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Abstract

A reproducing kernel defines an embedding of a data point into an infinite dimensional reproducing
kernel Hilbert space (RKHS). The norm in this space describes a distance, which we call the kernel
distance. The random Fourier features (of Rahimi and Recht) describe an oblivious approximate
mapping into finite dimensional Euclidean space that behaves similar to the RKHS. We show in
this paper that for the Gaussian kernel the Euclidean norm between these mapped to features has
(1 + ε)-relative error with respect to the kernel distance. When there are n data points, we show that
O((1/ε2) log n) dimensions of the approximate feature space are sufficient and necessary. Without
a bound on n, but when the original points lie in Rd and have diameter bounded by M, then we
show that O((d/ε2) logM) dimensions are sufficient, and that this many are required, up to log(1/ε)
factors. We empirically confirm that relative error is indeed preserved for kernel PCA using these
approximate feature maps.

1. Introduction

The kernel trick in machine learning allows for non-linear analysis of data using many techniques
such as PCA and SVM which were originally designed for linear analysis. The “trick” is that these
procedures only access data through inner products between data points, and the standard dot
product can be replaced with a non-linear inner product kernel K(·, ·). Now given n data points,
one can compute the n× n gram matrix G of all pairwise inner products; that is so Gi,j = K(xi, xj)
for all xi, xj in input data set X. Then the analysis can proceed using just the gram matrix G.

However, for large data sets, constructing this n× n matrix is a computational bottleneck, so
methods have been devised for lifting n data points P ⊂ Rd to a high-dimensional space Rm (but
where m� n) so that the Euclidean dot product in this space approximates the non-linear inner
product defined by K.

For reproducing kernels K, there exists a lifting φ : Rd → HK , where HK is the reproducing
kernel Hilbert space. It is in general infinite dimensional, but every finite subset of n points Φ(X) =
{φ(x) | x ∈ X} has the span of an n-dimensional Euclidean space. That is K(x, y) = 〈φ(x), φ(y)〉.
Moreover, we can define the norm of a point in HK as ‖φ(x)‖HK =

√
〈φ(x), φ(x)〉 using the inner
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product, and then due to linearity, a distance (the kernel distance) between two points is defined:

DK(x, y) = ‖φ(x)− φ(y)‖HK =
√
‖φ(x)‖2HK + ‖φ(y)‖2HK − 2〈φ(x), φ(y)〉

=
√
K(x, x) +K(y, y)− 2K(x, y).

For reproducing kernels (actually a subset called characteristic kernels) this is a metric Sriperumbudur
et al. (2010); Müller (1997).

Thus we may desire an approximate lifting φ̂ : Rd → Rm such that with probability at least 1− δ
for all x, y ∈ X

(1− ε) ≤ DK(x, y)

‖φ̂(x)− φ̂(y)‖
≤ (1 + ε).

It turns out, one can always algorithmically construct such a lifting with m = O((1/ε2) log(n/δ))
by the famous Johnson-Lindenstrauss (JL) Lemma Johnson and Lindenstrauss (1984). However,
unlike the JL Lemma, there is not always known an implicit construction. In general, we must first
construct the n × n gram matrix, revealing an n-dimensional subspace (through an O(n3) time
eigendecomposition) and then apply m = O((1/ε2) log(n/δ)) random projections.

So in recent years there have been many types of kernels considered for these implicit embeddings
with various sorts of error analysis, such as for Gaussian kernels Rahimi and Recht (2007); Lopez-Paz
et al. (2014); Sriperumbudur and Szabo (2015); Sutherland and Schneider (2015) group invariant
kernels Li et al. (2010), min/intersection kernels Maji and Berg (2009), dot-product kernels Kar
and Karnick (2012), information spaces Abdullah et al. (2016), and polynomial kernels Hamid et al.
(2014); Avron et al. (2014).

In this document we reanalyze one of the most widely used and first variants, the Random Fourier
Features, introduced by Rahimi and Recht (2007). It applies to symmetric shift-invariant kernels
which include Laplace, Cauchy, and most notably Gaussian. We will primarily focus on Gaussian

kernels, defined K(x, y) = e−
‖x−y‖2

2σ2 , unless specified otherwise. It is characteristic, hence DK is a
metric.

1.1. Existing Properties of Gaussian Kernel Embeddings

Rahimi and Recht (2007) defined two approximate embedding functions: φ̃ : Rd → Rm and
φ̂ : Rd → Rm (defined below). Only the former appears in the final version of paper, but the latter
is also commonly used throughout the literature Sutherland and Schneider (2015). Both features
use random variables ωi ∈ Rd drawn uniformly at random from the Fourier transform of the kernel
function; in the case of the Gaussian kernel, the Fourier transform is again a Gaussian, specifically
ωi ∼ Nd(0, σ−2).

In the former case, they define m functions of the form f̃i(x) = cos(〈ωi, x〉 + γi), where γi ∼
Unif(0, 2π], uniformly at random from the interval (0, 2π], is a random shift. Applying each f̃i on a
datapoint x gives the ith coordinate of φ̃(x) in Rm as φ̃(x)i = f̃i(x)/

√
m.

In the latter case, they define t = m/2 functions of the form

f̂i(x) =

[
cos(〈ωi, x〉)
sin(〈ωi, x〉)

]
as a single 2× 1 dimensional vector, and one feature pair. Then applying f̂i on a data point x yields
the (2i)th and (2i+ 1)th coordinate of φ̂(x) in Rm as [φ̂(x)2i; φ̂(x)2i+1] = f̂i(x)/

√
t.

Rahimi and Recht (2007) showed E[〈φ̃(x), φ̃(y)〉] = K(x, y) for any x, y ∈ Rd, and that this
implied

Pr[|〈φ̃(x), φ̃(y)〉 −K(x, y)| ≥ ε] ≤ δ
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• with m = O((1/ε2) log(1/δ)) for each x, y ∈ Rd,
• with m = O((1/ε2) log(n/δ)), for all x, y ∈ X, for X ⊂ Rd of size n, or

• with m = O((d/ε2) log(M/δ)), for all x, y ∈ X, for X ⊂ Rd so M = max
x,y∈X

‖x− y‖/σ.

