitute b"*
for the variable occurring twice in X5 (and occurring in no other maximal variable block) and
b™2 for the variable occurring thrice in X9 (and occurring in no other maximal variable block).
By (ii) and (iii), one may substitute 6™ . ..a™2i-2~! for the free variable occurring in X and
a™2i~1 __ §™k for the free variable occurring in X3.

Second, suppose mgj_1 = 1 for all j such that 2j — 1 ¢ {1, %k} and m; > 2. By (vii), one
may substitute b for the variable occurring once in X7, once in X9 and occurring in no other
maximal variable block. By (ii) and (iii), one may substitute b™~1 for the free variable
occurring in X7 and b™5 ... §"** for the free variable occurring in X3.

Third, suppose that m; > 2 and k is odd. By (viii), one may substitute b for the variable
occurring once in X3, once in X3 and occurring in no other maximal variable block. By (ii)
and (iii), one may substitute a™* ... b™*—4 for the free variable occurring in X; and substitute
b+~ for the free variable occurring in X3.
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Case (¢): s has the shape (ba)ibl for some 7 > 2 and [ € Ny. By (vii), one may substitute b for the
variable occurring once in X, once in X5 and occurring in no other maximal variable block.
By (iii), one may substitute ™5 ... §™* for the free variable occurring in X3.

Case (d): s has the shape (ab)ia for some ¢ > 2. By (ix), at least one of the following holds: (1) one
may substitute b for the variable y occurring once in X, once in X3 and occurring in no other
maximal variable block, and substitute a"¢ . .. §""* for the free variable in X3 occurring after
the occurrence of y in X3, or (2) one may substitute b for the variable 4 occurring once in X7,
once in X7 and occurring in no other maximal variable block, and substitute a2 ... a""+—4
for the free variable in X; occurring before the occurrence of y in X;.

Case (e): s has the shape (ab)" for some ¢ > 2. By (viii), one may substitute b for the variable
occurring once in X9, once in X3 and not occurring in any other maximal variable block. By
(ii), one may substitute a”*2 . .. b™*—4 for the free variable occurring in X .

This completes the case distinction, showing that L(7’) consists of all strings s of the shape
bMig™M2pM3gM4p™s || satisfying Conditions 1. and 2. J(Claim 1)

It may be directly verified that 7 is consistent with 7. Consequently, by Claim 1, 7" is indeed a
teaching set for 7 w.r.t. II2. [ |

Appendix E. Example 4

Example 4. Let ¥ = {a,b} and 7 = xlaxgaxg. Then (a) L(r) is regular, (b) 7 does not contain
any substring v € X7 such that || > 2, and (c) 7 starts and ends with variables, but 7 is not finitely
distinguishable w.r.t. IT2.

Proof According to (Reidenbach and Schmid, 2014, Proposition 9), L(7) is regular; it also follows
directly from the definition of 7 that 7 satisfies conditions (b) and (c). It remains to show that
TD(r, I1?) = co. Suppose otherwise, and that T were a finite teaching set for L(7) w.r.t. II?. Then
there is an m sufficiently large so that for all m’ > m, the language generated by 7’ = x; awT’x%axg
is consistent with T". Let ’ > m be odd. One has ab™ a € L(n") via the assignment 1, z2, 23 — €
and x4 — b. However, if ab™ a € L(r) via some B : X — X*, then B(z;) = B(x3) = ¢, and so
B(x3) = b** = b™ for some k > 1, which is impossible as 7/ is odd. [

Appendix F. Example 5

Example 5. Let X = {a,b,c} and 7 = 2172730792 %05b7675277. Then (a) L(7) is regular, (b)
does not contain any substring o € X7 such that |a| > 2, and (c)  starts and ends with variables,
but 7 is not finitely distinguishable w.r.t. IT3.

Proof According to (Jain et al., 2010, Theorem 2), L(7) is regular; also, by definition, 7 satisfies (b)
and (c). Now assume that 7" were a finite teaching set for L(7) w.r.t. II>. As in Example 4, there is an
m large enough so that whenever m’ > m, 7’ = xlxgwgam?'xgxix5bx6x5m7 is consistent with 7.
Fix some odd m’ > m. Note that the assignment x1, o, x3, T4, T5, T, Ly — €, Tg — € Witnesses
ac™b € L(x'). If, however, there were some assignment B : X — X* witnessing ac”™ b, then it
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must hold that B(x1) = B(x2) = B(x3) = B(xs) = B(zg) = B(x7) = e and B(2?) = 2 = "
for some k > 1, contradicting the fact that m’ is odd. |

Appendix G. Proof of Theorem 6

Theorem 6. Let 1 < z < oo and w € II*. If 7 is finitely distinguishable w.r.t. IT%, then L(r) is
regular.

Proof Let ¥ = {a1,...,a,}. Foreach§ € ¥ and w € (X U X)*, let #(9)[w] denote the number of
occurrences of ¢ in w. Further, for any 3, € 3%, recall that the shuffle product of 3 and -, denoted
by B WA, is the set {17122 - - Br vk : Biy,vi € XX AP1P2... B = BAY1Y2 ... Yk = 7}, and the
shuffle product of two sets S and T', denoted by S L T, is the set | J,c g, $ LU T (Lothaire, 1983).

Suppose T were a finite teaching set for  w.r.t. IT*. Fix some m > max{|a| :« € TTUT~ V
|a| = |m|}. Consider any pair (I, .J) € o([1, 2]) x p([1, 2]) such that INJ = 0. Let I = {iq, ..., ix}
and J = {j1,...,je}. Define

Sr=A{w e L(m) : (V1 < d < k)[#(aiy)[r] + 1 < ##(aiy)[w] < #(ai,) 7] +m
— A (Ve e 1,2\ D)[##(ae) [w] = #(ae) 7]},
<d< [v

Ty ={vedaj,...,a;}" : (V1 <d < O)[#(a;,)[v] = m]}.
Given Sy and Ty, set E7 y = (Syw Ty) w {a;,,...,a;}*. Observe that S; and T’y are both finite
and hence regular, while {a;,, ..., a;,}* is also regular. As the shuffle operation preserves regularity,

it follows that £ ; is regular. Further, since the regular languages are closed under the union
operation, the required result follows immediately from the next claim.

Claim 1. L(w) = ULJng]/\mJ:@ Erg.

Proof of Claim 1. We first show that L(m) € U; jc1,2a1n7=p 1,0 Consider any a € L(rr). Define
I={d: #(aq)[r]+1 < #(ag)la] < #(aq)lr+m—1} and J = {e : #(ac)la] > #(a.) (] +m}.
Then o € Ey ;.

Now it is shown that U; ;i1 .jarns—g £1,0 € L(7). Choose any I, J C [1, z] such that TN .J =
0. Let I = {i1,...,ix} and J = {jl,...,jg} Pick any o € S;, 8 € Ty and v € {a;,,...,a;}"
One has to show that forany w € (aWw f) Wy, w € L(m). Let p : X — X* be a substitution
witnessing a € L(). Since w € (Wl 3) L, there is some v € {a;,, ..., a;, }* such that whenever
1 <d <, aj, occurs at least m times in v and

W = V1O1V20% . . . Upy—10p—1Un (6)
for some vy,...,v, € {aj,...,a;}* and ai,...,a,—1 € ¥* with & = aqaa... a,—1 and
V=01...0Up.

