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Abstract

An important and long-standing question in computational learning theory is how to learn
AC0 circuits with respect to any distribution (i.e. PAC learning). All previous results
either require that the underlying distribution is uniform Linial et al. (1993) (or simple
variants of the uniform distribution) or restrict the depths of circuits being learned to 1
Valiant (1984) and 2 Klivans and Servedio (2004). As for the circuits of depth 3 or more,
it is currently unknown how to PAC learn them.

In this paper we present an algorithm to PAC learn depth-3 AC0 circuits of bounded
top fanin over (x1, · · · , xn, x1, · · · , xn). Our result is that every depth-3 AC0 circuit of top

fanin K can be computed by a polynomial threshold function (PTF) of degree Õ(K · n 1
2 ),

which means that it can be PAC learned in time 2Õ(K·n
1
2 ). In particular, when K = O(nε0)

for any ε0 <
1
2 , the time for learning is sub-exponential. We note that instead of employing

some known tools we use some specific approximation in expressing such circuits in PTFs
which can thus save a factor of polylog(n) in degrees of the PTFs.

Keywords: PAC Learning, AC0 Circuits, Polynomial Threshold Functions, Rational Func-
tions

1. Introduction

The seminal result of Linial et al. (1993) shows the Fourier spectrum of any function in AC0

is concentrated on low-degree coefficients and then introduces the Low Degree Algorithm to
learn the low-degree coefficients under the uniform distribution and thus generate a function
approximately identical to the concept function. Later the Fourier concentration bound for
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AC0 has been improved in Boppana (1997); H̊astad (2001); Tal (2014). Following Linial
et al. (1993), some works present various Fourier concentration results for more expressive
circuits augmented from AC0 and thus gain corresponding learning results with the Low
Degree Algorithm Jackson et al. (2002); Beigel (1994); Gopalan and Servedio (2010). In all
these results, the uniform distribution is required.

There has been a few successful attempts to learning AC0 under product distributions
or other restricted distributions Furst et al. (1991); Blais et al. (2010); Ding et al. (2017).
In the pursuit of learning AC0 under arbitrary distributions (i.e. PAC learning), Bun
and Thaler (2015) points out that if AC0 could be computed by a polynomial threshold
function (PTF) (of arbitrary degree) with weight at most W then under any distribution,
some conjunction has correlation at least 1/W with some circuit being learned due to the
discriminator lemma of Hajnal et al. (1993), and thus one can then apply an agnostic
learning algorithm for conjunctions such as Kalai et al. (2008) combined with standard
boosting techniques, to PAC learn it in max(exp(Õ(n1/2)),W ) time. However, currently it
is not known how to construct PTFs for AC0 with moderate W . In fact, it is only known
that AC0 can be approximately computed by PTFs (of poly-logarithmic degrees) Ajtai and
Ben-Or (1984); Aspnes et al. (1994a); Toda and Ogiwara (1992); Tarui (1993); Harsha and
Srinivasan (2016) (these approximations will err on some fraction of inputs).

So a natural and long-standing question is whether we can PAC learn AC0. Some
works present efficient/sub-exponential-time learning algorithms for AC0 of very restricted
depth. Valiant (1984) presents a polynomial-time algorithm to PAC learn conjunctions.
Klivans and Servedio (2004) presents an algorithm to PAC learn DNF formulae in time

nO(n1/3 logn). Since the question of learning disjunctions and CNF formulae can be reduced
to the one of learning conjunctions and DNF formulae, we have that the AC0 circuits of
depths 1 and 2 are PAC learnable. For Boolean formulae of bounded size, O’Donnell and
Servedio (2003) presents an algorithm to PAC learn s-size and d-depth Boolean formulae

in time ns
1/2(log s)O(d)

(thus for learning in sub-exponential-time, s should be slower than
n2/polylog(n)). So far, it is unknown how to PAC learn AC0 circuits of depth 3.