Recently Sriperumbudur and Szabo (2015) improved the constants in these bounds, and showed
rate optimality. It is folklore (apparently removed from final version of Rahimi and Recht (2007);
reproved Sutherland and Schneider (2015)) that also E[〈φ̂(x), φ̂(y)〉] = K(x, y), and thus all of the
above PAC bounds hold for φ̂ as well. Sutherland and Schneider (2015) also compared φ̃ and φ̂
(they used φ̆ for our φ̃ and φ̃ for our φ̂), and demonstrated that φ̂ performs better (for the same
m) and has provably lower variance in approximating K(x, y) with 〈φ̂(x), φ̂(y)〉 as opposed to with
〈φ̃(x), φ̃(y)〉. However, these results do not obtain a bound on ‖φ̂(x)− φ̂(y)‖/DK(x, y) since for very
small distances, the additive error bounds on K(x, y) are not sufficient to say much about DK(x, y).

1.2. Our Results

In this paper we show that φ̂ probabilistically induces a kernel K̂(x, y) = 〈φ̂(x), φ̂(y)〉 and a distance

DK̂(x, y) =

√
‖φ̂(x)‖2 + ‖φ̂(y)‖2 − 2K̂(x, y) = ‖φ̂(x)− φ̂(y)‖,

which has strong relative error bounds with respect to DK(x, y), namely for a parameter ε ∈ (0, 1)

(1− ε) ≤ DK(x, y)

DK̂(x, y)
≤ (1 + ε). (1)

In Section 2 we show (1) holds for each x, y such that ‖x− y‖/σ ≥ 1, with probability at least
1− δ, with m = O((1/ε2) log(1/δ)). We also review basic properties about φ̂ and DK .

We first prove bounds that depend on the size n of a data set X ⊂ Rd. We show that m =
O((1/ε2) log n) features are necessary (Section 3) and sufficient (Section 4) to achieve (1) with high
probability (e.g., at least 1− 1/n), when d and X are otherwise unrestricted.

In Section 5 we prove bounds for X ⊂ Rd where d is small, but the size n = |X| is unrestricted.
Let M = maxx,y∈X ‖x− y‖/σ. We show that m = O((d/ε2) log(dε

M
δ )) is sufficient to show (1) with

probability 1 − δ. Then in Section 6 we show that m = Ω( d
ε2 log(1/ε)

log( M
log(1/ε))) is necessary for

any feature map.

In Section 8 we empirically confirm the relative error through simulations. This includes showing
kernel PCA obtains relative error using these approximate features.

1.3. Implications in Machine Learning and Data Analysis

These new relative error bounds have numerous implications in machine learning and geometric
data analysis. We mention a couple others involving geometric approximations in learning and
mining, and in an L1 bound on Gram matrix approximations in Section 7.

Limits on oblivious kernel embeddings. There has been extensive recent effort to find oblivi-
ous subspace embeddings (OSE) of data sets into Euclidian spaces that preserve relative error Avron
et al. (2014); Woodruff (2014); Larsen and Nelson (2016); Clarkson and Woodruff (2015). Strong
positive results are known for high-dimensional linear kernels (via Johnson-Lindenstrauss Johnson
and Lindenstrauss (1984); Woodruff (2014); Larsen and Nelson (2016, 2017)), for polynomial ker-
nels Avron et al. (2014), and for any M -estimator with gradient between 1 and 2 Clarkson and
Woodruff (2015), but has remained open for the Gaussian kernel. Such strong guarantees are, for
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instance, required to prove results about regression on the resulting set since we may not know
the units on different coordinates; additive error bounds do not make sense in directions which are
linear combinations of several coordinates.

The obliviousness of the features (they can be defined without seeing the data, and in some cases
are independent of the data size) are essential for many large-scale settings such as streaming or
distributed computing where we are not able to observe all of the data at once.

Our results do not describe unrestricted OSEs, as are possible with polynomial kernels Avron
et al. (2014). Rather our lower bounds show that any OSE must have the dimension depend on n
or M.

Kernel k-means clustering. Kernel k-means Girolami (2002) aims to find a set of k center
points in HK minimizing the sum of squared kernel distances from the φ(x) ∈ Φ(X) to the closest
center point.

Typical approaches either use the full O(n)-sized representation of the center Girolami (2002) or
heuristically approximate HK using the top k-eigenvectors of the Gram matrix G (with no individual
distance guarantees). In order to perform kernel k-means clustering in the former case, a recurring
operation is to invoke the distance computation between the k center points and φ(x). Due to the
representation size of each center point, the operation takes at least time Ω(n). If an approximate
lifting map φ̂ is used instead, the center points can be explicitly represented as a m-dimensional
point, and the distance computation would take O(dm) time with bounded relative error. This also
means the related sublinear algorithms such as Ailon et al. (2009) can be applied directly, with
small space usage, which is not possible if one can only rely on the Gram matrix.

On the other hand, often these methods may use a representative data point φ(x) ∈ Φ(X) instead
of the mean of the included data points Dhillon et al. (2004). Then our upper bounds imply one can
simply work in Euclidean Rm space, and have relative error guarantees on the overall cost function
found. This still allows us to use spatial indexing or searching techniques such as LSH and k-d trees
to speed up algorithms such as k-means++ Arthur and Vassilvitskii (2007) or the Gonzalez (1985)
algorithm for kernel k-center clustering.

Kernel distance matching. The kernel distance DK(X,Y ) between two point sets provides a
robust and powerful distance between objects X and Y , for instance probability measures Smola
et al. (2007); Gretton et al. (2012), medical images of organs Durrleman et al. (2007); Glaunès
and Joshi (2006), and general shapes Joshi et al. (2011). However this distance (a single scalar
value) does not imply or provide an alignment between the point sets (unlike other common
integral probability measures, say like the Wasserstein family of distances e.g., earth-movers).
Embedding the point sets into Rm, allows one to invoke powerful geometric approaches using
Euclidian distance Sharathkumar and Agarwal (2012); Agarwal and Sharathkumar (2014) to
construct the matching which approximately minimizes the pairwise kernel distance.

2. Basic Bounds and Taylor Approximations

For the remainder of the paper, it will be convenient to let ∆ = (x − y)/σ be the scaled vector

between some pair of points x, y ∈ X. Define DK(∆) = DK(x, y) =

√
2− 2e

1
2
‖∆‖2 , and also

K(∆) = K(x, y) and K̂(∆) = K̂(x, y).

Using t = O((1/ε2) log(1/δ)) features for ε ∈ (0, 1/2) and δ ∈ (0, 1), then for any ∆ ∈ Rd, the
following PAC bound Sutherland and Schneider (2015); Rahimi and Recht (2007) holds

Pr
[∣∣∣K(∆)− K̂(∆)

∣∣∣ ≤ ε] ≥ 1− δ. (2)
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Since K̂(x, x) = 1, then DK̂(∆)2 = 2− 2K̂(∆), and additive error bounds between DK(∆)2 and
DK̂(∆)2 follow directly. But we can also state some relative error bounds when ‖∆‖ is large enough.