One now derives a pattern 7 from the decomposition (6) of w as follows. Let 7y,...,m,—1 €

(X U X)* be strings such that 7 = 7y ... m,—1 and ¢(7m;) = o forall i € [1,n — 1]. Replace each
«; (here we are referring to the specific occurrence of «; starting at the (|v1a . .. v;| + 1) position
of w) with ;. Next, choose distinct variables yi, . ..,y, ¢ Var(m). For each d € [1, ¢], substitute
yq for every occurrence of a;, in v1,va, ..., v, (as before, for every i € [1,n], we are referring to
the specific occurrence of v; starting at the (|vy ... ;1| + 1)% position of w). Note that 7 can be
derived from 7 by interleaving 7 with a string consisting of the variables y, . . ., y¢, and therefore
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L(m) C L(7). Further, 7 is consistent with 7" because every additional variable y; occurs at least m
times in 7. Thus L(7) C L(w), and as w € L(7), it follows that w € L(7). [ |

Appendix H. Proof of Theorem 7

Theorem 7. Let z € {2,3}, 31 = {a,b}, X9 = {a,b,c} and 7 = X711 Xoco ... Xp_16n-1Xn,
where Xo,..., X,o1 € Xt e1,...,0001 € X if 2 = 2, ¢1,..., ¢4-1 € B if 2 = 3, and
X1, X, € X*. If  is finitely distinguishable w.r.t. IT*, then the following conditions hold for all
ie€l,n—1].

1. If z = 2, then ¢; € {a,b,ab,ba};if z = 3, then ¢; € Xo.

2. If z = 2, then for all & € {X1, X;,, 01X, §X;0X;,110,60X;5,0X;60} such that « is a sub-
string of , where §,0 € X and 0 # 0, there is a £ > 1 for which « contains variables

Y1, ..., Yk such that for all j € [1, k], y; occurs g; times in « for some ¢; > 1, y; does not
occur outside the block « and ged(qi, - .., qx) = 1. If z = 3, then the latter statement holds
for o = Xj.

3. If z = 2, then 7 contains at least one free variable; if z = 3, then X7 and X, each contains at
least one free variable.

Proof Let T be a finite teaching set for L(7) w.r.t. IT* and fix any m > max({|y| : vy € TTUT ™ }U
{I7[})-

Proof of (1). Let z = 2. Suppose 7[i]r[i + 1] = aa for some i € [1,|r| — 1]. Choose some variable
y ¢ Var(r), and let 7’ be the pattern obtained from 7 by inserting ™ between the i** and (i + 1)**
positions of 7. Note that 7’ is consistent with T". Furthermore, let /3 be the string derived from 7’ by
substituting b for y and ¢ for every other variable. Since the number of times that aa occurs in 3 is
strictly less than the number of times it occurs in 7, one has 8 € L(n’) \ L(7), a contradiction.

Now suppose 7[i]m[i + 1]7[i + 2] = aba for some i € [1, || — 2]. Let 7 be the pattern obtained
from 7 by inserting 4™ between the i and (i + 1) positions of 7, and let 6 be the string derived
from 7" by substituting b for y and ¢ for every other variable. One may verify as in the earlier case
that 7 is consistent with 7' but 6 € L(7") \ L(m).

If z = 3, then the proof that ¢; € 335 is similar to the preceding proof.

Proof of (2). Let z = 2. First consider the case a = X;. Choose § € X so that § is different
from the first symbol of ¢;. As before, choose a variable y ¢ Var(r), and note that for all j > m,
y/7 is consistent with T'. Thus 6’7 () € L(r) for all 5 > m. This implies that X1 # &, and that
there exist variables y1, . .., yr occurring only in X such that for all ; > m, there are nonnegative
integers my, . .., my for which Ele m;q; = j, where ¢; is the number of times that y; occurs in
X1. Therefore ged(qi, . .., qx) = 1. The case a = X, can be handled similarly.

Now suppose a = aX;a = w[j]m[j + 1] ... 7[j + []. Choose some variable y ¢ Var(r), and for
any m’ > m let m,,, be the pattern obtained from 7 by inserting ym/ between the j* and (j + 1)*
positions of w. Let 3,/ be the string derived from m,,, by substituting b for y and ¢ for all other
variables. As in the previous case, note that 7, is consistent with 7" and so 3, € L(), which
means that there exist variables 1, . . . , yx occurring only in X; such that if ¢; is the number of times
that y; occurs in X, then ged(qq, ..., qx) = 1.
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Finally, let « = aX;bX,;11a = w[j1]...7[j1 + l1]. The proof is very similar to that of the
previous case; here one defines for every m’ > m the pattern 7,/ obtained from 7 by inserting y™
between the j{" and (j; + 1)* positions of 7 and setting 3,/ to be the string derived from 7,/ by
replacing y with b and every other variable with €. The remaining cases in (2) (including the case
z = 3) can be dealt with similarly.

Proof of (3). Let z = 2. Choose two distinct variables y;, y2 ¢ Var(m), and define

T =mylys Yyl Ty ey )
—

-~

Let 5 be the string derived from 7 by substituting a for y1, b for g9, and € for all other variables; that
18,

B =m(e) a™pma™ g™ gL gdmptmgdm (8)

Since 7 is consistent with 7", one has that § € L(m). Let A : (X UX)* — X* be a substitution wit-
nessing 3 € L(7). By statement (1), each constant block of 7 overlaps with at most one substring of
the form a™ b+ q™+t, Further, there is some j € [0, 3m] such that for some z € Var(7), A maps
an occurrence of z in 7 to a substring 3’ of 3 such that a™*7b™+J™+J (whose specific occurrence
in /3 is indicated by braces in (8)) is a substring of 3’; otherwise, for each occurrence of a variable 2’
in 7/, A maps this occurrence of 2’ to a substring of @ tipm+igmtigmFitipm+itlgmtitl (whose
specific occurrence in 3 is indicated by braces in (8)) for at most one i € [0,3m — 1], and so
|A(7)| < B, a contradiction. Since 3 cannot contain two copies of a”™*7b™ 7™ *+J 2 must be a free
variable of 7, as required. The fact that X; and X,, each contains at least one free variable if z = 3
can be proven similarly. |

Appendix I. Proof of Theorem 8
Theorem 8. Let z € NU {oo} and let 7 be a regular pattern over X. Then TD (7, RIT?) < 2|7| + 1.

Proof It will be shown later (Theorem 12) for all regular patterns 7, TD(7, RII*) < 3 when z = 1
and TD(m, RII?) < 5 when z > 7. We shall therefore assume that 2 < z < 6. A teaching set 7" for
7 w.r.t. RII* may be constructed as follows. Let w = m(¢). First, put (w, +) into 7. Second, for
each i € [1,|w]|], fix some a; € ¥ such that a; # w|i] (which is possible because z > 2), let w; be
the string derived from w by replacing w[i| with a;, and put (w;, —) into T'. Let 7 be any regular
pattern that is consistent with the labelled examples put into 7" so far, and observe that 7(¢) = w.
Without loss of generality, one may assume that 7 has the shape c;zi¢2 . .. ¢, Where ¢q, ¢, € XF
and ca, ..., c,—1 € XT. To finish the construction of T, the cases (i) z = 2 and (i) 3 < z < 6 will
be considered separately.

Case (i): z = 2. Let X = {a, b}. We will apply Lemma B.1 several times in this proof.

Define (p1,p2, ..., p|w|) to be the sequence of position numbers of 7 such that for all ¢ €
{1, [wl}, 7[pi] = wli]. Similarly, define (q1, g2, - - -, gju|) to be the sequence of position
numbers of 7 such that for all i € {1,...,|w|}, T[¢;] = w[i]. Note that since 7 and 7 are
assumed to have the shape ciz1coms . .. 2,1y, Where ¢1,c0 € X*and ca,...,c,_1 € X7, it
holds that for all i € {1,..., |wl|}, either p;+1 = p; + 1 (resp. gi+1 = ¢; + 1) (no variable of
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7 (resp. T) occurs between w(i] and w(i + 1]) or p;+1 = p; + 2 (resp. gi+1 = ¢; + 2) (exactly
one variable of 7 (resp. 7) occurs between w[i| and w[i + 1]). By applying Lemma B.1 as
often as necessary, one may assume that 7 and 7 possess the following property.

