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Abstract

We study the complexity of learning and approximation of self-bounding functions over the
uniform distribution on the Boolean hypercube {0, 1}". Informally, a function f : {0,1}" —
R is self-bounding if for every x € {0,1}", f(x) upper bounds the sum of all the n marginal
decreases in the value of the function at z. Self-bounding functions include such well-
known classes of functions as submodular and fractionally-subadditive (XOS) functions.
They were introduced by Boucheron et al. in the context of concentration of measure
inequalities. Our main result is a nearly tight ¢;-approximation of self-bounding functions
by low-degree juntas. Specifically, all self-bounding functions can be e-approximated in ¢;
by a polynomial of degree O(l/e) over 20(1/¢) variables. We show that both the degree and
junta-size are optimal up to logarithmic terms. Previous techniques considered stronger ¢
approximation and proved nearly tight bounds of ©(1/e?) on the degree and 20(1/¢*) on
the number of variables. Our bounds rely on the analysis of noise stability of self-bounding
functions together with a stronger connection between noise stability and ¢; approximation
by low-degree polynomials. This technique can also be used to get tighter bounds on #;
approximation by low-degree polynomials and faster learning algorithm for halfspaces.

These results lead to improved and in several cases almost tight bounds for PAC and
agnostic learning of self-bounding functions relative to the uniform distribution. In par-
ticular, assuming hardness of learning juntas, we show that PAC and agnostic learning of
self-bounding functions have complexity of n®(1/¢).

1. Introduction

We consider learning and approximation of several classes of real-valued functions over the
uniform distribution on the Boolean hypercube {0,1}". The most well-studied class of
functions that we consider is the class of submodular functions. A related class of functions
is that of fractional subadditive functions, equivalently known as XOS functions, which
generalize monotone submodular functions and have been introduced in the context of
combinatorial auctions (Lehmann et al., 2006). XOS functions are also known to have an
equivalent definition as Rademacher complexity of a subset of data points for some class of
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functions (Feldman and Vondrak, 2015). It turns out that these classes are all contained in
a broader class, that of self-bounding functions, introduced in the context of concentration
of measure inequalities (Boucheron et al., 2000). Informally, a function f over {0,1}" is
a-self-bounding if for every = € {0,1}", a- f(x) upper bounds the sum of all the n marginal
decreases in the value of the function at 2. For XOS functions a = 1 and for submodular!
a = 2 (a is omitted when it equals 1). See Sec. 2 for formal definitions and examples of
self-bounding functions.

Wide-spread applications of submodular functions have recently inspired the question
of whether and how such functions can be learned from random examples (of an unknown
submodular function). The question was first formally considered by Balcan and Harvey
(2012) who motivate it by learning of valuations functions. Reconstruction of such functions
up to some multiplicative factor from value queries (which allow the learner to ask for the
value of the function at any point) was also considered by Goemans et al. (2009). In this
work we consider the setting in which the learner gets random and uniform examples of
an unknown function f and its goal is to find a hypothesis function h that e-approximates
the unknown function for a given ¢ > 0. The measure of the approximation error we use is
the standard absolute error or ¢;-distance, which equals E,p[|f(z) — h(z)|]. While other
measures of error, such as {s, are often studied in machine learning, there is a large number
of scenarios where the expected absolute error is used. For example, if the unknown function
is Boolean then learning with /1 error is equivalent to learning with Boolean disagreement
error (Kalai et al., 2008). In fact, it is known that the complexity of agnostic learning
over product distributions in the statistical query model is characterized by how well the
Boolean functions can be approximated in ¢; by low-degree polynomials (Dachman-Soled
et al., 2015). Applications of learning algorithms for submodular functions to differentially-
private data release require ¢ error (Gupta et al., 2011; Cheraghchi et al., 2012; Feldman
and Kothari, 2014) as does learning of probabilistic concepts (which are concepts expressing
the probability of an event) (Kearns and Schapire, 1994).

Motivated by applications to learning, prior works have also studied a number of nat-
ural questions on approximation of submodular and related classes of functions by con-
cisely represented functions. For example, linear functions (Balcan and Harvey, 2012),
low-degree polynomials (Cheraghchi et al., 2012; Feldman and Vondrék, 2015), DNF for-
mulas (Raskhodnikova and Yaroslavtsev, 2013), decision trees (Feldman et al., 2013) and
functions of few variables (referred to as juntas) (Feldman et al., 2013; Blais et al., 2013;
Feldman and Vondrak, 2015, 2016). We survey the prior work in more detail in Section 1.2.

1.1. Our results

In this work, we provide nearly tight bounds on approximation of self-bounding functions by
low-degree polynomials and juntas in the £;-norm. The results are obtained via the noise-
stability analysis of self-bounding functions. Previous approximation bounds for the uniform
distribution relied on bounding 5 error that is more convenient to analyze using Fourier
techniques. However this approach has so far led to weaker bounds on ¢; approximation

1. Technically, self-bounding functions are always non-negative and hence capture only non-negative sub-
modular functions. Submodularity is preserved under shifting of the function and therefore it is sufficient
to consider non-negative submodular functions.
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error. Further the known bounds on /5 approximation are known to be optimal (Feldman
and Vondrak, 2015). The dependence of the degree and junta size on the error parameter
€ in our bounds is quadratically better (up to a logarithmic term) than bounds which are
known for ¢ error.

Structural results: Our two key structural results can be summarized as follows.