Lemma 1 For each ∆ ∈ Rd such that ‖∆‖ ≥ 1 and m = O((1/ε2) log(1/δ)) with ε ∈ (0, 1/10) and

δ ∈ (0, 1). Then with probability at least 1− δ, we have DK(∆)
DK̂(∆) ∈ [1− ε, 1 + ε].

Proof By choosing m = O((1/ε2) log(1/δ)) so that |K(∆)− K̂(∆)| ≤ ε/4, via (2), we have that
|D2

K(∆) − D2
K̂

(∆)| ≤ ε/2. We also note that when ‖∆‖ ≥ 1 then K(∆) ≤ 1√
e
≤ 0.61. Hence

D2
K(∆) ≥ 2(1− 0.61) = 0.78 ≥ 0.5, and we have that |D2

K(∆)−D2
K̂

(∆)| ≤ ε/2 ≤ εD2
K(∆). Then

|1− D2
K̂

(∆)

D2
K(∆)

| ≤ ε, implying 1− ε ≤ D2
K̂

(∆)

D2
K(∆)

≤ 1 + ε. Taking the square root of all parts completes the

proof via
√

1 + ε < (1 + ε) and
√

1− ε > (1− ε).

Basic bounds when ‖∆‖ < 1. When ‖∆‖ ≤ 1, then a simple Taylor expansion, implies that

‖∆‖2 − 1

4
‖∆‖4 ≤ DK(∆)2 = 2− 2 exp(‖∆‖2/2) ≤ ‖∆‖2,

and by 1
4‖∆‖4 ≤ 1

4‖∆‖2 and a square root

0.86‖∆‖ ≤ DK(∆) ≤ ‖∆‖. (3)

Moreover, when ‖∆‖ ≤ 2
√
ε then

(1− ε)‖∆‖2 ≤ DK(∆)2 ≤ ‖∆‖2. (4)

Useful expansions. We first observe that by cos(a) cos(b) + sin(a) sin(b) = cos(a− b) that

〈f̂i(x), f̂i(y)〉 = cos(〈ωi, x〉) cos(〈ωi, y〉) + sin(〈ωi, x〉) sin(〈ωi, y〉) = cos(〈ωi, (x− y)〉).

Hence by 〈f̂i(x), f̂i(x)〉 = cos(〈ωi, 0〉) = 1 we have DK̂(x, y)2 = 2− 21
t

∑t
i cos(〈ωi, (x− y)〉).

By the rotational stability of the Gaussian distribution we can replace 〈ωi, (x−y)〉 with ωi,x,y
‖x−y‖
σ

where ωi,x,y ∼ N (0, 1). It will be more convenient to write ωi,x,y as ωi,∆, so 〈ωi, (x − y)〉 =

ωi,∆‖∆‖. Thus 〈f̂i(x), f̂i(y)〉 = cos(ωi,∆‖∆‖). Moreover, we can define DK̂(∆) = DK̂(x, y) =√
2− 21

t

∑t
i=1 cos(ωi,∆‖∆‖).

Now considering
DK̂(∆)2

DK(∆)2
=

1− 1
t

∑t
i=1 cos(ωi,∆‖∆‖)

1− e 1
2
‖∆‖2

,

the following Taylor expansion, for ωi,∆‖∆‖ ≤ 1, will be extremely useful:

1
t

∑t
i=1

1
2ω

2
i,∆‖∆‖2

1
2‖∆‖2 − 1

4‖∆‖4
≥ DK̂(∆)2

DK(∆)2
≥

1
t

∑t
i=1

(
1
2ω

2
i,∆‖∆‖2 − 1

24(ω4
i,∆‖∆‖4)

)
1
2‖∆‖2

.

Simplifying gives

1

1− 1
2‖∆‖2

(
1

t

t∑
i=1

ω2
i,∆

)
≥ DK̂(∆)2

DK(∆)2
≥
(

1

t

t∑
i=1

ω2
i,∆

)
− ‖∆‖

2

12
· 1

t

t∑
i=1

ω4
i,∆. (5)
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Roadmap. To understand the detailed relative error in DK(∆), what remains is the case when
‖∆‖ is small. As we will start to observe above, when ‖∆‖ is small, then DK(∆) behaves like ‖∆‖
and we can borrow insights from `2 embeddings. Then combining the two cases (when ‖∆‖ is large
and when ‖∆‖ is small) we can achieve “for all bounds” either via simple union bounds, or through
a special “continuous” form of net arguments when X is in a bounded range. Similarly, we will
show near-matching lower bounds via appealing to near-`2 properties or via net arguments.

3. Lower Bounds and Relation to `2 on Small Distances

In this section we show that in the limit as the region containing X shrinks, then all distances act
like `2. This approach is enough for a lower bound, but does not contain the full case ‖∆‖ ≤ 1, so
is not enough for upper bounds.

Lemma 2 For scalar scaling parameter λ, lim
λ→0

DK̂(λ∆)2

DK(λ∆)2
=

1

t

t∑
i=1

ω2
i,∆.

Proof Observe that ωi,∆ = ωi,λ∆, for any λ > 0. Thus in equation (5), limλ→0 1/(1 − 1
2‖λ∆‖2)

goes to 1 so the left hand-side approaches 1
t

∑t
i=1 ω

2
i,∆. Similarly, limλ→0 ‖λ∆‖2/12 goes to 0, and

the right-hand side also approaches 1
t

∑t
i=1 ω

2
i,∆.

If we fix ∆ then ωi,∆, 1 ≤ i ≤ t are i.i.d Gaussian variables with mean 0 and standard deviation 1.
Thus

∑t
i=1 ω

2
i,∆ is a χ2-variable with t degrees of freedom.

This implies that when ‖x − y‖ is small, DK̂(x, y) behaves like a Johnson-Lindenstrauss (JL)
random projection of ‖x− y‖, and we can invoke known JL lower bounds.

In particular, Lemma 2 implies if the input data set X ⊂ Rd is in a sufficiently small neighborhood
of zero, the relative error is preserved only when

∑t
i=1 ω

2
i,x,y‖λ(x− y)‖2 ∈ [(1− ε)‖λ(x− y)‖2, (1 +

ε)‖λ(x− y)‖2] for all x, y ∈ X, and for all arbitrary λ ∈ R. Which implies for arbitrary x, y ∈ X,
and λ ∈ R that√√√√ t∑

i=1

|ωi · λ(x− y)|2 =

√√√√ t∑
i=1

ω2
i,x,yλ‖x− y‖2 ∈ [(1− ε)λ ‖x− y‖ , (1 + ε)λ ‖x− y‖] .