Property 1. Suppose that for some o € (X U X)*, m > 1 and distinct variables z; and z;,
x;a™abx; is a substring of 7 (resp. 7). If b does not occur in «, then « contains at least one
variable. A similar statement holds with any of the strings in {x;b"ax;, z;aab™x;, x;aab™
xj, r;baa™x;} substituted for x;a™ abx;.

In other words, if 7 (resp. 7) contains a substring of the shape z;a"bx;, where m > 1
and x; and x; are distinct variables, then one can extend 7 (resp. 7) by inserting a new
variable between a"* and b. Note that one can only add a finite number of new variables to
7 since it is assumed throughout this proof that the regular patterns are always expressed as
C1T1C2T3 . . . Ty_1Cy, Where c1,¢, € ¥* and ¢, ..., c,_1 € X, The remaining elements of
T are defined as follows.

1. Add two labelled examples that identify the starting and ending symbols of 7. Fix some
vy € ¥\ {w[1]}. If p; = 1, that is, 7 starts with a constant, then put (vyw, —) into T". If
p1 = 2, that is, 7 starts with a variable, then put (v;w, +) into T'. If 7 were consistent
with 7', then 7 starts with a variable iff 7 starts with a variable. Similarly, fix some
vy € ¥\ {w[|w|]}; if pp,| = ||, then put (wvg, —) into T', and if pj,, = |7| — 1, then
put (wve, +) into T'. If 7 were consistent with 7', then 7 ends with a variable iff 7 ends
with a variable.

2. Now consider any substring w(iJw[i + 1] of w such that w[i] = w[i + 1]. Fix some
a; € X\ {w[i]} =X\ {w[i + 1]}. Let w’ be the string obtained from w by inserting a;
between wi] and w[i + 1]. If p;11 = p; + 2, then put (w’, +) into T'; if pi11 = p; + 1,
then put (w’, —) into T'. Suppose that (w’, +) € T. We argue that if 7 were consistent
with T', then ¢;+1 = ¢; + 2. Since 7(¢) = w and |w'| = |w| + 1, w’ is derived from 7
by replacing exactly one variable z; with a constant symbol. Let ¢ : (X U X)* — X*
be a substitution witnessing v’ € L(7). Suppose ¢ maps z; to the (j')" position of w’
for some j' < 4. Since 7(¢) = 7(e) = w, it follows that w'[l + 1] = w[l] forall I > j,
contradicting the fact that w'[i + 1] # w[i]. If ¢ maps x; to the (") position of w’
for some j” > i + 2, then w'[i + 1] = w[i], which again yields a contradiction. Hence
x; occurs between ¢; and g; 41, that is, ¢;11 = ¢; + 2. One can argue similarly that if
(w',—) € T and T were consistent with 7', then ¢;+1 = ¢; + 1.

3. Next, add a labelled example to 7" so that a variable of 7 occurs between w|[1] and w|2]
iff a variable of 7 occurs between w[1] and w[2]. Suppose that ps = p; + 2, that is, a
variable of 7 occurs between w[1] and w[2]. The case w[1] = w[2] was handled in 2. By
symmetry of a and b, it may be assumed that w[1] = a and w[i] = bforall 2 < i < m,
where either m = |w| or w[m + 1] = a. If 7 and 7 do not start with variables, then let
u1 be the string obtained from w by inserting a between w[1] and w|2], and put (u1, +)
into T'. The consistency of 7 with T" would imply that g2 = ¢; + 2. Suppose 7 and 7
both start with variables. In Step 2., we added an example to 7" so that for any 7,7 + 1
with 2 < j, 7 + 1 < m, a variable of 7 occurs between w[j] and w[j + 1] iff a variable
of 7 occurs between w[j] and w[j + 1]. If a variable of 7 (resp. 7) occurs between w|j]
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and w[j + 1] for some j such that 2 < j, j + 1 < m, then by Lemma B.1 a variable of
7 (resp. T) occurs between w[1] and w[2]. If no variable of 7 (resp. 7) occurs between
wlj] and w[j + 1] whenever 2 < j,j 4+ 1 < m, then let ug be the string obtained from
w by inserting b between w|[1] and w[2], and put (ug, +) into 7. The consistency of 7
with T then implies that a variable of 7 occurs either between w[1] and w][2] or just after
w[m]; note that the latter case also implies that a variable of 7 occurs between w[1] and
w[2]. An analogous argument holds if po = p; + 1. Similarly, add a labelled example to
T so that a variable of 7 occurs between w[|w| — 1] and w[|w|] iff a variable of T occurs
between w[|w| — 1] and w||w|].

. Finally, consider any substring of w of the shape s = w[iJw[i + 1]w[i + 2]w[i + 3]. We
would like to add a labelled example to 1" so that p;12 = pj+1 + 2 iff ¢42 = qi41 + 2
(that is, a variable of 7 occurs between w[i + 1] and w[i + 2] iff a variable of T occurs
between w[i + 1] and w[i + 2]). The case w[i + 1] = w|i + 2] was handled in Step 2.
By symmetry of a and b, it may be assumed that one of Subcases (1)-(4) holds; in each
subcase, suppose that p;12 = p;+1 + 2.

Subcase (1): s = abaa. Let t; be the string obtained from w by inserting ba between
wli 4+ 1] and w[i + 2], and put (¢1,+) into T'.

Claim 1. If 7 were consistent with 7, then at least one of the following would hold:
Gi+2 = qi+1+2, or variables of 7 occur between w/[i] and w[i+ 1] as well as between
w(j] and w([j + 1] for some j > i + 2 such that w[j'] = a forall j’ € [i + 2, j].

Proof of Claim 1. Let ¢ : (X U X)* — ¥* be a substitution witnessing t; € L(7).

Since [t1] = |w| + 2, and 7(¢) = w, one of the following cases holds.

Case (a): There is exactly one variable xj, of 7 such that for some j € [1, [¢;| — 1],
¢maps xy to ty[jlt1[j+1]. If j < i, thentq[f]t1[j+1] = t1[j+2Ut1[j +20+1]
for all [ such that j + 2 < 54+ 21,5 + 2l + 1 < ¢ 4 4, which is impossible since
tl[i]tl[i+1]t1[i+2]t1[i+3] = abba. If j = i+1,thena = t; [i+3] = w[i—i—l] =
b, a contradiction. Similarly, if j > i 4 3,thenb = t1[i + 2] = w[i + 2] = a, a
contradiction. Hence j = ¢ + 2.

Case (b): There are distinct variables zy, x; such that ¢ maps xy to t1[j1] and ¢
maps x; to t1[j2] for some ji, jo € [1,|t1]] such that jo > j; + 1. Suppose
J1 < i+ 2. First, suppose that ¢1[ji;] = a. Then either ¢;[j’] = a for all
4’ € [j1,4 + 1] (which is impossible) or jo € [j1 + 2,7 + 1], t1[j2] = b and
t1[j2 +2h—1]t1[jo+2h] = abforall h > 1 such that jo+1 < jo+2h—1, jo+
2h < i+ 3, which is impossible because ¢1 [i]t1[i + 1]¢1[i + 2]t1[i + 3] = abba.
Second, suppose that t1[j1] = b. If j; < 4, then either ¢1[j/] = b for all
4" € [j1,i + 1] or ja € [j1 + 1,4 + 1] and ¢, [jo + 2h — 1]t1[j2 + 2h] = ba for
all h > 1 such that jo + 1 < jo + 2h — 1, 50 + 2h < i 4+ 3, a contradiction.
Furthermore, if j; > i + 3, then b = ¢;[i + 2] = w[i + 2] = a, a contradiction.
Consequently, j; € {i + 1,7 + 2}.