Theorem 1 Let f : {0,1}" — [0,1] be an a-self-bounding function and ¢ > 0. For
d = O(a/e-log(1/€)) there exists a set of indices I of size 24 and a polynomial p of degree
d over variables in I such that || f — pll1 <e.

This result itself is based on a combination of two structural results. The first one gives
a degree bound of O(%log %) Previously, it was known that submodular functions with
range [0, 1] can be e-approximated by polynomials of degree O(1/¢2?) (Cheraghchi et al., 2012;
Feldman et al., 2013). Feldman and Vondrdk (2016) showed that the same upper bound
applies all self-bounding functions and, more generally, all functions of low total influence.
More recently, it was shown that this upper bound is tight (Feldman and Vondrak, 2015).
For comparison, as follows from the results in (Feldman and Vondrak, 2015), for XOS
functions there is no significant difference in between ¢; and ¢ approximation. In both
cases degree O(1/¢) and junta of size 2°(1/¢) are needed. One natural open problem that is
left open is the degree of polynomial necessary to approximate a submodular function in #;
norm.

Our proof is based on a new and simple connection between (the appropriately gen-
eralized notion of) noise sensitivity of a real-valued function and its approximability by a
low-degree polynomial. The key observation here is that the application of the noise opera-
tor to a function f that has low noise sensitivity gives a function that is close to f in £ norm.
The obtained smoothed function is much easier to approximate by a low-degree polynomial
since its Fourier spectrum decays rapidly with the growth of the degree. This technique
is general and also gives a sharper bound for ¢; approximation of halfspaces by low-degree
polynomials (see Cor. 15). To apply this technique to self-bounding functions we show that
noise-sensitivity can be upper bounded using a bound on the total ¢; influence of all the
coordinates on the function. It is known that a-self-bounding function have total influence
of at most a (Feldman and Vondrék, 2016) and thus we obtain that any a-self-bounding
functions has bounded noise sensitivity and can be approximated by a degree O(% log %)
polynomial.

The second component of this result builds on the work of (Feldman and Vondrak,
2016), where it was shown that a classic theorem of Friedgut (1998), on approximation of
Boolean functions by juntas, generalizes to the setting of real-valued functions by including
a dependence on ¢; as well as fy-influences of the function. We show that by applying the
analysis from (Feldman and Vondrék, 2016) to the smoothed version of f (for which we have
better degree bounds) we can obtain approximation by a junta of size 20(e/¢10g(1/€))  This
improves on 2°(%/<*) hound in (Feldman and Vondrék, 2016) (that holds also for £y error).
We note that both of the components also apply to the more general class of functions with
low total /1 influence.

We then study the effect of the noise operator on self-bounding functions in more detail.
We demonstrate that the smoothed version is noise stable even in the stronger point-wise
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sense: for every x, the smoothed function at x cannot be much smaller than f(x). This result
generalizes a similar result from (Cheraghchi et al., 2012) for submodular functions. Such
stability implies that for every non-negative a-self-bounding function f, ||f|1 > 3%H flloo
(see Lemma 18). This has been known for submodular (Feige et al., 2007) and XOS (Feige,
2006) functions (with a constant a) and, together with approximation by a junta, can be
used to obtain a learning algorithm with multiplicative approximation guarantees for all

a-self-bounding functions (Feldman and Vondrék, 2016).

Algorithmic applications: It is easy to exploit our structural results in existing learning
algorithms to obtain better running time and sample complexity bounds. We describe
one of these results here and some additional ones in Section 4. Specifically, we give an
algorithm for learning all a-self-bounding functions relative to the uniform distribution in
the challenging agnostic framework. An agnostic learning algorithm for a class of functions
C is an algorithm that given random examples of any function f finds a hypothesis A whose
error is at most e-greater than the error of the best hypothesis in C (see (Kearns et al.,
1994) for the Boolean case).

Theorem 2 Let C, be the class of all a-self-bounding functions from {0,1}" to [0,1]. There
exists an algorithm A that given € > 0 and access to random uniform examples of any real-
valued f, with probability at least 2/3, outputs a function h, such that | f — h|1 < A + ¢,
where A = mingee, {||f — gll1}. Further, A runs in time n°@/<) and uses 20(a*/) 1og
examples.

This algorithm is based on polynomial ¢; regression with an additional constraint on the
spectral norm of the solution to obtain a stronger sample complexity bound (Feldman and
Vondrak, 2016). The best previous bound of n0@/<®) time and 20(@*/") logn examples
follows from the results in (Feldman and Vondrak, 2016) for function of low total influence.

Lower bounds: We prove that a-self-bounding functions require degree Q(a/e) to e-
approximate in ¢; distance (see Cor. 32). A construction of a parity function correlated
with a submodular function in (Feldman et al., 2013) also implies that even submodular
functions require polynomials of degree Q(e~2/3) to e-approximate in /;.

In (Feldman and Vondrak, 2016) it is shown that XOS functions require a junta of size
202(1/) to e-approximate (however submodular functions admit approximation by exponen-
tially smaller juntas (Feldman and Vondrék, 2016)). This also implies 2(%/¢) lower bound
on junta size for a-self-bounding functions (see Lem. 28). Therefore our structural results
are essentially tight for self-bounding functions.

We then show that our agnostic learning algorithm for a-self-bounding function is nearly
optimal. In fact, even PAC learning of non-monotone a-self-bounding functions requires
time nf2(%/¢9) assuming hardness of learning k-term DNF to accuracy 1 /4 in time nf(%) . This
is in contrast to the submodular (Feldman et al., 2013; Feldman and Vondrak, 2016) and
monotone self-bounding cases (Thm. 24).