The far left hand side is in fact the norm ‖g(x)− g(y)‖ where g(x) is the vector with coordinates
(ω1 · λx, ..., ωt · λx). Thus these are the exact conditions for relative error bounds on embedding `2
via the Johnson-Lindenstrauss transforms, which gives the following.

Lemma 3 If for any n, d > 0, X ⊂ Rd s.t. |X| = n, using t(n, ε) pairs of random Fourier features,
DK̂(x,y)

DK(x,y) ∈ [1 − ε, 1 + ε] with probability 1 − δ, then there exists a random linear embedding with

t(n, ε) projected dimensions preserving the `2-norm for all pairs x, y ∈ S up to relative error with
probability at least 1− δ.

Theorem 4 There exists a set of n points X ⊂ Rd so that t = Ω( 1
ε2

log n) pairs of random
features (hence m = 2t dimensions), for any ε ∈ (0, 1/2), are necessary so for any x, y ∈ X that
DK̂(x,y)

DK(x,y) ∈ [1− ε, 1 + ε].

Proof A lower bound of Ω( 1
ε2

log n) projected dimensions for linear embeddings in `2 is here Larsen
and Nelson (2017).

6



4. Relative Error Bounds For Small Distances and Small Data Sets

The Taylor expansion in equation (5) and additive errors via equation (2) are only sufficient to
provide us bounds for ‖∆‖ ≤ O(

√
ε/ log(1/ε)) or for ‖∆‖ ≥ 1. In this section we need to use a more

powerful technique or moment generating functions to fill in this gap.

In particular, 1 − cos (ωi,∆‖∆‖) is a sub-Gaussian random variable so it is expected to have a
good concentration, but it is not enough to follow the idea crudely if we want relative error bounds;
we derive a more precise bound of the moment generating function of 1− cos (ωi,∆‖∆‖) as follows.

Lemma 5 For ω ∼ N (0, 1) and 0 ≤ ‖∆‖ ≤ 1, let M(s) be the moment generating function of

1− cos (ω‖∆‖)−
(

1− e− 1
2
‖∆‖2

)
= e−

1
2
‖∆‖2 − cos (ω‖∆‖). Then for all s ≥ 0, lnM(s) ≤ 1

4s
2‖∆‖4.

This technical proof is in Appendix A. We next combine this result with an existing bound on sub-
exponential random variables Buldygin et al. (2000)[Lemma 4.1 in Chapter 1]. Let X be a random
variable, and let M(s) be the moment generating function of X− E[X]. Let X̄t := 1

t

∑t
i=1Xi where

X1, ..., Xt are i.i.d. samples of X. If lnM(s) ≤ s2p
2 for all s ∈ [0, 1

q ), then

P (|X̄t − E[X]| ≥ ε E[X]) ≤ 2 exp

(
−min

(
t
ε2 E[X]2

2p
, t
ε E[X]

2q

))
. (6)

Lemma 6 If ‖x− y‖ ≤ σ, t = Ω( 1
ε2

log 1
δ ), then Pr

(
DK̂(x,y)

DK(x,y) ∈ [1− ε, 1 + ε]
)
≥ 1− δ.

Proof Recall that 〈f̂i(x), f̂i(y)〉 = cos(〈ωi, (x− y)〉) and (1/2)DK̂(x, y)2 = 1
t

∑t
i=1(1− cos(〈ωi(x−

y)〉)). Then define random variable Xi = (1 − cos(〈ωi(x − y)〉)), and X = 1
t

∑t
i=1Xi. Since

E[X] = E[DK̂(x, y)2] = DK(x, y)2, then E[Xi] = 1− exp(−1
2‖∆‖2).

For M(s) the moment generating function of Xi − E[Xi], by Lemma 5 we have ln(M(s)) ≤ 1
2s

2p
for p = 1

2‖∆‖4 for s ∈ [0, 1
q ] with q = 2‖∆‖2. Also recall by equation (3) we have for any x, y ∈ Rd

with ‖x− y‖ ≤ σ, that 0.86 ≤ DK(x,y)
‖∆‖ ≤ 1.

Plugging these values into equation (6) with t = 6
ε2

‖∆‖4
DK(x,y)4

ln(2/δ) = O( 1
ε2

log 1
δ ), we obtain that

Pr[|DK̂(x, y)−DK(x, y)| ≥ εDK(x, y)] = Pr[|X − E[X]| ≥ ε E[X]]

≤ 2 exp

(
−min

(
t
ε2 E[X]2

‖∆‖4 , t
ε E[X]

4‖∆‖2
))

.

= 2 exp

(
−min

(
6,

3

2ε

‖∆‖2
DK(x, y)2

)
ln

2

δ

)
≤ 2 exp

(
−min

(
6,

1

ε

)
ln

2

δ

)
≤ δ.

Together with Lemma 1 (for ‖x − y‖ ≥ σ), we apply a union bound over all
(
n
2

)
pairs vectors

from a set of n vectors.

Theorem 7 For any set X ⊂ Rd of size n, then m = 2t = Ω( 1
ε2

log n) projected dimensions are

sufficient so
DK̂(x,y)

DK(x,y) ∈ [1− ε, 1 + ε] with high probability (e.g., at least 1− 1/n).

7



5. Relative Error Bounds for Low Dimensions and Diameter

Here we prove that the relative error bound holds for the infinitely many pairs of vectors of finite
distance to each other, given that the number of dimensions is small. A common approach in
subspace embeddings replaces n with the size of a sufficiently fine net; given a smoothness condition,
once the error is bounded on the net points, the guarantee is extended to the ‘gaps’ in between.

On the other hand, the Gaussian kernel distance is non-linear, so it is not immediately clear how
the above technique can apply. We begin with the Lipschitz constant of DK̂(·)2, with respect to the
vector ∆, not individual points in Rd. Then we develop a fine-grained structure and a net on the set
of directions ∆/‖∆‖ as long as ‖∆‖ is small enough, using an object we call a λ-urchin.

Lipschitz bound. First we provided the needed Lipschitz bound with respect to ∆.

Lemma 8 For any ∆ ∈ Rd, |∇DK̂(∆)2| ≤ 21
t

∑t
i=1 ‖ωi‖1‖ωi‖‖∆‖.

Proof We denote by ω
(j)
i the jth coordinate of ωi; where recall ωi,∆ = 〈ωi,∆〉.