Now suppose jo > i+6. Suppose that ¢1[j2] = b. Then for all j3 € [i+4, jo—1],
t1[j3] = b, which is impossible since ¢1[i + 4]t1[i + 5] = aa. Hence we may
assume that £1[j2] = a. Then for all j3 € [i + 6, jo — 1], t1[j3] = a.

It follows that either xj, occurs between w[i 4+ 1] and w[i + 2|, that is, gi+2 =
¢i+1 + 2, or xy, occurs between w|i] and w(i + 1] and x; occurs between w|j]

26



FINITELY DISTINGUISHABLE ERASING PATTERN LANGUAGES

and w[j + 1] for some j > i + 2 such that w[j’] = aforall j' € [i +2,j]. |
(Claim 1)
Note that if variables of 7 occur between w[i] and w[i + 1] as well as between w|j]
and w[j + 1] for some j > i + 2 such that w[j'] = a for all j’ € [i + 2, j], then
Lemma B.1 implies that a variable of 7 must occur between w(i + 1] and w[i 4 2].

Subcase (2): s = bbab. Let t; be the string obtained from w by inserting ba between
wli + 1] and w[i + 2], and put (¢2, +) into 7". One can argue similarly to Subcase
(1) that a variable of 7 must occur between w(i + 1] and w[i + 2].

Subcase (3): s = bbaa. Let t3 be the string obtained from w by inserting ab between
wli + 1] and w[i + 2|, and put (¢3,+) into T". The rest of the argument proceeds
analogously to Subcase (1).

Subcase (4): s = abab. Let t4 be the string obtained from w by inserting ba between
wli + 1] and w[i + 2|, and put (¢4, +) into T". The rest of the argument proceeds
analogously to Subcase (1).

The case p;+2 = p;4+1 + 1 can be handled analogously to Subcases (1)—(4).

T now contains a total of 2|7| 4 1 labelled examples, and this completes the proof of Case (i).

Case (ii): 3 < z < 6. For each pair of adjacent constants w([i], w[i + 1] such that 1 < i,i+1 < |w|,
fix some a; € ¥\ {w[i], w[i + 1]} (which is possible because |X| > 3) and let s; be the string
derived from w by inserting a; between w(i] and w[i + 1]. Put (s;, +) into T if p;y1 = p; + 2
and put (s;, —) into T'if p; 11 = p; + 1. Fix some b; € ¥\ {w[1], w[|w|]}. Set o = byw and
B = wb;. Put (o, +) into T if 7 starts with a variable and put (c, —) into 7" if 7 starts with a
constant. Put (3, +) into T if 7 ends with a variable and put (3, —) into 7" if 7 ends with a
constant. One can argue similarly to Step 2 in the proof of Case (i) that if 7 were consistent
with T', then L(7) = L().

Appendix J. Proof of Theorem 9

Theorem 9. Let z € N U {oo} and let 7 be a 1-variable pattern over ¥. Then TD(m, 111*) < oo
iff 7 contains a variable. If 7 contains a variable, then TD(r, 11I*) = O(|x|) if z = 1 and
TD(7, 1T17) = O(|x|?) if z > 2 (including z = o).

Proof We prove the second part of the statement. Suppose that 7 contains a variable.

Case (i): z = 1. Let ¥ = {a} and 7 = a™z". A teaching set for 7 w.r.t. 1TI! is {(a%, —) : = <
m}U{(a™,+), (@™ +)} U {(a™"* —):0 < x < n}. Note that {(a™, +)} U {(a®, —) :
x < m} uniquely identifies a™ as the constant part of 7, while {(a™*", +)} U {(a™*, —) :
0 < & < n} uniquely identifies the variable block of 7 among all 7’ such that 7/ () = a™.

Case (ii): z > 2 (including z = o0). Let 7 = 1 X169Xo ... X_1Cpn, Where c1,¢, € X%,
€2y Cp—1 € YT and X1,..., X, € {x}*. Build a teaching set T as follows. First,
choose any two distinct a,b € X. Put (7(a),+) and (7(b),+) into T. Let ' be any 1-
variable pattern that is consistent with {(7(a), +), (7(b), +)}. Note that since |7 (a)| = |m(b)]
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and 7’ contains at most one variable (with possibly more than one occurrence), any sub-
stitutions @1, @2 : (X U X)* — X* such that p;(7') = 7(a) and po(n’') = m(b) satisfy
o7 (m(a)[i]) = oyt (m(b)]i]) for all i € [1,|r(a)|]. In particular, consider any j € [1, |x]
such that 7r[j] is a variable; since 7(a)[j] = a # b = w(b)[j], ¢ (7 (a)[4]) is also a variable.
Further, let 7’ = d1Y1d2Y5 . .. Y_1dy, where dq,dy, € X%, do,...,dp_1 € ¥+ and Yi,...,
Yj—1 € {z}T. Consider the following decomposition of m(a):

cl a1l Co alXal | qlXn—l Cn 9
~—~ ~—~
There is a sequence (i1,...,4) such that 1 < 43 < ... < i < n and ; maps d; to Cij

for all j € [1, k] (where the ¢;’s are indicated by braces in the decomposition (9)). Further,
for every j € [1,k], i; < ij41. To see this, assume to the contrary that there exists some
[ € [1,k] such that 9y = ;41 = m for some m € [1,n]. Then ¢; and @2 both map
Y;, to the same proper substring of ¢,,. As Y;, = z* for some u > 1, it follows that
©1(z) = @o(x) and therefore ¢1(7') = @a(7’), a contradiction. Thus i; < ... < iy
indeed holds. Further, for every i € [1, n], there are O(|r|?) substrings of ¢;. Consequently,
since n < ||, [{7(¢e) : 7 € (XU X)T A 7is consistent with T}| = O(|r|?). For each
w € {r(e) : 7 € (XU X)T A 7isconsistent with T'} such that w # =(¢), put (w, —)
into 7. Hence if 7’ is consistent with 7', then 7’(¢) = 7(¢). In addition, 7" has the shape
1Yy ... Y, 1cn, where Yi,...,Y, 1 € {x}" and for some p > 1, | X;| = p|Y;| for all
i € [1,n — 1]. Fix some a € X, and for each possible choice of ;1 > 1, put the negative

1xq] [Xpn—1l . . .
example <cla K o...a # c¢p,— | into T. There are at most || possible choices of p > 1.

At this stage, T contains 2+ O(|7|3) + |7| = O(|7|?) examples and every 7’ € 1II* consistent
with 7" must be equivalent to 7.

Appendix K. Proof of Theorem 10(2)

Theorem 10(2). Let z € NU {oo} and let m = 27" ...z}* be a non-cross pattern over X. If z > 2,
then TD(m, NCII?) < oo iff n; = 1 for some i € [1, k], i.e., iff 7 contains at least one non-repeated
variable.

Proof Define nj 1 and 7’ as in the earlier proof sketch of Theorem 10(2). Again, let myq, ..., my,
my1 be a sequence such that m;n; < m;11n;1 for all « < k. We show that the string w obtained
from 7’ by replacing every odd-indexed variable xo; 1 with a™2i—! and every even-indexed variable
x9; with b™2 is in L(x'") \ L(w). That w € L(x’) follows directly by construction; we focus on
proving w ¢ L(m). Suppose for a contradiction that some substitution ¢ : X — ¥* witnesses
w € L(m). As in the proof of Theorem 3(3), Case (i.1), the morphism extending ¢ induces a mapping
I, from the set of all intervals of positions of 7 to the set of all intervals of positions of w. For any
i, € {1,...,|w|} withi < 7, let wli : 5] denote the specific factor of w from its 7! position to its
j" position. Forall 7, £ € {1,...,|w|} with j < £andi € {1,...,k}, say that w[j : ] cuts p(x]")
iff 1., maps the interval of positions of 7 corresponding to the (unique) occurrence of z;" in 7 to a
nonempty interval [i, j'] such that one of the following holds: (1) ¢/ < i and j' > i,0r (2) i < j
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and j’ > j. In other words, w[j : €] cuts ¢(z;") iff 1., maps the interval corresponding to x;" to an
interval that properly overlaps with [7, ] or is a proper superset of [7, ¢].