Theorem 3 For every a > 1, if there exists an algorithm that PAC learns a-self-bounding
functions with range [0, 1] to €1 error of € > 0 in time T'(n, 1/€) then there exists an algorithm
that PAC learns k-DNF formulas to accuracy € in time T'(n, k/(a-€')) for some fized constant
c.
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To prove this hardness results we show that a k-DNF formula (of any size) is a k-self-
bounding function. Using an additional “lifting” trick we can also embed k-DNF formulas
into a-self-bounding functions for any a > 1. Note that any k-junta can be computed by a
k-DNF formula. Learning of DNF expressions is a well-studied problem in learning theory
but there are no algorithms for this problem better than the trivial O(n*) algorithm, even
for a constant ¢ = 1/4. The (potentially simpler) problem of learning k-juntas is also
considered very hard (Blum and Langley, 1997; Blum, 2003). Until recently, the only non-
trivial algorithm for the problem was the O(n%*)-time algorithm by Mossel et al. (2004).
The best known upper bound is O(n%*) and was given in the recent breakthrough result
of Valiant (2012). Learning of k-juntas is also known to have complexity of nfk) for all
statistical query algorithms (Blum et al., 1994). Theorem 3 implies that PAC learning of
a-self-bounding functions in time n°(%/¢) would lead to a n°*) algorithm for learning k-DNF
to any constant accuracy and, in particular, an algorithm for PAC learning k-juntas in time
n°®) . We note that the dependence on a /€ in our lower bound matches our upper bound
up to a logarithmic factor.

Finally, we remark that our reduction to learning of k-DNF also implies that PAC
learning of a-self-bounding functions requires at least 2%(%/¢) random examples or even
stronger value queries (see Cor. 31). Therefore sample complexity bounds we give are also
close to optimal. Further details of lower bounds are given in Section 5.

1.2. Related work

Below we briefly mention some of the other related work. We direct the reader to (Balcan
and Harvey, 2012) and (Feldman and Vondrak, 2015) for more detailed surveys. Balcan and
Harvey study learning of submodular functions without assumptions on the distribution and
also require that the algorithm output a value which is within a multiplicative approximation
factor of the true value with probability > 1—e¢ (the model is referred to as PMAC learning).
This is a very demanding setting and indeed one of the main results in (Balcan and Harvey,
2012) is a factor-</n inapproximability bound for submodular functions. This notion of
approximation is also considered in subsequent works of Badanidiyuru et al. (2012) and
Balcan et al. (2012) where upper and lower approximation bounds are given for other
related classes of functions such as XOS and subadditive. We emphasize that these strong
lower bounds rely on a very specific distribution concentrated on a sparse set of points, and
show that this setting is very different from uniform/product distributions which are the
focus of this paper.

Gupta et al. (2011) motivate learning of submodular functions over the uniform dis-
tribution by problems in differentially-private data release. They show that submodular
functions with range [0, 1] are e-approximated by a collection of nO1/€) €2-Lipschitz sub-
modular functions. Each e>-Lipschitz submodular function can be e-approximated by a
constant. This leads to a learning algorithm running in time n©(/ 52), which however re-
quires value oracle access to the target function, in order to build the collection.

The work of Cheraghchi et al. (2012) studies approximations of submodular functions by
low-degree polynomials. They prove that any submodular function (of unit norm) can be e-
approximated in ¢; by a polynomial of degree O(1/€?). This leads again to an n©(/ <)
algorithm, but one which requires only random examples and works even in the agnostic

-time



APPROXIMATION OF SELF-BOUNDING FUNCTIONS

setting. The main tool used in this work is the notion of noise stability. Feldman and
Vondrak (2016) studied approximation of submodular, XOS and self-bounding functions by
juntas. Their main result shows that submodular functions can be approximated in ¢» by a
junta of size O(1/€?) and further that all self-bounding functions can be approximated by
a junta of size 20(1/€)

Subsequently, Feldman and Vondrék (2015) have obtained tight bounds on the degree of
a polynomial that sufficient to approximate any function in each of these function classes in
{5 norm. Specifically, they showed ©(e=*/%) bound for submodular functions, ©(1/¢) bound
for XOS functions and a matching lower bound of Q(1/¢?) for self-bounding functions. The
degree bound for XOS functions also implies an upper bound of 291/¢) on the size of the
junta sufficient to approximate (in ¢3) any XOS function.

Raskhodnikova and Yaroslavtsev (2013) consider learning and testing of submodular
functions taking values in the range {0, 1,...,k} (referred to as pseudo-Boolean). The error
of a hypothesis in their framework is the probability that the hypothesis disagrees with
the unknown function. They build on the approach from (Gupta et al., 2011) to show
that pseudo-Boolean submodular functions can be expressed as 2k-DNF and then give a
poly(n) - KO*1ogk/€)_time PAC learning algorithm using value queries. Blais et al. (2013)
proved existence of a junta of size (klog(1 /€))°%®) and used it to give an algorithm for
testing submodularity using (klog(1/€))°®*) value queries. Feldman and Vondrak (2016)
and, more recently, Blais and Bommireddi (2017) have studied testing of various type of
valuation functions showing that approximation by a junta can be exploited to get efficient
testing algorithms.

2. Preliminaries

2.1. Submodular, subadditive and self-bounding functions

In this section, we define the relevant classes of functions. We refer the reader to (Vondrak,
2010; Feldman and Vondrak, 2016) for more details.