1.1. Our Results

In this paper we present an algorithm to PAC learn depth-3 AC0 circuits of bounded top
fanin in sub-exponential time. The top fanin of a circuit refers to the fanin of its output gate.
A depth-3 AC0 circuit is a circuit over (x1, · · · , xn, x1, · · · , xn) which gates are arranged in
three levels: from the bottom to the top, the three levels are OR-AND-OR or AND-OR-
AND (the former is called a Σ3-circuit and the latter is called a Π3-circuit). Namely, a
Σ3-circuit is an OR of CNF formulae and a Π3-circuit is an AND of DNF formulae over a
same input x ∈ {0, 1}n.

Our result is that every depth-3 AC0 circuit of top fanin K can be computed by a
polynomial threshold function (PTF) of degree Õ(K ·n

1
2 ), which means that it can be PAC

learned in time 2Õ(K·n
1
2 ). Thus the interesting case is that K = O(nε0) for any ε0 <

1
2 ,

which leads the learning to sub-exponential-time.
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Theorem 1 (Main Result.) The class of all depth-3 AC0 circuits of top fanin K can

be learned to any accuracy and confidence (ε, δ) under any distribution in time 2Õ(K·n
1
2 ) ·

poly(n, 1
ε , log 1

δ ). (When K = O(nε0) for any ε0 <
1
2 , the running-time is sub-exponential.)

Our Techniques. Our main work is to show that each such circuit of top fanin K can
be computed by a PTF of degree Õ(

√
n ·K) which thus implies the PAC learning result in

Theorem 1. So the key point is to establish the existence of such PTFs. (We note that using
the known tools and methods in Beigel et al. (1995); Klivans and Servedio (2004); Klivans
et al. (2004) can bring similar results but require a more factor of polylog(n) in degrees of the
PTFs, which will be interpreted in footnotes later. So we use some specific construction.)
In the following we sketch this with respect to Σ3-circuits (learning Π3-circuits of top fanin
K can be reduced to the task of learning the Σ3-circuits).

Let C be a Σ3-circuit of top fanin K. Recall the gates of C from the bottom to the top is
OR-AND-OR. We first use NOT and OR to replace the AND gates in the middle level. By
the DeMorgan Law, AND can be replaced by a sub-circuit of three levels of NOT-OR-NOT.
Thus C is equivalent to a 5-level circuit, in which from the bottom to the top the gates are
of type OR-NOT-OR-NOT-OR. We then present approximation to the gates in C from the
bottom to the top level by level.

First consider the OR gates in the bottom level. Recall that Nisan and Szegedy (1994)
shows that each OR gate in the bottom level can be ε1-uniformly approximated by a real
multivariate polynomial of degree O(

√
n ln 1

ε1
). By ε1-uniform approximation, we mean

that for each x ∈ {0, 1}n, the absolute value of the difference between the outputs of the
polynomial and the OR gate is bounded by ε1. In this paper we choose ε1 = n−2 logn. Since
level 2 consists of NOT gates, flipping outputs of the polynomials for level 1 (bottom level)
gives polynomials for the NOT gates.

Then the difficult task is to construct polynomials for the gates in higher levels. If we
use the result in Nisan and Szegedy (1994) again to approximate the OR gates in level 3,
the composed polynomials would be of degree n, which is thus trivial.

So we adopt a new way to approximate these OR gates. Instead of doing this with
polynomials, we do it with rational functions. A rational function is a function of form
f(x)
g(x) , in which f(x), g(x) are polynomials. We show that each OR gate in level 3 can be

n−Θ(logn)-uniformly approximated by a rational function f/g, in which f, g are of degree
O(
√
n ln 1

ε1
). Then flipping outputs of these rational functions gives correct approximation

to the NOT gates in level 4. (The method of rational function approximation was previously
adopted by Klivans et al. Klivans et al. (2004) in learning intersections of halfspaces, based
on the earlier works of Beigel et al. (1995); Newman (1964).)

Let us finally consider the output OR gate. Let f1

g1
, · · · , fKgK denote the approximation

to all NOT gates in level 4, in which each
fj
gj

differs from the corresponding NOT gate

by n−Θ(logn) for all j for any input x. If C(x) = 0 then all NOT gates in level 4 output

0, which indicates
∑K

j=1
fj
gj
< 1

2 . If C(x) = 1 then at least one such NOT gate outputs 1,

which indicates
∑K

j=1
fj
gj
> 1

2 . Equivalently, C(x) = 0 if and only if
∑K

j=1(fj
∏
i∈[K],i 6=j gi) <

1
2

∏
i∈[K] gi, i.e.