Claim 1. Foralli € {1,....k+1}andj € {1,... .k}, w |1+ > 0 mimy > ., mi/ni/] does
not cut p(x”).

Proof of Claim 1. We establish Claim 1 by inductionon ¢ = 1,...,k 4+ 1. Suppose by way of a
contradiction that w1 : myn] = a™™ cuts some p(z}"), so that p(x*) is of the shape a’1b2a’ . ..

for some iy, 42,43, ... with 41,49 > 1. o(x;) is of the shape a'1b™ ..., where i} = i; and i, = io.
Note that a"b"2a cannot be a prefix of ¢(x;); otherwise, since n; > 2, there would be at least
two occurrences of a*'b*2a in w, which is false as mini, mana, ..., mgng, Mr41ngy1 1S strictly

increasing. On the other hand, if p(x;) = a’'b®2, then n; > 2 implies that a*1b2a*1b% is a substring
of w, which is also false. Thus w[1 : min;] does not cut (z;"). Proceeding inductively, assume that

n

w1+ 0 mpngy Zz‘/gi mi/ni/} does not cut <p(a:j ) for all ¢ < p (for some p < k) and j €
{1,..., k}. Without loss of generality, suppose that w [1 + D i cp MM = D ircpi mi/ni/} =
ar+1mp+1 - By the induction hypothesis, if w [1 + Zi’<p+1 MmNy - Zi’gp—i-l mi/ni/} cuts some
w(x?ﬂ'), then I, must map [1 D i i i< ni/] to an interval [(1, (o] such that 1+ 37,
myny <1 < Zi’ngrl myny < 9, so that go(a:?j) is of the shape a’'b/2a73 . . ., where ji, jo > 1.
By applying an argument similar to that for the base case, this would give a contradiction. [ (Claim
1)

According to Claim 1, for every factor w [1 + > <i MM > i<; myngy | of w, there is at
least one j such that I, maps the interval of positions of 7 occupied by a;?j to a subinterval of
[1 D i My Y mi/ni/}. But ¢ ranges from 1 to k& + 1 while there are only & distinct

factors of 7 of the shape :1;;-” , a contradiction. The rest of the proof proceeds as in the earlier proof
sketch of Theorem 10(2). |

Appendix L. Proof of Theorem 12
Theorem 12.

1. TD(RIT!) = 3.
2. For all z > 2 (including z = 00), TD(RIT?) > 5.

3. Forall z > 7 (including z = 00), TD(RII?) = 5.

Proof 1. To see that TD(RHl) > 3, note that RII! contains all constant patterns and the pattern x;.
To distinguish a non-constant pattern other than x; from all constant patterns, at least two positive
examples are needed. To distinguish it from x1, at least one negative example is needed. Thus
TD(RII!) > 3. It remains to show that every pattern in RII' has a teaching set of size no larger than 3.
To this end, note that patterns in RII' can be normalized to either a™ or a™ 'z for some n > 1. The

constant pattern a” is the only pattern in RIT! that is consistent with {(a™, +), (a" !, —), (a® 1, —)}.
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As a teaching set for the pattern ™~ 'z1, where n > 2, one may use {(a" "1, +), (a®, +), (a2, —)}.
In case n = 1, i.e., for the pattern 1, the set { (e, +)} suffices.

2. This part of the proof is very similar to a corresponding proof for non-erasing languages,
see (Gao et al., 2016, Theorem 15). Let z = |X| > 2. Consider the pattern 7 = az1bxaa. We claim
that TD(7r, RII*) > 5. In particular, we show that any teaching set for 7w w.r.t. RII* contains at least
two positive and three negative examples. Two positive examples are needed to distinguish 7 from
all constant patterns. To see that three negative examples are needed, we provide three patterns
w1, 2, m3 € RII* that generate pairwise different languages such that L(m;) N L(w;) = L(7) for
1 <7 < j < 3. Then each negative example for 7 rules out at most one of the three patterns
m1, T, T3, SO that any teaching set for 7 w.r.t. RII* must contain at least three negative examples.
The following three patterns satisfy the required conditions: m; = x1bxea, Ty = ax1bxs, and
T3 — aria.

3. This result is immediate from 2. and the following sequence of lemmas.

LemmaL.1 Let z = |X| > 7Tand n > 2. Let 7 be any regular pattern of the shape ™ =
Xie1Xocy ... Xp_16n_1 X, for some ci,ca,...,cn1 € X7 and X1, Xo,..., X, € XT. Then
TD(w,RII?) < 3. In particular, 7 has a teaching set of size three w.r.t. RII? that contains two
positively labelled examples that neither start nor end with the same letter.

Lemma L.2 Ler z = |X| > 2 and 7 be a regular pattern that starts and ends with a block of
variables. Let T be a teaching set for m w.r.t. RII* such that T' contains two positively labelled
examples that neither start nor end with the same letter. Let c1,co € ¥ 7. Then the following hold:

1. TD(cym,R1I*) <1+ |T'| and TD(me1, RIIF) < 1+ |T

>

2. TD(Cl']TCQ,RHZ) <2+ ’T|

Lemma L.3 Letz = |X| > 2. Let c € 1 and X1 € X be regular patterns. Then TD(c, RITI?) =
TD(X1, RIT?) = 2.

The proofs of these lemmas are very similar (but with a few important differences) to the correspond-
ing proofs for the non-erasing regular pattern languages; see (Gao et al., 2016, Lemmas 26 and 28).
First, note that any regular pattern of the shape X1d1 X5 ...d;_1X}, where X1, Xo,..., X, € X,
is equivalent to a regular pattern in which any two distinct variables are separated by a constant
block. Every regular pattern can thus be expressed in a canonical form cizicox2 . . . £p—1¢p, Where
c1,¢n—1 € Y* and ca,...,c,_2 € XT. Throughout this proof, it is assumed that every regular
pattern is expressed in its canonical form. We introduce the following notation for this proof. Let
c € T If |3] > 3 and a is a letter that differs from c[1] and c[n], then we define

¢=cac” for & =¢[1]...¢[lc] — 1] and ¢' =¢[2]...c]]] . (10)

The notation ¢ does not make the choice of a explicit but this choice will always be clear from the
context.

Proof of Lemma L.1. Let < be a linear order on X, where z = |X| > 7. Let m = |r|. For each
i € [1,n — 1], let i’ be the maximum index less than i such that ¢;; # ¢; (if no such index exists then
set i’ = 4) and let 7" be the minimum index greater than 4 such that ¢;» # ¢; (if no such index exists
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then set i/ = ). Let a; be the least (w.r.t. <) letter in X such that a; is different from the first and
last symbols of any member of {c;/, ¢;, ¢;» }. Define the strings «, 5 and v as follows.

a = w(e)=cce...cn1,
m m .m m m m
B = al'cial’ ay'caay ...apn Cp—10," 1,
S—— —— —
ma 2m, m m_m m _ma_ 2m_m m_m m ma. . 2m_m m .m m
Y = a1 C1G7 A9 C209 A1 W1A71 Q9 C2G9 A3 C3A3 Ay W2Ay ...4; CiA; ai+10i+1ai+1ai w;ia;

~~

m 4 2m m m m m m 4 m
s Qp_2Cn—20p_20n_1Cn—10p_10n_oWn—20y_2 Qy_1Cn—10y_1,

where, for each i € [1,n — 2],
¢ ife; #cipas

w; = .
! 9 lfCZ' = Ci+1-

Note that v and 3 neither start nor end with the same letter. We shall show that 7' = {(«, +), (8, +),
(v, —)} is a teaching set for m wr.t. RII? by establishing the following claims.