∣∣∇DK̂(∆)2
∣∣ = 2

∣∣∣∣∣∣1t
t∑
i=1

d∑
j=1

ω
(j)
i sin(〈ωi,∆〉)

∣∣∣∣∣∣ ≤ 2
1

t

t∑
i=1

d∑
j=1

|ω(j)
i | |sin(〈ωi,∆〉)|

≤ 2
1

t

t∑
i=1

‖ωi,∆‖1|〈ωi,∆〉| ≤ 2
1

t

t∑
i=1

‖ωi‖1‖ωi‖‖∆‖

Corollary 9 For any c ≥ 0, over the region ‖∆‖ ≤ c, the Lipschitz constant of DK̂(∆)2 is bounded

above by O(c ·
√
d log(d/δ)) with probability at least 1−O(δ).

Proof We can bound any coordinate ω
(j)
i of ωi so that |ω(j)

i | ≤ O(log 1
δ ) with probability at least

1− δ. By a union, bound the all coordinates |ω(j)
i | ≤ O(log d

δ ) with probability at least 1− δ. So

the gradient is bounded by 2‖∆‖1
t

∑t
i=1 ‖ωi‖1‖ωi‖ ≤ ‖∆‖

√
dO(log 1

δ ) ≤ O(c ·
√
d log 1

δ ), which also
bounds the Lipschitz constant.

In case c =
√
ε

2 ln(4/εδ) , the Lipschitz constant is O(
√
εd log d

δ ) with probability at least 1− δ.

Fine-grained small distance structure. We now analyze equation (5). We first state a standard
bound on χ2 random variables

∑t
i=1 ω

2
i,∆, and then show how to bound the other terms.

Lemma 10 For ε ∈ (0, 1), δ ∈ (0, 1
2), if t ≥ 8 1

ε2
ln(2/δ) then Pr

[
1
t

∑t
i=1 ω

2
i,∆ /∈ [1− ε, 1 + ε]

]
≤ δ.

Proof Here we use Lemma 1 from B. Laurent (2000); if X is a χ2 random variable with t degrees of
freedom Pr[t−2

√
tx ≤ X ≤ t+2

√
tx+2x] ≥ 1−2e−x. We can set x = 1

8 tε
2 then t−2

√
tx = t−εt/

√
2,

and t + 2
√
tx + 2x = t + εt/

√
2 + 1

4ε
2t < t + εt. Also, 2e−x = 2e−

1
8
tε2 = 2e− ln(2/δ) = δ/2 ≤ δ for

δ ≤ 1/2. Therefore, 1
t

∑t
i=1 ω

2
i,∆ /∈ [1− ε, 1 + ε] with probability at most δ.

Now to bound the other parts (‖∆‖2/2 and the term containing ω4
i,∆) of equation (5) requires a

further restriction on ‖∆‖.

Lemma 11 For ε ∈ (0, 1) and δ ∈ (0, 2/5), if ‖∆‖ ≤
√
ε

2 ln(4/εδ) for a constant C, and t ≥
18 1

ε2
ln(4/δ), then with probability at least 1− δ, for all λ ∈ [0, 1] we have

DK̂(λ·∆)2

DK(λ·∆)2
∈ [1− ε, 1 + ε].
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Proof If ω is a standard Gaussian variable, then |ω| ≤
√

2 ln(1/δ′) with probability at least 1− δ′.
Using δ′ = δ/2t, then applying a union bound ensures that (using ln(4/δ) < 1/δ for δ < 2/5)

ωi,∆ ≤
√

2 ln(2t/δ) =

√
2 ln(

16

δε2
ln(4/δ)) ≤

√
2 ln(

16

δ2ε2
) = 2

√
ln(4/δε),

for t such random variables with probability at least 1−(δ′t) = 1−δ/2. This means, if ‖∆‖ ≤
√
ε

2 ln(4/εδ)

then ωi,∆‖∆‖ ≤
√

ε
ln(4/εδ) with probability at least 1− δ/2 for t such random variables. Also then

each ωi,∆‖∆‖ ≤ 1 satisfies the conditions for (5).

Then using ‖∆‖ ≤
√
ε

log(1/εδ) and ωi,∆ ≤ 2
√

ln(4/εδ) we can bound the last term in (5) as

‖∆‖2
12
· 1

t

t∑
i=1

ω4
i,∆ =

‖∆‖2
12
·
(

2
√

ln(4/εδ)
)4
≤ ε

12 · 4 ln2(4/εδ)
· 16 ln2(4/εδ) =

ε

3
.

Then along with Lemma 10 (error 1− 2ε
3 ) and RHS of (5) (error ε

3), we have
DK̂(∆)2

DK(∆)2
≥ 1− ε.

Similarly, Lemma 10 and 1
2‖∆‖2 < ε

8 ln2(4/εδ)
< ε

8 imply the LHS of (5) is bounded above by

(1 + 2
3ε)(1/(1− ε

8)) ≤ 1 + ε with probability at least 1− δ/2. Thus, we have
DK̂(∆)2

DK(∆)2
∈ [1− ε, 1 + ε].

For
DK̂(λ∆)2

DK(λ∆)2
∈ [1− ε, 1 + ε], note that the above analysis still holds if we scale ‖∆‖ to be smaller,

i.e. as long as λ ∈ [0, 1]. In particular, ωi,∆ is unchanged by the scaling λ.

Scaled net argument. We can now provide a net argument for a relative error bound for all
small ∆. Intuitively, what separates typical net arguments from ours is the scaling λ in Lemma 11;
our ‘net’ contains a set of line segments extending from the origin, which we call a λ-urchin.

Lemma 12 If t = Ω( d
ε2

log
(
d
ε

1
δ

)
), then with probability at least 1− δ, for all ∆ such that ‖∆‖ ≤

√
ε

2 ln(4/εδ) , then
DK̂(∆)2

DK(∆)2
∈ [1− ε, 1 + ε].

Proof The proof will first consider distances ∆ such that {∆ : ‖∆‖ = Rε} where Rε =
√
ε

2 ln(4/εδ) ,
and then generalize to smaller distances using Lemma 11 and a construction we call a λ-urchin.
Fixed distance case: Consider two points ∆1,∆2 from the surface {∆ : ‖∆‖ = Rε}. If

‖∆1 −∆2‖ ≤
√
ε√

d log 1
δ

R2
ε then Corollary 9 implies

∣∣DK̂(∆1)2 −DK̂(∆2)2
∣∣ ≤ O(

√
εd log

1

δ
) · ‖∆1 −∆2‖ ≤ O(

√
εd log

1

δ
) ·

√
ε√

d log 1
δ

R2
ε

= O(ε ·R2
ε) = O(ε) ·DK(∆1)2.