Definition 4 A set function f: 2N =R is
e monotone, if f(A) < f(B) for all AC BC N.
e submodular, if f(AUB)+ f(ANB) < f(A)+ f(B) for all A,B C N.
e fractionally subadditive, if f(A) < >°Bif(Bi) whenever B; > 0 and >, ,cp Bi >
1Va € A.

Submodular functions are not necessarily nonnegative, but in many applications (espe-
cially when considering multiplicative approximations), this is a natural assumption. Frac-
tionally subadditive functions are nonnegative by definition (by considering A = By, 51 > 1).
In this paper we work exclusively with functions f : 2V — R.

Next, we introduce a-self-bounding functions. Self-bounding functions were defined by
Boucheron et al. (2000) as a unifying class of functions that enjoy strong “dimension-free”
concentration properties. Currently this is the most general class of functions known to
satisfy such concentration bounds. Self-bounding functions are defined generally on product
spaces X"; here we restrict our attention to the hypercube, so the reader can assume that
X = {0,1}. We identify functions on {0, 1}" with set functions on N = [n] in a natural



APPROXIMATION OF SELF-BOUNDING FUNCTIONS

way. Here we define a somewhat more general class of a-self-bounding functions, following
(McDiarmid and Reed, 2006).

Definition 5 A function f : {0,1}" — R is a-self-bounding, if for all z € {0,1}" and
i € [n],

F(2) — min f(z) < 1

T

and

Useful properties of a-self-bounding functions that are easy to verify is that they are
closed under taking max operation and closed under taking convex combinations. A partic-
ular example of a self-bounding function (related to applications of Talagrand’s inequality)
is a function with the property of small certificates: f : X™ — Z, has small certificates, if
it is 1-Lipschitz and whenever f(x) > k, there is a set of coordinates S C [n], |S| = k, such
that if y|s = z|g, then f(y) > k. Such functions often arise in combinatorics, by defining
f(x) to equal the maximum size of a certain structure appearing in . In Section 5 we also
show that k-DNF formulas are k-self-bounding.

2.2. Fourier analysis on the Boolean cube

The ¢; and fo-norms of a f : {0,1}" — R are defined by || f|i = Ezu[|f(z)|] and
1 £ll2 = (Bz~ee[f(2)?])Y/2, respectively, where U is the uniform distribution over {0,1}".
In what follows all probabilities and expectations are relative to U unless explicitly speci-
fied otherwise.

We rely on the standard Fourier transform representation of real-valued functions over
{0,1}™ as linear combinations of parity functions. For S C [n], the parity function yg :
{0,1}" — {—1,1} is defined by yg(z) = (—1)Zies®. The Fourier expansion of f is given
by f(x) = > scim £(S)xs(z). The degree of highest degree non-zero Fourier coefficient of
f is referred to as the Fourier degree of f. Note that Fourier degree of f is exactly the
polynomial degree of f when viewed over {—1,1}" instead of {0, 1}" and therefore it is also
equal to the polynomial degree of f over {0,1}™. Let f:{0,1}" = R and f : 2" — R be
its Fourier transform.

Definition 6 (The noise operator) For p € [-1,+1],z € {0,1}", we define a distri-

bution N,(x) over y € {0,1}" by letting y; = x; with probability 1'5" and y; = 1 — x;
with probability %, independently for each i. The noise operator T, acts on functions

f:{0,1}" = R, and is defined by
(ToN)=)= E [f)]

The noise stability of f at noise rate p is

Sp(f) = (£, Tof) = Elf ()T, f (x)].
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In terms of Fourier coefficients, the noise operator acts as f;f(S) = plSIf(S). There-
fore, noise stability can be written as S,(f) = > gy pl31f2(S). Finally, we define noise
sensitivity that generalizes the notion of noise sensitivity for Boolean functions.

Definition 7 (Noise sensitivity) For § € [0,1] and a function f : {0,1}" — R, the
noise sensitivity of f at § is NSs(f) = | f — Ti—asflh = 3 E[lf (x) — Ty—25f (z)]].

We keep the factor 1/2 in the definition for consistency with the Boolean case. In the
Boolean case noise sensitivity has the following relationship to noise stability (e.g. (O’Donnell,

2013)):

1

NS5(f) = 5 (1= S1-25(f)) -

Definition 8 (Discrete derivatives) For x € {0,1}", b € {0,1} and i € n let z;y
denote the vector in {0,1}" that equals to x with i-th coordinate set to b. For a real-valued
f:{0,1}* = R and indices i, j € [n] we define, 0;f(x) = 3(f(zic1) — f(zie—1)). We also
define 0;  f(x) = 0;0; f(x).

Observe that 0; f(z) = > g, f(S)XS\{i} (x), and 0; ; f(z) = ZSai,j f(S)XS\{i,j}(a:).

We use several notions of influence of a variable on a real-valued function which are
based on the standard notion of influence for Boolean functions (e.g. (Ben-Or and Linial,
1985; Kahn et al., 1988)).

Definition 9 (Influences) For a real-valued f : {0,1}" - R, i € [n], and K > 0 we define
the (%-influence of variable i as Inff(f) = |20if|5 = E[|30:f|F]. We define Inf*(f) =
> icn) Infi(f) and refer to it as the total (%-influence of f.

3. Structural results

3.1. Approximation of low-sensitivity functions by low-degree polynomials

In this section we demonstrate a simple approach that allows to approximate low noise-
sensitive functions in ¢; norm and also show that noise sensitivity of a function can be
upper-bounded by its ¢; influence.

Our approach is based on an observation that if a function is close to its noisy version
in /1 norm then it is well-approximated by a low-degree polynomial.