Claim 1. «, € L(w) and v ¢ L(7).
Claim 2. For any 7’ € RII* such that {a, 8} C L(n’) and L(7") # L(w), v € L(x").

It is immediate from Claims 1 and 2 that for any 7’ € RII* such that L(n’) # L(nw), 7’ is
inconsistent with 7". This would show that T’ is indeed a teaching set for m w.r.t. RIT?.

Proof of Claim 1. « is obtained from 7 by substituting the empty string for every variable of
m, and [3 is obtained from 7 by substituting a}* for X1, a;* | for X,,, and a[" ;a!* for X; when-
ever i € [2,n — 2]. Thus {a, 8} C L(w). Now it is shown by induction that v ¢ L(). First,
note that by construction c is not a substring of ¢ for all ¢ € ¥ 7. In particular, ¢; is not a sub-
string of ¢; for all i € [1,n — 1]. Furthermore, suppose ¢; were a proper substring of ¢; 1. Then
w; = ¢; and ¢;41 cannot be a substring of ¢;. Combining the last two facts with the require-
ments on a;+1 and a;;2, it follows that af*é1a3™al coay a wia’ does not contain a substring
of the shape sjcisacoss for any sy, s2,s3 € ¥*. Similarly, if ¢; is not a proper substring of
ci+1, then the definitions of w;, a;11 and a;12 again imply that af*é1a3™ a5 coay aT wia’ does
not contain a substring of the shape sjcjsocass for any s1, s2, 53 € 3*. Assume inductively that
a'erai™a cea a wial .. al"éai™al cipraltawial does not contain a substring of the
shape s1c152¢2 . .. Si11Cir1842 forany s1, 82, ..., 8,42 € X*. By the definition of @, no prefix of
ci+1 1s a suffix of a7*¢; a%magn coay’ aT'wial’ . .. a?éia?maﬁlcwﬂa?}rla?wiaﬂ Consequently, as
Ci+1 18 not a substring of al’t ;& y1a7t; and a7 al 5cipoal Halt wip1al | does not contain a sub-
string of the shape s1¢;1152¢;1253 for any s1, s2, 53 € X%, one has that a’lnéla%mag”czag"”agnwla’f‘
alhaimal e all altwialtalt Gi1a T alt o cipoal Hal ywi1al | cannot be expressed in
the form §1C182C2 . . . 8;42C;+25;+3 for any si,S2,..., Si+3 € >F. Slmllarly, a{”éla%mag‘c?ag”a’l”
wial ... al"¢al™al i all atwial el ¢y 1alt, cannot be expressed in the form sicisacs

... Si41Ci+18i42 forany sq, Sa, ..., Si+2 € X*. It follows by induction that v ¢ L(7). [ (Claim 1)
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Proof of Claim 2. Consider any 7’ € RII* such that L(n") # L(w) and {«, 8} C L(#’). Since «
and 3 start (as well as end) with different symbols, 7’ is of the shape z1d1z2ds . . . dj,_1xp, Where
x1,T2,...,7, € X and dq,ds, ..., d,_1 € XF. We claim that the following holds:

(*)Let h : (¥ U X)* — X* be a substitution witnessing 3 € L(7’). Then, w.r.t. the decomposition

m m_m m_m m m m_m m m m
ay’ C1 ayay € a5 as ...a; qa; Ci Q] Qi q...0n oGp" 1 Cp1 Gy (11)

of f3, there exists a least i € [1,n — 1] such that for some j € [1,]|¢;|], either (1) h=1(c;[4]) is a
variable or (2) h=1(c;[k]) is a constant for all I € [1,n — 1],k € [1,|¢]|] and a variable of 7" occurs
between h=1(c;[j]) and h=1(¢;[j + 1]).

Suppose otherwise. Since o € L(n’) and 7’ contains at least one variable, |7’(g)| < m. Thus,
for each of the strings af*, al"ay’, ..., a]" 5a" ;,a" ;| indicated by braces in (11), h maps some
variable of 7’ to at least one position in each of these strings. As 7’ # m, 7’ is in canonical form,
and no variable of 7’ occurs between h~!(c;[j]) and h=1(¢;[j + 1]) foralli € [1,...,n — 1] and
J € [1,]cil], 7' () must be of the shape s1¢182¢2 . .. Sp—1 Cn—18n, Where s1, 82, ..., 8, € X* and
at least one s; is nonempty. This contradicts the fact that « € L(7’) and || < |7/(¢)|. Now let
i € [1,n — 1] be the least number that satisfies (*), and let j € [1, |¢;|] be the least number for which
either h~!(c;[4]) is a variable or h~!(c;[k]) is a constant for all [ € [1,n — 1] and k € [1, |¢|] and a
variable of 7’ occurs between h~!(c;[4]) and h=1(¢;[4]). (Note that we are referring to the specific
occurrence of ¢; in 8 indicated by the sequence of braces in the decomposition (11).) We shall
define a substitution ¢ : (X U X)* — X* such that o(7’) = 7. In order to define ¢, we will use
the decomposition (11) of 3; for each prefix al*cial* ... af’cy of B, ¢ will map h= (a'cial" . ..
aj'cy) to a prefix w of . (In what follows, the specific occurrence of w in v will be given w.r.t. the
decomposition (12) of v below.)

ma . 2m,m m,m m _ma 2m_m m,m m ma. . 2m_m m .m m
a1 C1a7 Q9 C2G9 G1 W1G71 A9 C2A9 Q3 C303 Gy W2Gy . ..A; CiQ; ai+1Ci+1ai+1ai wia; ...

(12)

m A 2m . m m m m m A m
Ap—9Cn—20p_90p_1Cn—10n_10p_o2Wn—20y_2 0y_1Cn—10pn_1,

Assume that i € [2,n — 2|. (The cases ¢ = 1 and i« = n — 1 can be handled in a very similar

way.) Consider the decomposition (11) of 3. We first map h =1 (ac;) to af*¢1a2™ a5 caay aT wy if

c1 # co, and to a{”éla%ma?@ if ¢; = ¢y. To construct such a map, note that since |7’| < m and 7’
is not a constant pattern, there is a least position p; of 7’ occupied by a variable x; such that i maps
x1 to some substring of a’* (the first occurrence of a]" in the decomposition (11)). If ¢; # c2, so that
w1 = ¢1, then one can define (1) to be an extension of h(x1) so that p(z1) covers the substring
vérad™a coal™v’ for some suffix v of a’* starting at the first position in a7 that h maps x1 to and
some prefix v’ of a}* ending at the last position in ! that h maps z; to. Letting a* = v'v” and
al = v"v for some v”, v € $*, one can then define ¢(h ! (v""w1)) = h(h~ ! (v"w1)) = v"¢; and
o(h~Y (™)) = h(h~1(v™)) = v". If ¢; = cg, so that a; = as, then ¢ can be defined so that it
extends h(z1) to cover the substring vé;a2™u, where v is defined as above and w is the prefix of a3
ending at the last position in " (= a3") that h maps z; to. Letting a}* = uu' for some v’ € ¥*, one

then defines p(h~!(u'c2)) = h(h~!(u'c1)) = v/ci and (R~ (v")) = h(R~ (V")) = V",
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Inductively, assume that for all k < j, where j < i, o maps h™ ! (al'c1a’" ... ack) to

ma 2m_m m_m m ma  2m _m m_m m ma 2m_m m .m
al Clal a2 CQQQ a1 w1a1 a2 CQa2 a3 03a3 a2 w2a2 - ak Ck-ak ak+16k+1ak+1ak wk-

if ¢ # cgy1, 01 tO

ma o 2m _m m,m m ., mzs_ 2m_m m,_m m mas 2m, m
a1 C1a7 Q9 C2G9 G1 W1G71 A9 C2A9 Q3 C3A3 Gy W2Ay ...Af CrQp ak+1Ck+1

m

if ¢x = cx1 1. We now define the image of h =t (a’cial* . .. al* jcj1aft a]

T 1a"c;) under @.