Now let Γγ be a γ-net over {∆ : ‖∆‖ = Rε} where γ ≤
√
ε√

d log d
δ

R2
ε . For any ∆1 ∈ {∆ : ‖∆‖ = Rε},

there exists ∆2 ∈ Γγ such that ‖∆1 −∆2‖ ≤ γ. Then the above implies

(1−O(ε))DK̂(∆2)2 ≤ DK̂(∆1)2 ≤ (1 +O(ε))DK̂(∆2)2. (7)

By the triangle inequality, equation (3), and
√
d log d

δ · 2 ln(4/εδ) > 1, we have

|DK(∆1)−DK(∆2)| ≤ DK(∆1,∆2) ≤ ‖∆1 −∆2‖ ≤ γ (8)

≤
√
ε√

d log d
δ

R2
ε = ε

1√
d log d

δ · 2 ln(4/εδ)
Rε < ε ·O(DK(∆1)).
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We will choose t = Ω( 1
ε2

log
|Γγ |
δ ) so the following holds over Γγ with probability at least 1− δ

(1−O(ε))DK(∆2)2 ≤ DK̂(∆2)2 ≤ (1 +O(ε))DK(∆2)2. (9)

These equations (7), (9), and (8) show, respectively that the ratios
DK̂(∆1)

DK̂(∆2) ,
DK̂(∆2)

DK(∆2) , and DK(∆2)
DK(∆1)

are all in [1 +O(ε), 1−O(ε)]; hence we can conclude

|DK(∆1)−DK̂(∆1)| ≤ O(ε) ·DK(∆1). (10)

Which are in turn 1±O(ε) relative error bounds for the kernel distance, over {∆ : ‖∆‖ = Rε}.
All distances case: For the region {∆ : ‖∆‖ < Rε}, consider again Γγ . For each net point p ∈ Γγ
we draw a line segment from p to the origin, producing the set of line segments Γ̄γ , that we call the

γ-urchin. By Lemma 11, and t = Ω( 1
ε2

log
|Γγ |
δ ), with probability at least 1 − δ, we have relative

error bounds for the Gaussian kernel distance over the γ-urchin.

Now for any λ ∈ (0, 1), consider the intersection {∆ : ‖∆‖ = λRε} ∩ Γ̄γ . We see that the γ-urchin
induces a net over {∆ : ‖∆‖ = λRε}. Due to scaling we can see that, in fact, it is a (λγ)-net. So
the distance between any point in {∆ : ‖∆‖ = λRε} and the closest net point is bounded above by
λ
√
ε√

d log d
δ

R2
ε. From Corollary 9, the Lipschitz constant is now O(λ ·

√
εd).

By arguments similar to those leading to (10) we obtain, for any ∆1 ∈ {∆ : ‖∆‖ = λRε}

|DK(∆1)−DK̂(∆1)| ≤ O(ε) · λ ·Rε ≤ O(ε) ·DK(∆1). (11)

Since this holds for all λ ∈ [0, 1], we obtain relative error bounds over {∆ : ‖∆‖ ≤ Rε}.
The size of Γγ is bounded above by O((Rε

1
γ )d) = O((Rε ·

√
d log d

δ√
ε

1
R2
ε
)d) = O((

√
d log d

δ√
ε

1
Rε

)d) =

O((
√
d log d

δ
log 1

εδ
ε )d). It is sufficient to have t = O( 1

ε2
log

|Γγ |
δ ) = O( d

ε2
log d

εδ ) so that relative error
holds over the γ-net and the γ-urchin simultaneously, which imply (11) and (10), with probability
at least 1− δ.

Corollary 13 If t = Ω( d
ε2

log d
εδ ), then for all ∆ such that ‖∆‖ ≤ 1,

DK̂(∆)

DK(∆) ∈ [1− ε, 1 + ε] with
probability at least 1− δ.

Proof Consider the region 1 ≥ ‖∆‖ >
√
ε

2 ln(4/εδ) . The Lipschitz constant is bounded above by

O(t
√
d log d

δ ) by Corollary 9, so we only need a γ-net where γ ≤ ε2

t
√
d log d

δ

to give relative error by

standard net arguments. The size of this net is at most
(√

d log(d/δ)
ε2

)d
, so again it suffices to set

t = O( d
ε2

log d
εδ ) for our embeddings as above.

Combined with Lemma 1 for ‖∆‖ > 1 we obtain:

Theorem 14 If t = Ω
(
d
ε2

log
(
d
ε
M
δ

))
, then for any M ≥ 0,

DK̂(x,y)2

DK(x,y)2
∈ [1 − ε, 1 + ε] holds for all

x, y ∈ Rd such that ‖x− y‖/σ ≤M with probability at least 1− δ.

Proof Set t = Ω( d
ε2

log d
εδ ) + Ω( d

ε2
d log dM

εδ ) = Ω
(
d
ε2

log
(
d
ε
M
δ

))
to account for both cases ‖∆‖ =

‖x−y‖
σ ≤ 1 and 1 ≤ ‖x−y‖σ ≤M, respectively.
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6. Lower Bounds for Low Dimensions

When is n is unbounded, a recent paper Sriperumbudur and Szabo (2015) implies that, even for
small d, DK̂ cannot (1 + ε)-approximate DK unless M is bounded. Here we provide an explicit and
general lower bound depending on M and d that matches the our upper bound up to a O(log 1

ε )
factor.

First we need the following general result Alon (2003)[Theorem 9.3] related to embedding to
`2. Let B be an n × n real matrix with bi,i = 1 for all i and |bi,j | ≤ ε for all i 6= j. If the
rank of B is r, and 1√

n
< ε < 1/2, then r ≥ Ω( 1

ε2 log(1/ε)
log n). Geometrically, r is the minimum

number of dimensions that can contain a set of n near-orthogonal vectors. Indeed, any set S of n
near-orthogonal vectors can be rotated to form the rows of a matrix of the form of B, and the rank
is then the lowest number of dimensions that contain S.

Lemma 15 Given M≥ 0, let BM(0) be the ball in Rd centered at the origin with radius M. Let
h : Rd → Rt be a mapping such that for any x 6= y ∈ BM(0) we have |K(x, y)−h(x) ·h(y)| ≤ ε ≤ 1

4 .

Then with sufficiently large M, t = Ω( d
ε2 log(1/ε)

log( M
log(1/ε))).