Lemma 10 For every function f : {0,1}" — R, every e > 0 and 6 € (0, 1] there exists a
multilinear polynomial p of degree d = (% log %] such that

1 = plle < €llfll2 + 2 - NSs(f).
In particular, the polynomial can be chosen as p(z) = 3 g 4(1 — 26)151£(S)xs(x).

Proof Let p=1— 2. We can estimate the tail of the Fourier expansion as follows: For
any d, define f_4(x) = ZS:|S|<d f(S)xs(x), a polynomial of degree at most d. Then, since

Tpf(z) =3 scm) P51 f(S)xs(x), we get

ITofea —Tpflh = > A1FSxs|| < || Y. o F(S)xs|| < plIfll2- (1)

S:|S|>d L S:|S|>d 9
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Taking d = [%log %1 we get that such that [|T,f<q — T,fll1 < (1 —28)¢ - [|fll2 < €|l fl2-
Now, by Definition 7, we have that || f —T1_25f||1 = 2-NSs(f). The lemma now follows by
the triangle inequality. [ ]

Next we observe that the total ¢; influence of a function can be used to derive an
upper-bound on its noise sensitivity.

Lemma 11 For every function f:{0,1}" — R and 6 € [0, 1],
NS5(f) < 6 Inf'(f).

Proof For every t =0,1,...,n we define a distribution N{%,s(z) over y € {0,1}" by letting
y; = x; with probability 1 — d and y; = 1 — x; with probability §, independently for each
i < t, while for all i > ¢, y; = x;. Note that N{“%,(z) is always equal to z and N "s(x) is
exactly Ni_g5(z). We also define a distribution Nt _,s(z) over y € {0,1}" by letting y, = z;
with probability 1 — § and y; = 1 — x; with probability §, while for all i # ¢, y; = x;.

Now,

NSs(f) = ‘E

N =

E[lf(z) — Ti—2sf (2)]] =

N | =

y~N1_o5(x)

‘f(w) - E [f(y)

IN

E [fWl- E [

yNNll t251( ) y~N{ty5(x)

-
=

= Z 5\8tf —6ZInft ) =6 - Infl(f).

=1Y
u

An immediate corollary of Lemmas 10 and 11 is that any function of low total ¢; influence
can be well-approximated by a low-degree polynomial:

Corollary 12 For every function f : {0,1}" — R such that || f||2 < 1 and every e > 0 there
exists a multilinear polynomial p of degree d = (2 Inf’ (f) log 21 such that ||f — p|1 < e.

It follows easily from the definition of self-bounding functions that they have low total
{1-influence.

Lemma 13 (Feldman and Vondrak, 2016, Lemma 4.2) Let f: {0,1}" — R4 be an
a-self-bounding function. Then Inf'(f) < a - ||f|li. In particular, for f : {0,1}" — [0,1],
InfX(f) < a.
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Therefore we obtain that self-bounding functions are well-approximated by low-degree
polynomials.

Theorem 14 For every a-self-bounding function f :{0,1}" — Ry and every € > 0, there
exists a multilinear polynomial p of degree d = f%a log %1 such that

1f =Dl < el fll2-

In particular, the polynomial can be chosen as p(x) = 3 g<q P8 f(S)xs(x), for p=1— o

Application to approximation and learning of halfspaces. We now briefly show
that our approach can also be used to obtain sharper bounds on ¢;-approximation of halfs-
paces by low-degree polynomials. Recall that a halfspace is a Boolean function expressible
as sign(zie[n] a;z; — ag) for some real values ag,aq,...,a,. Halfspaces are known to be
noise-stable. Specifically, Kalai et al. (2008) proved that for every halfspace f and § > 0,
NSs(f) < 8.8-+/6. Using this fact they showed that any halfspace can be e-approximated
in /3 norm by a polynomial of degree O(1/e*) and gave an agnostic learning algorithm for
learning halfspaces over the uniform distribution that runs in time n©(/ <)), For ¢; norm
approximation the best previously known bound is O(log?(1/€)/€?) and was given by Di-
akonikolas et al. (2010) (note however that their result is substantially more involved and
gives a stronger notion of approximation that is necessary for fooling halfspaces). By plug-
ging the upper bound on noise sensitivity into our Lemma 10 with § = (4 - 8.8)% - €2 we
obtain the following corollary:

Corollary 15 For every halfspace f and every e > 0, there exists a multilinear polynomial
p of degree d = O(log(1/€)/€?)) such that ||f — p|1 < e.

We note that the agnostic learning algorithm for halfspaces in (Kalai et al., 2008) requires
only /1 approximation. Therefore our result implies that halfspaces are agnostically learn-
able over the uniform distribution in time n®Ues(1/9)/e*),

3.2. Noise stability of self-bounding functions

In this section, we study the action of the noise operator on a self-bounding function in
more detail. Specifically, we show that self-bounding functions are noise-stable point-wise.
This results strengthens and generalizes a similar one proved for submodular functions
in (Cheraghchi et al., 2012). It allows us to derive additional properties of self-bounding
functions useful for their approximation and learning.

Lemma 16 For any a-self-bounding function f :{0,1}" — R under the uniform distribu-
tion, and any p € [—1,4+1],2 € {0,1}",

1—p ‘
Tpf(x) = (1 - W) f ().