∑K
j=1(fj

∏
i∈[K],i 6=j gi)−

1
2

∏
i∈[K] gi < 0.
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Thus let F (x) denote the polynomial in the left side of the above inequality. Then it is
of degree O(

√
n ln 1

ε1
) ·K. Therefore, it can be seen that Sign(F (x)) is a PTF that computes

C(x) exactly.

1.2. Organization

The rest of the paper is arranged as follows. Section 2 presents the preliminaries. In
Section 3 we present the details of how to construct the PTF for each Σ3-circuit of bounded
top fanin and sketch the learning strategy. In Section 4 we show the learning algorithm in
detail.

2. Preliminaries

This section contains the notations and definitions used throughout this paper.

2.1. Basic Notions

We use [n] to denote the integers in [1, n]. Let Sign(y) denote the sign function that outputs
1 if y > 0 and outputs 0 if y < 0.

A polynomial threshold function over n boolean variables x = (x1, · · · , xn), is a boolean
function h : {0, 1}n → {0, 1} defined as h(x) = Sign(g(x1, · · · , xn)), where g(x1, · · · , xn) is
a real polynomial over (x1, · · · , xn). The degree of h refers to that of g.

We say that a real multivariate function f(x) ε-uniformly approximates g(x) if for all
x ∈ {0, 1}n, |f(x)− g(x)| ≤ ε.

A multivariate rational function over x = (x1, · · · , xn) is a function of form f(x)
g(x) , where

f, g are polynomials over x.

2.2. PAC Learning

Let C denote a class of functions. In the PAC learning model Valiant (1984), a labeled
example is a pair (x, f(x)), where x ∈ X is an input and f(x) is the value of the tar-
get function f ∈ C on the input x. A training sample labeled by f is of the form
((x1, f(x1)), · · · , (xm, f(xm))), in which each (xi, f(xi)) denotes the ith labeled example
1 ≤ i ≤ m.

Definition 2 (PAC Learning) An algorithm L is called a learner for C under distribution
D over X, if it is given a training sample in which each x is sampled from D independently
and its label is f(x) for some unknown f ∈ C, ε, δ ∈ (0, 1), with probability at least 1 − δ,
L outputs a function h (not necessarily in C) such that Pr[f(x) 6= h(x)] < ε for x← D.

If L can work under any D, we say L PAC (Probably Approximately Correct) learns
C or simply learns C. We refer to ε as the accuracy parameter and δ as the confidence
parameter. We call L efficient if its running-time is poly(n, 1

ε ,
1
δ ) and call L non-trivial if

its running-time is bounded by a sub-exponential in (n, 1
ε ,

1
δ ).
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2.3. AC0 Circuits

Let AC0 denote the class of all functions computable by polynomial-size constant-depth
unbounded fanin circuits (of AND, OR, NOT gates and of binary output). We also use
AC0 to denote the class of all polynomial-size constant-depth unbounded fanin circuits.

This paper focuses on those circuits over (x1, · · · , xn, x1, · · · , xn) whose gates are ar-
ranged in three levels. From the bottom to the top, the three levels are OR-AND-OR
or AND-OR-AND. We call a circuit of form OR-AND-OR a Σ3-circuit and call a circuit
of AND-OR-AND a Π3-circuit. Namely, a Σ3-circuit is an OR of CNF formulae and a
Π3-circuit is an AND of DNF formulae.

The fanin of a gate is the number of input wires to it. The top fanin refers to the fanin
of the top gate.

3. Polynomial Threshold Function Representation

In this section we show that each Σ3-circuit of the bounded top fanin can be computed by
a PTF exactly. In Section 3.1 we present the uniform approximation to gates of each such
circuit level by level (except for the output gate) using rational functions. In Section 3.2
we present the PTF and learning strategy.

3.1. Approximation with Rational Functions

Let C be a Σ3-circuit over (x1, · · · , xn, x1, · · · , xn), where xi denotes the ith bit of x and
xi denotes 1− xi, 1 ≤ i ≤ n.