Proof Consider a subset S ⊂ Rd in BM(0) so for all x, y ∈ S, with x 6= y, we have ‖x −
y‖ ≥ σ

√
2 log 1

ε . Then for any x, y ∈ S, K(x, y) = exp(−‖x−y‖2
2σ2 ) ≤ ε. In particular, define S

as the intersection of BM(0) with an orthogonal grid of side length σ
√

2 log(1/ε); it has size

Ω

((
M

log(1/ε)

)d)
.

For any x, y ∈ S, |h(x) · h(y)| ≤ 2ε, and also |{h(s) | s ∈ S}| = |S|. Then Alon (2003)[Theorem
9.3] implies the dimension of h must be t = Ω( 1

ε2 log(1/ε)
log |S|) = Ω( d

ε2 log(1/ε)
log( M

log(1/ε))).

Theorem 16 Given M ≥ 0, let BM(0) be the ball in Rd centered at the origin with radius M.

Let h : Rd → Rt be a mapping such that for any x, y ∈ BM(0) we have 1 − ε ≤ DK(x,y)
‖h(x)−h(y)‖ ≤

1 + ε with ε ≤ 1
4 . Restrict that for any x ∈ Rd that ‖h(x)‖ = 1. If M is sufficiently large,

t = Ω( d
ε2 log(1/ε)

log( M
log(1/ε))).

Proof Consider a set (as in proof of Lemma 15) S ⊂ BM(0). If for all x, y ∈ S we have

1− ε ≤ DK(x,y)
‖h(x)−h(y)‖ ≤ 1 + ε, then it implies

|DK(x, y)2 − ‖h(x)− h(y)‖2| ≤ Θ(ε)DK(x, y)2 ≤ Θ(ε),

since DK(x, y) < 2. Expanding DK(x, y)2 = 2− 2K(x, y) and ‖h(x)− h(y)‖2 = 2− 2〈h(x), h(y)〉
implies that |K(x, y)−〈h(x), h(y)〉| ≤ Θ(ε) as well. However, Lemma 15 implies that for sufficiently
small ε (adjusting the constant in Θ(ε)) that we require the t = Ω( d

ε2 log(1/ε)
log( M

log(1/ε))).

This implies the impossibility of fully embedding into `2 the Gaussian kernel distance over the
entire Rd, i.e. for an infinite number of points, answering a question raised by Sriperumbudur and
Szabo (2015). This argument can also extend to show a dependency on d logM is inevitable when
we do not have a bound on n.
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7. Discussion

We have demonstrated theoretically tight relative error for kernel distance using random Fourier
features, indicating tighter approximations for several important learning applications. In the
following, we make some further remarks on the implications of our results, and then also empirically
observe these properties.

7.1. Implications in Learning and Analysis

In addition to the applications of our bounds to oblivious kernel embeddings, kernel k-means
clustering, and kernel distance matching that we discussed in Section 1.3, we mention a couple more
below.

Geometric approximation in learning and mining. Our results show that random feature
mappings allow for a finer notion of approximating the geometry of RKHS than previously known.
In particular, our low-dimensional bounds in Section 5, imply that if an object U ⊂ Rd (such as a
non-linear decision boundary) and training data S ⊂ Rd both lie within a ball with finite radius M,
then for any point x ∈ S, the minimum kernel distance between U and x is approximately preserved
in the random feature space as miny∈U ‖φ(x)− φ(y)‖. For instance “large-margin” techniques and
analyses Tsochantaridis et al. (2005) condition on the margin γ = maxx∈S miny∈U ‖φ(x)− φ(y)‖
being large, so we also preserve relative errors on this margin. This suggests better performance
guarantees for kernelized learning large-margin techniques, and those involving the minimization of
`2 distances, such as in kernel SVM (hinge-loss) and in kernel PCA (recovery error); see Section 8.

Gram matrix approximation. The approximation error of inner products is proportional to
the approximation error of distances. This is because both φ and φ̂ map every input point to a unit
vector; thus DK(x, y)2 = 2 − 2K(x, y) and DK̂(x, y)2 = 2 − 2K̂(x, y), for any distinct x, y ∈ Rd.
Therefore |K(x, y)− K̂(x, y)| is the same as 1

2 |DK(x, y)2 −DK̂(x, y)2|. Hence approximation error
of the Gram matrix is bounded in terms of the sum of pairwise squared distances

‖G− Ĝ‖1 ≤
1

2

∑
x∈X

∑
y∈X
|DK(x, y)2 −DK̂(x, y)2| ≤ ε

∑
x∈X

∑
y∈X

DK(x, y)2,

with high probability, when m is set for the appropriate data setting in our bounds. Thus we have
in some sense sharper bounds on approximating the Gram matrix.

7.2. Remark on Lower Bound in n

A new result of Larsen and Nelson (2017) provides a t = Ω( 1
ε2

log n) lower bound for even non-linear
embeddings of a size n point set in Rd into Rt that preserve distances within (1± ε). It holds for
any ε ∈ (1/min{n, d}0.4999, 1). Since, there exists an isometric embedding of any set of n points in
any RKHS into Rn, then this t = Ω( 1

ε2
log n) lower bound suggests that it applies to φ̂ and φ̃ or any

other technique, for almost any ε. However, it is not clear that any point set (including the ones
used in the strong lower bound proof Larsen and Nelson (2017)), can result from an isomorphic (or
approximate) embedding of RKHS into Rn. Hence, this new result does not immediately imply the
lower bound we show in Section 3.

Moreover, the proof of Theorem 4 retains two points of potential interest. First it holds for a
(very slightly) larger range of ε ∈ (0, 1). Second, Lemma 3 highlights that at very small ranges, φ̂ is
indistinguishable from the standard JL embedding.
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8. Empirical Demonstration of Relative Error

We demonstrate that relative error actually results from the φ̂ kernel embeddings in two ways. First
we demonstrate relative error bounds for kernel PCA. Second we show this explicitly for pairwise
distances in the embedding.

8.1. Relative Error for Kernel PCA

When PCA is applied to approximate a data matrix in practice, the allowed approximation error
is often chosen to be a small but constant (e.g. 10%) fraction of the total variance. Our results
imply relative error in the approximation of the total variance, so we can also show relative error in
typical cases of performing kernel PCA with Gaussian kernels using Random Fourier Features.

We consider two ways of running kernel PCA on the USPS data. By default we use the first
n = 2000 data points in Rd for d = 256, the first n/10 data points of each digit. In the first way, we
create the n×n (centered) gram matrix G of all inner products, and then use the top k eigenvectors
to describe the best subspace of RKHS to represent the data; this is treated as a baseline. Second
we embed each point into Rm using φ̂, generating an n×m matrix Q (after centering). The top k
right singular values Vk of Q describe the kernel PCA subspace.