Proof First, let us observe that the statement of the lemma is invariant under flipping the

hypercube {0,1}" along any coordinate: the notion of a-self-bounding functions does not
change, the action of the noise operator does not change, and the conclusion of the lemma

10
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does not change either. So we can assume without loss of generality that = = (0,0,...,0).
We also identify points in {0, 1}" with sets S C [n] by considering S = {i : x; = 1}.
Let us average the values of f over levels of sets of constant |.S|, and define

o) = E [f<s>]=(i S (S).

|SI=t S:|S|=t

In particular, ¢(0) = f(0) = f(x). We claim the following: for every t = 0,1,...,n,

t a
t)y>(1—- —— 0). 2
o) 2 (1- =ty ) 0l0) 2
Intuitively, if f(z) is a point of high value, the value cannot drop off too quickly as we
move away from z. If we prove (2), then we are done: for x = (0,0,...,0), T,f(z) is an
expectation of f(S) over a distribution where the sets on each level appear with the same
probability, namely

niw= > (52) - (50)7 (7)) ew

i=0,1,...,n

The expected cardinality of a set sampled from this distribution is E[|S|] = %n. By
convexity of the bound (2) and Jensen’s inequality, we obtain

T, > (1 2\ - 1 i-p
pf(m)_ T h—at1 f(z) = —m f(x).

So it remains to prove (2).
We proceed by induction. For ¢t = 0, the claim is trivial. Let us assume it holds for ¢,
and consider a set S, |S| = t. By the property of a-self-bounding, we have

af(S) =) (f(S) —min{f(S+1i), F(S—i)}) = D> (£(S)— f(S+1)).
=1 i€[n]\S

Note that |[n] \ S| = n — t. By rearranging this inequality, we get

m—t—a)f(S)< 3 F(S+i).

i€[n]\S

Now let us add up this inequality over all S of size |S| = t:

(n—t—a) Y fS)< > fS+i)=(t+1) > f(S)

1S|=t |S|=t,i¢S |/ |=t+1

because every set S’ of size t + 1 appears t + 1 times in the penultimate summation. Ex-
pressing this inequality in terms of ¢(t), we get

m=t=a)(})ot < e+, o+,

11
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or equivalently

n—t
) < ——o(t+1).
o) < g +1)
We replace this by a slightly weaker bound: ¢(t) < (%)%ﬁ(t + 1). To see why this
holds, consider (”;i;tf?:l)a =1+ n_%_a)a > 14— =_nt
By the inductive hypothesis (2), we assume ¢(t) > (";f;lrft)“(b(O). So we obtain
n—a+1—t\* n—t—a+1\"
_ )< ——— t+1).
( n—a-+1 > g )_< n—t—a > ot +1)

This implies the claim (2) for ¢ + 1:

s+ (220 o0 - (1- ) v

Corollary 17 For any a-self-bounding function f : {0,1}" — R under the uniform distri-
bution, the noise stability with noise parameter p is

1 _ a
S,(f) > (1 - 2(1_’)1>> I1£15:

n

In particular, for a = 1 (self-bounding functions), we obtain S,(f) > %H fl3. In
(Cheraghchi et al., 2012), an analogous bound on noise stability is used to derive an agnostic
learning algorithm (over the uniform distribution) with excess ¢1-error € in time nO(/<*).
Comparison of norms for self-bounding functions. Our bound on the noise operator
implies a bound on the ¢; norm of a self-bounding function, relative to its £, norm. This
has been first shown for submodular function by Feige et al. (2007) and for XOS functions
by Feige (2006) (with a constant a). Together with approximation by a junta that we
prove later, this result can be used to obtain a learning algorithm for all a-self-bounding
functions (Feldman and Vondrak, 2016) with multiplicative approximation guarantees that
are required in the PMAC model of Balcan and Harvey (2012). The details of achieving
multiplicative approximation are relatively involved and hence we omit them from this
presentation.

Lemma 18 For any a-self-bounding function f :{0,1}" — R4 under the uniform distri-
bution, with n > 4a,

£l < 11 flloo < 3%([f1l1-

Proof Let ||f|c = f(z*). Since f is nonnegative and n > 4a, we have by Lemma 16

11 = Bl (@) = Tof (=) > (1 - 2(1_1)> 1) = (1= gy ) 1) = o @)

n

12
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We remark that a factor exponential in a is necessary here. Consider the conjunction
function on a variables, f(x) = z1x2 - - x4. This is an a-self-bounding function with values
in {0,1}. We have

1£llp = (Pr[f(z) = 1])"/» = 27/7.

In particular, ||f|l; = 27%, ||flle = 2=%2 and ||f|lsc = 1; i.e., the £1, f5 and o, norms can
differ by factors exponential in a.

Relative error vs. additive error. In our results, we typically assume that the values
of f(z) are in a bounded interval [0,1] or that || f|l; < 1 and our goal is to approximate
f with an additive error of e. As Lemma 18 shows, for a-self-bounding functions (with
constant a) the /1 and ¢, norms are within a bounded factor, so this does not make much
difference.

This means that if we scale f(x) by 1/(3%||f||1), we obtain a function with values in [0, 1].
Approximating this function within an additive error of € is equivalent to approximating
the original function within an error of €3%||f||;. In particular, for submodular functions we
have a = 2. Hence, the two settings are equivalent up to a constant factor in the error and
we state our results for submodular functions in the interval [0, 1].

3.3. Friedgut’s theorem for /;-approximation

As we have mentioned in Lemma 13, self-bounding functions have low total sensitivity.
A celebrated result of Friedgut (1998) shows that any Boolean function on {0,1}" of low
average sensitivity is close to a function that depends on few variables. His result was
extended to ¢y approximation of real-valued functions in (Feldman and Vondrék, 2016).
We now show that for self-bounding functions a tighter bounds can be achieved for ¢y
approximation. Our proof is based on the use of ¢; approximation by polynomials proved
in Theorem 14 together with the analysis from (Feldman and Vondrak, 2016) to obtain a
smaller /1 approximating junta.
We now state the main result in more detail.