For C, assume there are s1 OR gates in level 1, s2 AND gates in level 2 and one OR
gate in the top. Let OR1

i , 1 ≤ i ≤ s1 denote all gates in level 1, AND1
i , 1 ≤ i ≤ s2 denote

all gates in level 2. s1 is polynomial in n and s2 is the top fanin.
Note that for any AND (or OR) operation, which has arbitrary k bits (y1, · · · , yk) as

input, we have that AND(y1, · · · , yk) = AND(y1, · · · , yk, yj) for any j ∈ [1, k]. This means
that by repeating any input bit many times, we can assume any OR/AND gate has a
specified fan-in. So w.l.o.g. assume all AND2

i , 1 ≤ i ≤ s2 have the same fixed fan-in s′.
In the following we will present polynomials/rational functions approximating gates

in C level by level from the bottom to the top. Notice that all input bits to C are
(x1, · · · , xn, x1, · · · , xn). If an OR gate in level 1 has more than n bits as input, there
is at least an i such that xi, xi simultaneously appear in the input to this OR gate, which
leads to that it outputs 1 always. So it can be functionally equivalently replaced by another
OR gate which just has two bits xi, xi as input. Thus we can consider the number of input
bits to each OR gate in level 1 is always bounded by n.

First let us recall the following result of uniformly approximating the OR operation over
n bits (which proof can be referred to Jukna (2012) Lemma 2.6) that gives polynomials for
approximating the OR gates in level 1.

Claim 1 (Nisan and Szegedy (1994)) For each ε1 <
1
2 , there is a real multivariate polyno-

mial p(·) of degree O(
√
n ln 1

ε1
) such that for any z ∈ {0, 1}n, |OR(z)− p(z)| ≤ ε1.

We will frequently use OR1
i , 1 ≤ i ≤ s1 to denote its output in the computation of C(x)

for any x ∈ {0, 1}n (and also adopt this usage for the gates in higher levels). By Claim 1,
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there are real multivariate polynomials p1
1, · · · , p1

s1 of degree O(
√
n ln 1

ε1
) over x such that

|p1
i (x)−OR1

i | ≤ ε1, 1 ≤ i ≤ s1 for all x ∈ {0, 1}n. In this paper for simplicity of statement
choose ε1 = n−2 logn. 1

Then consider the computation in the AND gates in level 2. Assume that AND2
j has as

input the outputs of OR1
j1 , · · · ,OR1

js′
, 1 ≤ j ≤ s2. Note that by applying the DeMorgan

Law, we have that for any j,

AND2
j (OR1

j1 , · · · ,OR1
js′

) = ¬¬AND2
j (OR1

j1 , · · · ,OR1
js′

) = ¬OR(¬OR1
j1 , · · · ,¬OR1

js′
)

So we replace each AND gate in the middle level by the following sub-circuit: on input
many bits (coming from some OR gates in level 1) compute the NOT of each input bit first,
then OR of the outputs of all the NOT gates and finally output the NOT of the output of
the OR gate.

In this way, C is equivalent to a level-5 circuit, in which

• The bottom level is same as C.

• The second level consists of s1 NOT gates, denoted NOT2
1, · · · ,NOT2

s1 , which flip the
outputs of OR1

1, · · · ,OR1
s1 .

• The third level consists of s2 OR gates, denoted OR3
1, · · · ,OR3

s2 , in which OR3
j has as

input the outputs of NOT2
j1 , · · · ,NOT2

js′
.

• The fourth level consists of s2 NOT gates, denoted NOT4
1, · · · ,NOT4

s2 , which flip the
outputs of OR3

1, · · · ,OR3
s2 .

• The top level is the output OR gate, i.e. the output gate of C, denoted OR5, which
outputs the OR of the outputs of NOT4

1, · · · ,NOT4
s2 .

So in the following we think of C having this 5-level structure. Then let us consider the
NOT gates in level 2. Since p1

i (x) is close to the output of OR1
i , 1 − p1

i (x) is also close to
the output of NOT2

i . Let p2
i (x) denote 1 − p1

i (x). Then by Claim 1 we have the following
claim.