Case (i): cj_1 # c¢j. Again, since |7'| < m and 7’ contains at least one variable, there is a least
position p’ such that 7'[p'] is a variable 2’ and h maps ' to some substring of a" (where the
specific occurrence of a" in 5 being referred to is indicated by braces below).

m

m m m m
al Clal PR aj_]_cj_la/j_l CLJ Cj

Let p” be the position of 7’ that i maps to the first position of the substring a}* ; whose
occurrence in 3 is indicated by braces below.

m

m m m m
al Clal e ajilcj_l ajil aj Cj
N~

For every symbol s of 7/ between the (p”)*" position and the (p’ — 1)** position inclusive,
define p(s) = h(s). If ¢; # cj41, then () can be defined as an extension of h(z') so that
o(x') covers 'Fhe substring Uléja?maﬁlcj+1 aj’ vz for some suffix vt of a}* starting a.t j[he
first position in aj* that h maps 2’ to and some prefix vy of aj" ending at the last position

in a" that h maps 2’ to. If ¢; = cj41 (so that aj+1 = ay), then (z') can be defined as an

extension of h(x’) so that ¢(z") covers the substring w. éja?m'UJQ, where w; is the suffix of

aj" starting at the first position in 7" that » maps 2’ to and ws is the prefix of aj’, ending at

the last position in 7" (= aj’ ;) that h maps 2’ to. Proceeding as in the case j = 1, one can

then extend the definition of ¢ so that ¢ maps h =t (a*cial* . .. aj'c;) to

ma . 2m,m m,m m _ma 2m_m m,m m ma. . 2m_m m .m
aj‘érayay caay ay wiay” ag'caay " ag csagay waay” ... aj'cjai " agl cipail 0 w;

if ¢; # cj41, and to

ma. 2m,_m m,_m m _ ma . 2m_m m,m m ma. 2m, _m
al C]_al CL2 02a2 al w]_al CLQ CQQQ a3 63a3 a2 w2a2 .. .aj Cjaj CLJ_HCJ_H

if Cj = Cj+1.

Case (ii): ¢j_; = ¢j. Then wj_; = . Define p/,p” € N and the variable =’ as in Case (i). If
¢j # cj41, then ¢(2”) can be defined as an extension of h(z”) so that ¢(z’) covers the substring
V1 a?Tl aj'c; a?majﬁlcjﬂa’ﬁrlvg for some suffix v, of a" starting at the first position in a’"
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that » maps 2’ to and some prefix vy of aj" that ends at the last position in a7} that h maps
z' to. If ¢; = ¢j41 (sothatajq ) = aj)2, then gp(x;) can be defined as an extension of h(z’) so
m m m2

that ¢(2") covers the substring 14 aj'as™ al'¢jai M us, where uy is the suffix of a" starting at

the first position in a’" that & maps 2’ to and s is the prefix of aj’, ending at the last position
in a;” (= ager) that ~ maps to. Proceeding as in the case j = 1, one can then extend the

definition of ¢ so that ¢ maps A" (af*c1af" ... a}'c;) to

mzs. 2m_m m, m m_ ma_ 2m_m m_m m mzs_ . 2m, m m _m
al Clal GQ CQCLQ al wlal a2 CQCLQ CL3 63a3 CLQ U)QCLQ “ e aj Cjaj aj+lcj+1a]+1a/j w]

if ¢; # cj41, and to

ma. 2m,m m,m m _ ma 2m_m m,m m ma. . 2m_m
a1 C1a1 Q9 C2G9 G W1G7 A9 C2A9 Q3 C303 Gy W2Gy .. .a/j Cja/j aj+1Cj+1

-~

if Cj = Cj41. .
For j = i, ¢ maps the string
m m m m m
al Clal PR aiilci_laiilai Ci

to the substring

ma 2m_m m._m m _ma  2m_m m_m m ma .
al C]_al a2 02(12 al w]_al a2 02a2 a3 03(13 a2 ’UJQ(IQ oo az' C’ia

n'g

note that such a mapping can be defined because either A~ (c;[j]) (w.r.t. the decomposition (11)) is a
variable for at least one j € [1, |c;|], or h~1(¢y[k]) is a constant for all [ € [1,n — 1] and k € [1,|¢]]
and 7’ contains a variable between h~!(c;[j]) and h=1(¢;[j + 1]) for some j € [1,]c;|]. To see this,
first suppose there exists some ¢’ such that ¢’ is the least position of 7’ for which 7’[¢/] is a variable
y and h maps ¥ to some substring of ¢;; now choose the least j such that  maps v to the 5" position
of ¢;. (The specific occurrence of ¢; in 3 being referred to is indicated by braces below.)

m m m m m
ajciay ...0;_1C—-10a;_1 a; C; (13)
~

Let 6 and 7 be strings such that ¢; = ¢;[1]...¢;[j — 1]0¢;[j]aci[j + 1] ... ¢]|ci]]. One can define
©(y) so that p(y) covers the substring f¢;[j]a of ¢;. Now consider the following case distinction.

Case (i): ¢;—1 # ¢;. Define p(h=1(a™ alc;[1]...¢;[j — 1])) = a™ya"ci[1]...ci[j — 1] (as a
prefix of a™ ;a™¢;) and p(h™(¢;[j + 1]...cil|ci]])) = i + 1] ... cillei]] (as a suffix of
a;” a3 c;).

Case (ii): ¢;—1 = ¢;. Then w;_1 = € and a;—1 = a;. There is a least position r of a;" ; (where a;" ,
is indicated by braces in (13)) such that for some variable z of 7/, h maps z to the 7 position
of a” ;. ¢(z) can be defined as an extension of h(z) so that (z) covers ujal” ug, where uj is
the suffix of a;" that starts at the rth position of a;" and uo is the prefix of a}”* | (= ;") that ends
at the last position of a;" ; that h maps z to. Letting a]" = ugu; = uguy for some uz, ugy € X,
define p(h 1 (u3)) = ug and p(h ™Y (uga™c;[1]...c;[j — 1])) = waac;i[1] ... ci[j — 1] (as
a prefix of uga™é;) and o(h ™ (c;[j + 1]...cif|ei]])) = el + 1] ... cil|ei]] (as a suffix of
uga; ¢;).
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Now suppose that h~!(¢;[k]) is a constant for all [ € [1,n — 1] and k¥ € [1,]|¢]] and 7’ con-
tains a variable 2 between h~!(¢;[j]) and h=1(c;[j + 1]) for some j € [1,|c;|]. The definition of
o(h™(aTcral . ..a™ ;¢;—1a™ ;a™c;)) here is very similar to that in the previous case. Let 6’ be the
string such that &; = ¢;[1] ... ¢;[j]0'¢i[7 + 1] . .. ci[|ci]]. One can define ¢(z) so that ¢(z) covers the
substring 6 of ¢;. Further, one defines p(h =1 (a™ ;a™c;[1] . . . ¢;[5])) and (b~ (ci[j+1] - . . ei[|ei]]))
according to a case distinction similar to that in the previous case.