Theorem 19 Let f: {0,1}" — [0,1] be a function and a = Inf'(f). For every e > 0, let
d=[%log?) and I = {i € [n] | Inf?/?’(f) > a} for a =372t /a2, Then |I| < a/a and
there exists a polynomial p of degree d over variables in I such that ||f — p||1 < e.

To prove the theorem we will need the following bound on the sum of squares of all
low-degree Fourier coefficients that include a variable of low influence from (Feldman and
Vondrak, 2016).

Lemma 20 (Feldman and Vondrik, 2016, Lemma 4.7) Let f : {0,1}" - R, sk €
(1,2), @ > 0 and d be an integer > 1. Let I = {i € [n] | Inff(f) > a}. Then

)P < (k-1 o nfr(f)

SZI,|5|<d

13
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We can now complete the proof of Thm. 19.
Proof Theorem 14 proves that for d < [%log %1 and p = 1 — o, the function T}, f4
satisfies

1f = Tpf<alls < ellfll2/2 < e/2. (3)
We can also apply Lemma 20 with x = 4/3 and a = 37297 1¢* /a2 to obtain that

> (82 <3 a2 nfB(F) =341 <3d1/2 , €2> nf3(f) < EZ @

a
SZI,|5|<d

where the last inequality uses Inf¥/3(f) < Inf'(f) < a which follows from Lemma 13 and
the fact that 0; f’s have range [—1/2,1/2] when f has range [0, 1].
For every S, |T,f(S)| = |p!°1 £(S)| < |f(S)|. Therefore eq. (4) implies that

— A 62
Y. TSy Y fer<7. (5)

SZI,|S|<d SZI,|5|<d

Now let p =3 gcs |sj<d i:f(S)XS be the restriction of T}, f- 4 to variables in /. Equation (5)
gives a bound on the sum of squares of all the coefficients that we removed from 7T, f.4 and
implies that ||[p—T,f<qll1 < |lp—Tpf<dll2 < €/2. Together with eq. (3), we get || f —p|[1 <e.
Finally, || < Inf¥3(f) /o < InfY(f) /v < a/cv. |

By Lemma 13, every a-self-bounding function f : {0, 1} — [0,1] satisfies, Infl(f) < a.
Hence as an immediate corollary we obtain Thm. 1. Another immediate corollary of Thm. 19
is that for every a-self-bounding function there exists a polynomial of low total ¢;-spectral
norm that approximates it.

Corollary 21 Let f : {0,1}" — [0,1] be an a-self-bounding function and € > 0. There
exist d = O(a/e -log(1/e€)) and a polynomial p of degree d such that ||f — pll1 < € and

Iplly = 206, where [[pll, = Y scpy (S

4. Algorithmic applications

We now outline the applications of our structural results. They are based on using our
stronger bounds in existing learning algorithms for submodular, XOS and self-bounding
functions.

4.1. Learning Models

Our learning algorithms are in one of two standard models of learning. The first one assumes
that the learner has access to random examples of an unknown function from a known set
of functions. This model can be seen as a generalization of Valiant’s PAC learning model
to real-valued functions (Valiant, 1984). While in general Valiant’s model does not make
assumptions on the distribution D, here we only consider the distribution-specific version of
the model in which the distribution is fixed and is uniform over {0, 1}".

14
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Definition 22 (Distribution-specific /; PAC learning) Let F be a class of real-valued
functions on {0,1}" and let D be a distribution on {0,1}"™. An algorithm A PAC learns F
on D, if for every e > 0 and any target function f € F, given access to random independent
samples from D labeled by f, with probability at least %, A returns a hypothesis h such that

Eo~pl|f(z) — h(z)]] < e

Agnostic learning generalizes the definition of PAC learning to scenarios where one
cannot assume that the input labels are consistent with a function from a given class
(Haussler, 1992; Kearns et al., 1994) (for example as a result of noise in the labels).

Definition 23 (Distribution-specific ¢; agnostic learning) Let F be a class of real-
valued functions on {0,1}" and let D be any fized distribution on {0,1}". For any distri-
bution D', let opt(D', F) be defined as:

opt(D' . F) = inf B _[ly— f()]|
fEF (zy)~D!
An algorithm A, is said to agnostically learn F on D if for every excess error € > 0 and any
distribution D' on {0,1}"™ x R such that the marginal of D' on {0,1}" is D, given access
to random independent examples drawn from D', with probability at least %, A outputs a
hypothesis h such that B y~p [|M(x) — y|] < opt(D’) + €.

The first corollary of our structural results is for PAC learning of monotone self-bounding
functions (the results also apply to wunate functions which are either monotone or anti-
monotone in each variable). Note that this class of functions includes XOS functions.

Theorem 24 Let C; be the set of all monotone a-self-bounding functions on from {0,1}"
to [0,1]. There exists an algorithm that PAC learns C;” over the uniform distribution, runs

in time O(n) - 20(@*/€*) gnd uses 20(a*/<*) logn examples, where € is the error parameter.

The proof of this result follows from substituting our bounds in Theorems 1 and 21 into
the simple analysis from (Feldman and Vondrék, 2016).