Error in PCA is typically measured as the sum of squared residuals, that is for each point
q ∈ Q ⊂ Rm, its projection onto Vk is V T

k Vkq, and its residual is rq = ‖q − V T
k Vkq‖2. Thus rq

is precisely the squared kernel distance between q and its projection. And then the full error is
R̂k = ‖Q− V T

k VkQ‖2F =
∑

q∈Q ‖q − V T
k Vkq‖2. For the non-approximate case, it can be calculated

as the sum of eigenvalues in the tail Rk =
∑n

i=k+1 λi.

Given Rk and R̂k we can measure the relative error as R̂k/Rk. Our analysis indicates this should
be in [1− ε, 1 + ε] using roughly t = C/ε2 features, where C depends on n or d logM. To isolate

ε we calculate | R̂kRk − 1| averaged over 10 trials in the randomness in φ̂. This is shown in Figure
1 using k = 40, with σ ∈ {4, 8, 16} and varying t ∈ {50, 100, 200, 400, 800}. We observe that our
measured error decreases quadratically in t as expected. Moreover, this rate is stable as a function
of σ as would be expected where the correct way to quantify error is the relative error we measure.
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σ = 4 σ = 8 σ = 16

Baseline 1667.1 882.5 206.1

50 897.6 489.2 96.9
100 1257.6 666.5 152.2

t 200 1453.6 776.4 178.7
400 1554.7 831.5 189.2
800 1606.8 857.3 197.6

Figure 1: Relative error | R̂kRk − 1| in % , against t, with n = 2000, k = 40 and different bandwidths.
Relative error is roughly stable across different values of σ, and consistently reduced by
increasing t.

13



0 200 400 600 800 1000
Number of Features

0

50

100

150

200
1/
(M

ax
im

um
R

el
at

iv
e

E
rr

or
)2

10−4 10−3 10−2 10−1 100 101 102 103 104

Original ℓ2 norm ‖x− y‖

−0.2

−0.1

0.0

0.1

0.2

R
el

at
iv

e
E

rr
or

:D
K̂
(x
,y
)/
D

K
(x
,y
)
−
1

Relative Error for Small to Large Distances

#features=1000
#features=100

Figure 2: (left) Inverse squared relative errors. (right) Relative errors with varying distance.

8.2. Pairwise Demonstrations of Relative Error

Here we provide simulations that confirm our theoretical findings. We randomly generate pairs of
points (x1, y1) . . . (xn, yn) with varying `2 distance ‖xi − yi‖; in particular, xi is a random point
in a ball or radius 500 and yi is generated to be a random point in the sphere ‖x− y‖ = ri where
r1, ..., rn follow a geometric distribution, ranging from approximately 10−4 to 104.

In Figure 2(left), for different values of t (the number of features) we generate a fresh sequence of

2000 random pairs, and record the maximum relative error εmax = maxi
DK(xi,yi)
‖φ(xi)−φ(yi)‖ . The graph

shows that t is roughly proportional to ε−2
max.

In Figure 2(right), we examine the relative errors for all the random pairs at a wide range
of `2 norms, for t = 100 and t = 1000. A slight change in the error profile occurs within
‖xi − yi‖/σ ∈ [100, 101], coinciding with the separation of cases ‖x− y‖ ≤ σ and ‖x− y‖ > σ i.e.

whether ‖x−y‖σ = Θ(1) in the analyses.

In either case, the relative error is bounded by a small constant value, even when ‖xi − yi‖ is
several magnitudes smaller than 1, demonstrating that the extremely high concentration of the RFF
for very small ‖xi − yi‖ results in relative error approximation for the Gaussian kernel distance.
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protsessov (1998).

Kenneth L. Clarkson and David P. Woodruff. Sketching for M-estimators: A unified approach to
robust regression. In SODA, 2015.

Iderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means, spectral clustering and
normalized cuts. In KDD, 2004.
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Appendix A. Omitted proof

Lemma 5[Restated] For ω ∼ N (0, 1) and 0 ≤ ‖∆‖ ≤ 1, let M(s) be the moment generating function

of 1− cos (ω‖∆‖)−
(

1− e− 1
2
‖∆‖2

)
= e−

1
2
‖∆‖2 − cos (ω‖∆‖). Then for all s ≥ 0,

lnM(s) ≤ 1

4
s2‖∆‖4.

Proof [Lemma 5] Recall that the moment generating function M(s) of a random variable X is
given by E[esX ].

First we note two Taylor approximations which hold for all x ∈ R:

cosx ≥ 1− 1

2
x2 and e−|x| ≤ 1− |x|+ 1

2
|x|2.
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Now

M(s) = E
[
exp

(
s(e−

1
2
‖∆‖2 − cos(ω‖∆‖))

)]
≤ E

[
exp

(
s(1− 1

2
‖∆‖2 +

1

8
‖∆‖4)− s(1− 1

2
ω2‖∆‖2)

)]
= E

[
exp

(
−s

2
‖∆‖2 +

s

8
‖∆‖4 +

s

2
ω2‖∆‖2

)]
= exp(

s

8
· ‖∆‖4 − s

2
‖∆‖2) · E

[
e−s

1
2
ω2‖∆‖2

]
.

But

E
[
e−s

1
2
ω2‖∆‖2

]
=

∫ ∞
−∞

1√
2π
e−

u2

2 · e−s 12u2‖∆‖2du

=

∫ ∞
−∞

1√
2π
e−

1
2
u2(1+s‖∆‖2)du

=
1√

1 + s‖∆‖2
∫ ∞
−∞

√
1 + s‖∆‖2 1√

2π
e−

1
2
u2(1+s‖∆‖2)du

=
1√

1 + s‖∆‖2
.

Noting that ln(1 + x) ≥ x− x2

2 for x ≥ 0, then whenever s ≥ 0:

lnM(s) ≤ ln

(
exp( s8‖∆‖4 − s

2‖∆‖2)√
1 + s‖∆‖2

)
=
s

8
‖∆‖4 − s

2
‖∆‖2 − 1

2
ln(1 + s‖∆‖2)

≤ s

8
‖∆‖4 − s

2
‖∆‖2 − 1

2
(s‖∆‖2 − 1

2
s2‖∆‖4)

=
s2

4
‖∆‖4 − s

8
‖∆‖4 − s‖∆‖2

≤ s2

4
‖∆‖4.
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