By applying an argument similar to that in the preceding paragraph, one can extend the definition
of pto h='(af'cral" ... af* j¢j1af* jaejal) forall j € [1,n —1]. B (Claim 2)

This establishes that 7' is a teaching set for 7 w.r.t. RIT?. [ (LemmaL.1)

Proof of Lemma L.2. We prove that TD(c;mcg, RII?) < 2 + |T'|; the remaining cases can be proved
similarly. We follow the proof of (Gao et al., 2016, Lemma 28) (the analogue of Lemma L.2 for the
class of non-erasing pattern languages). Suppose 7' is a teaching set for  w.r.t. RII* containing at
least two positively labelled examples (w1, +), (w2, +) that neither start nor end with the same letter.
Let 7" = {(cqwee, +) = (w,+) € T} U {(crveg, —) = (v, —) € THU {(¢rwice, —), (cqwiée, —)}.
Let 7’ = dj pds be a regular pattern that is consistent with 7", where p starts and ends with variables
and dy,dy € ¥*. Since (cpwice, +), (cywace, +) € L(7') and w1, wo both start as well as end with
different symbols, d; is a prefix of ¢; and d» is a suffix of co. We argue that d; is in fact equal to
c1. Let 1 (XU X)* — X* be a substitution witnessing ciwice € L(7'). If dy = ¢1[1] ... c1[k] for
some k < |c1], then v = éwica € L(7'): one can map the variable x; in 7’ occurring just after
ditocilk 4+ 1]...cillaa] — 1]ac[2]...c1[2] ... ci]|c1]] (Where a ¢ {c1[1],c1[|c1]]}), and for each
position j of v after ¢;, one maps ' (v[j]) (which may be equal to z1) to v[j]. This contradicts the
fact that 7’ is consistent with 7”. A similar argument shows that if dy were a proper suffix of cs, then
v' = cywnéy € L(n'), a contradiction. Thus " = ¢1 pco. Furthermore, note that for all « € 3* and
l € {+,—}, " = c1pcq is consistent with (cqucs, 1) iff p is consistent with (u, ). Hence if T is a
teaching set for = w.r.t. RII?, then 7" is a teaching set for c; ey w.r.t. RIT?. | (Lemma L.2)

Proof of Lemma L.3. Let c € ¥ and X; € X for some regular pattern X;. Fix distinct a,b € X.
One may directly verify that {(c, +), (¢, —)} is a teaching set for ¢ w.r.t. RTII* while {(a, +), (b, +)}
is a teaching set for X; w.r.t. RII?. Furthermore, TD(c, RII?) > 2 because a single positive example
is consistent with X while a single negative example (v, —) for some v € X* is consistent with
¢ for any ¢ € ¥* \ {¢,v}. Also, TD(X1,RII?) > 2 because a single positive example (w, +) is
consistent with w while every teaching set for X; contains only positive examples. | (Lemma L.3)

|

Appendix M. Proof of Theorem 14
Theorem 14. Let z € NU {co}.

1. No recursive teaching sequence for 1117 exists.
2. If z > 2, then no recursive teaching sequence for NCII* exists.

3. RTD(NCII!) = oo.

Proof 1. Suppose there is a recursive teaching sequence S = ((So, do), (S1,d1), . ..) for 1II*. Let
a € ¥ and let myp = a be a constant pattern. Letig € N such that mp € S;,. Letd = max{d; | i < ip}.
In particular, every pattern in Sp U ... U S;, has a recursive teaching set of size at most d w.r.t. S.
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Let T be a recursive teaching set for 79 with respect to S. Now choose d + ig + 1 distinct primes
p1 < p2 < ... < Pdtio+1 such that py is strictly greater than all the lengths of the strings in 7. Let
Po={p1,...,Pd+io+1}- Define a pattern m; = az?, where ¢y = ]_[pe p, P- Any positive example
in T must be for the string a, which is in L(71). As qq is strictly greater than all the lengths of the
strings in Tp, 71 cannot generate any negative example in 7y. Hence 7 is consistent with 7j and
thus must belong to some L;, where i1 < 7.

Let T be a recursive teaching set for 7r; with respect to S. Let P be any (d + i)-subset of
Py. Define a pattern o = ax?, where ¢; = [] p. Then 79 is consistent with T and thus must
belong to some L;, where i < ;.

Iterating this argument, we obtain a (d + 1)-subset P of P such that az? € Sy for ¢ = [[,cp p-
Now observe that TD(az?, 111¥) > d + 1, which contradicts the statement that every pattern in
So U...US;, has a recursive teaching set of size at most d w.r.t. S. Therefore, no recursive teaching
sequence for 1IT* exists.

2. Note that by the proof of Theorem 10(2), all non-cross patterns 7 not equivalent to the pattern
« have infinite teaching dimension w.r.t. the class of all non-cross patterns 7’ such that L(7’) # L(z).
Thus there is no teaching sequence for the class C' of all non-cross pattern languages L(7) such
that L(7) # L(x) because the first concept to be taught in any such sequence already has infinite
teaching dimension w.r.t. C.

3. This follows immediately from the fact that the RTD of the class {{v 'z : £ € NI} : 0 #
v € Nj An > 1} is infinite (Gao et al., 2015, Corollary 16). |

pEP

Appendix N. Proof of Theorem 15
Theorem 15. Let z € NU {oo}. If z # 2, then RTD(RIT?) = 2.

Proof For any z, one obtains RTD(RII?) > 2 from the obvious fact that no regular pattern other than
x1 has a teaching set of size one w.r.t. RII* \ {x;}. Now we only need to show the existence of a
teaching sequence S of order 2 for RIIZ.

Let us first consider the case z = 1 and ¥ = {a}. Then any regular pattern can be normalised
to either a™ or a™ 2 for some n > 1. The teaching sequence S lists patterns in increasing order
of the number of constant symbols. The pattern a” 'z uses {(a" !, +), (a™, +)} as a recursive
teaching set w.r.t. S, while a” uses {(a", +), (a"*1, —)}.

Now let z > 3. Then any regular pattern can be normalised to a form like cix1cs . .. cpTncnt1
where n > 0, ¢1,¢,11 € X* and ¢; € X for 2 < 4 < n. The teaching sequence S lists patterns in
increasing order of the number of constants. Patterns with the same number of constants are listed in
decreasing order of the number of variables. Let 7 = cyx1¢2 . . . ¢pTynChy1 be a normalised regular
pattern as above. Let w € X7 be the string generated by 7 when replacing any variable x; with a
symbol a; € ¥ such that a; is different from the last symbol of ¢; (if ¢; # ) and the first symbol of
civ1 (if ¢i41 # €). Since z > 3, this is possible. We then claim that 7' = {(7(¢), +), (w,+)} isa
recursive teaching set for 7 w.r.t. S.

By choice of the sequence S, the set 1" needs to distinguish 7 only from (i) those regular patterns
that have more than |7 ()| constants, as well as (ii) those with exactly |7 (¢)| constants and at most n
variables. (i) is achieved by the example (7(¢), +), which now rules out all patterns 7’ for which
7'(e) Z7(e) =¢1...cnt1. Note that w = craica . . . CranCnil.
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Suppose a regular pattern 7’ with 7/(€) = ¢;...c¢,41 generates w, where 7’ has at most n
variables. Let ¢ be a substitution that maps 7’ to w. If ¢ did not map the first occurrence of ¢; in
7' to the first occurrence of ¢1 in w, then ¢ would have to map the first occurrence of ¢; in 7’ to a
substring in w that starts at least two positions later than the first occurrence of ¢ in w (otherwise c;
would have to end in a;). Two positions after the first occurrence of ¢; in w, the first occurrence of
cg after ¢1 in w begins. Repeating this argument, for 2 < ¢ < n (if ¢,y =e)orfor2 <i<n—+1
(if ct1 # €), ¢ maps the first occurrence of ¢; after ¢;_1 in 7’ to at least two positions to the right of
the first occurrence of ¢; after c;_; in w (Note that since a; differs from the first letter of ¢; 1, ¢; 1
cannot start at a;.) This would require |p(7’)| > |w| in contradiction to ¢(7") = w. Thus ¢ maps
the first occurrence of ¢; in 7’ to the first occurrence of ¢; in w, and, inductively, for 2 < ¢ < n + 1,
o maps the first occurrence of ¢; after ¢;_1 in 7’ to the first occurrence of ¢; after ¢;_1 in w. This is
only possible if 7’ = 7. [ |
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