Claim 2 For each input x ∈ {0, 1}n, |p2
i (x)−NOT2

i | ≤ ε1.

Now let us consider how to approximate the OR gates in level 3. This is actually
a key step of the whole construction. Recall that previous works such as Aspnes et al.
(1994b) present low-degree polynomials to approximate OR under any distribution. These
polynomials can compute OR correctly for majority fraction of inputs, and however have
large deviation for other inputs. So we do not adopt these known polynomial approximation.
Instead, we will use rational functions to approximate the OR gates in this level.

1. The uniform approximation in Claim 1 also holds for the AND operation. Then any s-term t-DNF
formula (i.e. one containing s terms, each of which consists of at most t literals) can be computed by a
PTF, in which the polynomial is the sum of all the approximation to its terms when ε1 <

1
2s

. Since each

approximation is of degree O(
√
t log(1/ε1)), the PTF is of degree O(

√
t log(1/ε1)) = O(

√
t log s). This

achieves a same result shown in Klivans and Servedio (2004).
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Recall that Beigel et al. (1995) presents an approximation to the sign function with
rational functions which can be employed here to approximate OR. But it would result
in a more factor of polylog(n) in degrees of the numerator and denominator in rational
functions when compared to our specific construction in the following.2 (Note that we can
also employ the results and methods in Klivans and Servedio (2004); Klivans et al. (2004)
to construct the PTF, but it still leads to the polylog(n)-factor augment in degrees.3 4)

So we use a new rational approximation. Take OR3
j for example. Let yjk denote the

output of NOT2
jk
, 1 ≤ k ≤ s′, where s′ is polynomial in n. Define p(yj1 , · · · , yjs′ ) as follows.

p(yj1 , · · · , yjs′ ) =
yj1 + · · ·+ yjs′

yj1 + · · ·+ yjs′ + nlognε1

Then we can see that 0 < p(y) ≤ 1 for any y = (yj1 , · · · , yjs′ ) and p(y) = 0 if OR3
j (y) = 0,

and p(y) ∈ [ 1
1+nlognε1

, s′

s′+nlognε1
] if OR3

j (y) = 1.

Let p3
j denote p(p2

j1
, · · · , p2

js′
). Then p3

j (x) is a rational function, in which the polyno-

mials in numerator and denominator are of degree O(
√
n ln 1

ε1
), since each p2

jk
is of degree

O(
√
n ln 1

ε1
). Also note that each p2

jk
is ε1-close to 0/1 and thus the denominator of p3

j

will not equal 0, which ensures that the definition of p3
j is meaningful. Now we have the

following claim.

Claim 3 For each input x ∈ {0, 1}n, |p3
j (x)| < poly(n)

nlogn if OR3
j = 0, and p3

j (x) ∈ (1 −
n− logn

poly(n) , 1) if OR3
j = 1.

Proof Recall that yjk denotes the output of NOT2
jk
, 1 ≤ k ≤ s′ and y = (yj1 , · · · , yjs′ ).

When OR3
j = 0, all yjk are 0. Thus we have that p(y) = 0, i.e.

yj1+···+yjs′
yj1+···+yjs′+n

lognε1
= 0. By

2. Beigel et al. (1995) shows that for every l, t ≥ 1 there is a rational function P lt (z) over real z satisfying
that it is in [1, 1 + 1

l
] if z ∈ [1, 2t] and it is in [−1− 1

l
,−1] if z ∈ [−2t,−1] and degrees of the numerator

and denominator of P lt (z) sum into O(t log l). For each OR gate in level 3, letting z denote the sum of
all its inputs, z is [1, s′] if the OR outputs 1 and z = 0 if it outputs 0. That implies that 1 − 2z = 1 if
the NOT gate in level 4 connected to this OR gate outputs 1 and 1− 2z ∈ [1− 2s′,−1] if it outputs 0.
Choose t = log2 n, l = nlogn. Then P lt (1− 2z) of degree O(t log l) 1

l
-approximates the NOT gate. Thus

since later we need to replace each input to the OR gate by p2
jk in defining p3

j and p4
j , ε1 should be set

to n−Ω(t log l). So compared to our construction, adopting the general conclusion in Beigel et al. (1995)
leads to a more factor of O(t log l · log(1/ε1)) = polylog(n) in degrees when approximating NOT gates in
level 4.

3. Consider the question of learning Π3-circuits of top fanin s2 < n, each of which is an AND of s2

DNF formulae. Klivans and Servedio (2004) shows that every s-term DNF formula can be computed

by a PTF of degree O(
√
n log s) and of weight w = nO(

√
n log s). When s is an arbitrary polynomial,

w = nO(
√
n log2 n). Choose t = logw and l = O(n). By Beigel et al. (1995) and the arguments in

Klivans et al. (2004), each such circuit, i.e. an AND of s2 PTFs, can be computed by a PTF of degree
O(s2 · t log l), which also contains a more factor of polylog(n) than our construction.

4. Klivans and Servedio (2004) also shows that every s-term DNF can be computed by a PTF of degree
O(n1/3 log s). However, the weight of the PTF can be 2n

c

for c ≥ 1. So if following the way in footnote
3 with this result, we only have that any Π3-circuit of top fanin s2 can be computed by a PTF of degree
n, which results in exponential-time learning.

7
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Claim 2, |p2
jk

(x)− yjk | < ε1 for any k. Thus

|
p2
j1

+ · · ·+ p2
js′

p2
j1

+ · · ·+ p2
js′

+ nlognε1
| <

|yj1 + · · ·+ yjs′ |+ s′ε1

−|yj1 + · · ·+ yjs′ | − s′ε1 + nlognε1

=
s′ε1

−s′ε1 + nlognε1
=

s′

−s′ + nlogn
<

poly(n)

nlogn

When OR3
j = 1, there is at least one yjk which is 1. Thus

yj1+···+yjs′
yj1+···+yjs′+n

lognε1
∈

[ 1
1+nlognε1

, s′

s′+nlognε1
], which is less than 1. Then there exists a s0 ∈ [−s′, s′] such that

p2
j1

+ · · ·+ p2
js′

p2
j1

+ · · ·+ p2
js′

+ nlognε1
=

yj1 + · · ·+ yjs′ + s0ε1

yj1 + · · ·+ yjs′ + s0ε1 + nlognε1

= 1− nlognε1
yj1 + · · ·+ yjs′ + s0ε1 + nlognε1

> 1− n− logn

yj1 + · · ·+ yjs′
≥ 1− n− logn

poly(n)

in which the last equality follows from that nlognε1 = n− logn and yj1 + · · ·+ yjs′ is at most
a polynomial quantity. The claim holds.

Then consider the NOT gates in level 4. Let p4
j (x) denote 1 − p3

j (x). Thus p4
i is still

a rational function, in which the polynomials in numerator and denominator are of degree
O(
√
n ln 1

ε1
). Then by Claim 3 we have the following result.

Claim 4 For each input x ∈ {0, 1}n, p4
j (x) ∈ (0, n

− logn

poly(n) ) if NOT4
j = 0, and p4

j (x) ∈
(1− poly(n)

nlogn , 1 + poly(n)
nlogn ) if NOT4

j = 1.

Then let us consider the final output gate, i.e. OR5, which has the outputs of the NOT
gates in level 4 as input. If all these outputs are 0, then it outputs 0. Otherwise, it outputs
1. Thus we have the following claim.

Claim 5 For each input x ∈ {0, 1}n, the OR5 outputs 0 if and only if
∑s2

j=1 p
4
j (x) =

n−Θ(logn) and OR5 outputs 1 if and only if
∑s2

j=1 p
4
i (x) > 1− n−Θ(logn).

Proof It can be seen that OR5 outputs 0 if and only if all NOT4
j output 0. By Claim 4,

each NOT4
j outputs 0 if and only if |p4

j (x)| < n− logn

poly(n) . Thus OR5 outputs 0 if and only if the
following holds.

s2∑
j=1

p4
j (x) < s2 ·

n− logn

poly(n)
= n−Θ(logn)

On the contrary, OR5 outputs 1 if and only if at least one NOT4
j outputs 1, which is

equivalent to that
s2∑
j=1

p4
j (x) > 1− poly(n)

nlogn
= 1− n−Θ(logn)
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The claim holds.

We remark that although we could now present the PTF computing C using Claim 5,
for simplicity we put forward the following statement of clear quantity that is sufficient for
further analysis.

Claim 6 For each input x ∈ {0, 1}n and for sufficiently large n, the OR5 outputs 0 if and
only if

∑s2
j=1 p

4
j (x) < 1

2 and OR5 outputs 1 if and only if
∑s2

j=1 p
4
i (x) > 1

2 .

3.2. The Learning Strategy

We now present the learning strategy. Notice that each p4
j is a rational function, which can

thus be represented as
fj
gj

, where fj , gj are polynomials of degree O(
√
n ln 1

ε1
). Thus

s2∑
j=1

p4
j (x) =

f1

g1
+ · · ·+ fs2

gs2

By Claim 6 OR5 = 0 is equivalent to f1

g1
+ · · · + fs2

gs2
< 1

2 and OR5 = 1 is equivalent to

f1

g1
+ · · ·+ fs2

gs2
> 1

2 . Multiplying
∏
i∈[s2] gi to both sides, we have the following inequalities.

∑s2
j=1(fj

∏
i∈[s2],i 6=j gi) <

1
2 ·

∏
i∈[s2] gi, if OR5 = 0∑s2

j=1(fj
∏
i∈[s2],i 6=j gj) >

1
2 ·

∏
i∈[s2] gi, if OR5 = 1

Let F (x) denote the following polynomial.

F (x) =

s2∑
j=1

(fj
∏

i∈[s2],i 6=j

gi)−
1

2
·
∏
i∈[s2]

gi

Thus F (x) < 0 if C(x) = 0 and F (x) > 0 if C(x) = 1.
Let T = O(

√
n ln 1

ε1
) · s2. We have that F (x) is of degree T . So F (x) can be represented

as
F (x) =

∑
S:|S|≤T

αS
∏
i∈S

xi

in which all S’s are subsets of [n] and αS ’s are real coefficients.
For a labeled example (x,C(x)), if C(x) = 0, we can construct an inequality as follows.∑

S:|S|≤T

αS
∏
i∈S

xi < 0

If C(x) = 1, we construct the inequality as follows.∑
S:|S|≤T

αS
∏
i∈S

xi > 0

9
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So when given m examples, we obtain m inequalities as above shows. An important
thing is that due to the generation of these inequalities, we are ensured there exists at least
one solution to all coefficients αS ’s. Then by using any linear programming algorithm, we
can recover a solution of all αS ’s, which are actually consistent with all the m examples.
Thus when m is large enough, these αS ’s can be used to evaluate a new input x (with
the strategy that the output is 1 if

∑
S:|S|≤T αS

∏
i∈S xi > 0 and is 0 otherwise.) We will

formalize this strategy in the next section.

4. The Learning Algorithm

In this section we present the learning algorithm for any Σ3-circuit C which top fanin is s2.
In Section 4.1 we present the sample complexity for learning C. In Section 4.2 we present
the learning algorithm.

4.1. Sample Complexity

Let Hn denote the class of all functions computable by Sign(
∑

S:|S|≤T αS
∏
i∈S xi) with

different coefficients αS ’s, where recall T = O(
√
n ln 1

ε1
) · s2.

Notice that due to the construction of F (x) in the previous section, we have C(x) =
Sign(F (x)) for any Σ3-circuit C with top fanin s2. Since Sign(F (x)) ∈ Hn, all such Σ3-
circuits are in Hn. So it suffices to adopt the VC-dimension of Hn to drive the required
number of examples for learning C. First recall the following result.

Claim 7 (Mixon and Peterson (2015)) The VC-dimension of Hn is 2nT+1 − O(nT ·
T log n) = O(nT+1).

Let D denote any distribution over {0, 1}n, (x1, C(x1), · · · , xm, C(xm)) be m examples
labeled by any circuit C where each xi ← D independently. An algorithm L is called a
consistent-hypothesis-finder if L on input any m labeled examples (xi, C(xi)), 1 ≤ i ≤ m
can output a hypothesis h ∈ Hn satisfying h(xi) = C(xi) for all i.

Proposition 3 (Blumer et al. (1989)) For any Hn, choose m = 4
ε (VC-dim(Hn) ln(12

ε ) +
ln(2

δ )). If L is a consistent-hypothesis-finder for m examples labeled by some function in
Hn under any distribution D, then it is a PAC learning algorithm that can learn Hn to
accuracy and confidence (ε, δ) under D.

Returning to our setting, to learn Σ3-circuits with top fanin s2 (contained in Hn), m
can be set to O(1

ε (n
T+1 ln(12

ε ) + ln(2
δ ))).

4.2. Actual Description

Our learning algorithm for all Σ3-circuits with top fanin s2 is shown in Algorithm 1, in
which m is the number specified above.

Then we show that Algorithm 1 can learn any such C under any distribution D.

Theorem 4 Algorithm 1 can with probability at least 1− δ output a hypothesis h satisfying
Pr[h(x) 6= C(x)] < ε for x← D in time poly(m).

10
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Algorithm 1: The learning algorithm for all Σ3-circuits with top fanin s2

Input:

• m labeled examples of form (x,C(x)) where x is drawn from D independently and C
is a Σ3-circuits with top fanin s2.

• ε, δ and s2.

Output: a hypothesis h′.

1. Choose ε1 = n−2 logn and let T = O(
√
n ln 1

ε1
) · s2.

2. For each example (x,C(x)), if C(x) = 1, generate an inequality
∑

S:|S|≤T αS
∏
i∈S xi >

0. If C(x) = 0, generate an inequality
∑

S:|S|≤T αS
∏
i∈S xi < 0.

Thus the learning algorithm finally generates m linear inequalities, in which all αS ’s
are unknown coefficients.

3. Run any linear programming algorithm on input the m inequalities to find a solution
of all αS ’s. (At least one solution exists.) Denote by α′S ’s the solution.

4. Output the function h′ as the learned hypothesis of C. h′ has all α′S ’s hardwired and
on input any x ∈ {0, 1}n, outputs Sign(

∑
S:|S|≤T α

′
S

∏
i∈S xi).

End Algorithm

Proof First, it can be seen that when transforming the m examples to the inequalities, we
are ensured that the inequalities have at least one solution. This is so because when given
C, if we follow the construction strategy to generate Sign(F (x)), it is of course consistent
with the training examples. This ensures that the linear programming algorithm can find
a solution of αS ’s (no matter whether they are identical to the original ones or not).

Thus the h′ ∈ Hn output by Algorithm 1 is actually a consistent hypothesis. Considering
the choice of m, by Proposition 3, h′ is indeed a learned hypothesis. Lastly we can see that
Algorithm 1 runs in time polynomial in m.

We present several remarks on this learning result. First, for learning in sub-exponential
time, the top fanin s2 should be bounded by nε0 for any ε0 <

1
2 , which thus ensures the

running-time is nÕ(n
1
2 +ε0 ), a sub-exponential time.

Second, when obtaining a learning algorithm for Σ3 circuits of top fanin s2, we can
also learn all Π3 circuits of top fanin s2, i.e. AND of s2 DNF formulae. Let C ′ be such
a Π3-circuit. Notice that C ′ is a Σ3-circuit of top fanin s2. So when given m examples of
form (x,C ′(x)), we first generate m examples (x, 1− C ′(x)) in which 1− C ′(x) is equal to
C ′(x). Run Algorithm 1 on the new examples to obtain a hypothesis h′ of C ′, and finally
denote by 1− h′ the learned hypothesis of C ′.

Third, for learning an arbitrary AC0 circuit C with top fanin s2, when given m examples,
we can first assume C is a Σ3-circuit and thus run Algorithm 1 to output a hypothesis h′.

11



PAC Learning Depth-3 AC0 Circuits of Bounded Top Fanin

If h′ is consistent with all the examples, by Proposition 3, h′ is indeed a desired learned
hypothesis. Otherwise, it implies that C is a Π3-circuit of top fanin s2. Thus we can apply
the learning strategy in the previous paragraph to generate a desired learned hypothesis for
C. Therefore we complete the proof of Theorem 1.
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