Our main application to agnostic learning is the algorithm for learning self-bounding
functions from random examples described in Theorem 2. The algorithm used to prove this
result is again polynomial ¢; regression over all monomials of degree O(a/ €). In addition,
we can rely on the existence of a polynomial of low spectral norm to obtain substantially
tighter bounds on sample complexity. Namely, as in (Feldman and Vondrék, 2016), we use
the uniform convergence bounds for linear combinations of functions with ¢; constraint on
the sum of coefficients (Kakade et al., 2008) (without this result the sample complexity
would be n€(@/9),

Our structural results also have immediate implications for learning with value queries,
that is oracle access to the value of the unknown function at any point x. Following the
approach from (Feldman et al., 2013), we can use the algorithm of Gopalan et al. (2008)
together with our bounds on the spectral norm of the approximating polynomial in Cor. 21.
This leads to the following algorithm.

Theorem 25 Let C, be the class of all a-self-bounding functions from {0,1}" to [0,1].
There exists an agnostic learning algorithm that for any € > 0, given access to value queries
learns C, with excess error € > 0 over the uniform distribution in time poly(n) - 20(a?/¢)
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5. Lower bounds for learning self-bounding functions

In this section, we show that learning a-self bounding functions within an error of at most
€, is at least as hard as learning the class of all DNFs (of any size) of width at most | ] to
an accuracy of i. Our reduction to learning width k-DNF's (also referred to as k-DNF's)
is based on the simple observation that k-DNFs are k-self bounding functions combined
with a simple linear transformation that reduces approximation and learning of (a - r)-self
bounding functions for r > 1 to that of a-self-bounding functions.

Lemma 26 A function f : {0,1}" — {0,1} computed by a k-DNF formula is a k-self
bounding function.

Proof Since f is {0, 1}-valued, clearly, f(z) — min,, f(z) <1 for any i € [n]. If f(z) =0,
then, >, (f(z) — miny, f(z)) =0 < k- f(x). Now suppose f(z) = 1. Then, there exists
at least one term, say T', of the DNF that is satisfied by the assignment z. Observe that
if we flip a literal outside of T', then, the value of f remains unchanged. Thus, if the term
indexed by j in Y ;" | (f(z) — ming, f(x)) contributes the value 1, then either z; € T or
Z; € T. In particular, at most k terms in the sum contribute 1 and the rest contribute 0.

Thus, Y0, (f(x) — ming, f(2)) < k= k- f(x). n

Remark 27 In light of Lemma 26 it is natural to ask whether all Boolean k-self-bounding
functions are k-DNF. It is easy to see that for Boolean functions being k-self-bounding can be
equivalently stated as having 1-sensitivity of k. The smallest k for which f can be represented
by a k-DNF is referred to as 1-certificate complexity of f. It has long been observed that for
monotone functions 1-certificate complezity equals 1-sensitivity (Nisan, 1989) and therefore
all monotone k-self-bounding functions are k-DNF. However this is no longer true for non-
monotone functions. A simple example in (Nisan, 1989) gives a function with a factor two
gap between these two measures. Quadratic gap for every k up to @(n1/3) s also known

(Chakraborty, 2005).

Next, we observe that for any a-self-bounding function, the function g defined by g(z) =

1— % + @ is -self-bounding whenever r > 1. This “lifting” transforms an a-self-bounding

functions into an -self-bounding functions.

Lemma 28 Let f: {0,1}" — [0,1] be an a-self-bounding function. Then for any r > 1,
glx) =1-— % + L@ pas range [0, 1] and is ¢ -self-bounding.

r

Proof Clearly, the 1 — 1/r + f(x)/r transformation maps [0,1] to [1 — 1/r,1] C [0,1].

Observe that for any z and i € [n], g(z) — ming, g(z) = 1 (f(z) —min,, f(z)) and also that
g(x) > f(x). By the definition of a-self-boundedness we obtain that g is a/r-self bounding.
|

Observe that given random examples labeled by f, it is easy to simulate random exam-
ples labeled by g. Further, ¢;-approximation of f within € can be translated (via the same
“lifting” ) to e/r-approximation of g and vice versa. An immediate corollary of this is that
one can use a learning algorithm for a/r-self-bounding functions to learn a-self bounding
functions. We use C to denote the class of all a-self-bounding functions from {0,1}" to
[0, 1].
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Lemma 29 Let a > 1 and a > r > 1. Suppose there is an algorithm that PAC (or
agnostically) learns Coyy over a distribution D with €y error of € in time T(n,1/€). Then,
there is an algorithm that PAC (or, respectively, agnostically) learns C}} over D with (;
error of € in time T(n,1/(re)).

The simple structural observations above give us our lower bounds for learning and
approximation of a-self-bounding functions. Using Lemmas 26 and 29, we have the the
following lower bound on the time required to PAC learn a-self-bounding functions.

Theorem 30 (Th. 3 restated) Suppose there exists an algorithm that PAC learns C}
with £y error of € > 0 with respect to the uniform distribution in time T(n,1/€). Then, for
any k > a, there exists an algorithm that PAC learns k-DNF formulas with disagreement
error of at most € with respect to the uniform distribution in time T'(n, %) Consequently,
there exists an algorithm for learning k-juntas on the uniform distribution to an error of at
most 1/4 in time T (n, %) for any k > a.

Now, k-juntas contain the set of all Boolean functions on any fixed subset of k variables.
A standard information-theoretic lower bound implies that any algorithm that PAC learn
k-juntas to an accuracy of 1/4 on the uniform distribution needs Q(2*) random examples or
even value queries. This translates into the following unconditional lower bound for learning
a-self-bounding functions.

Corollary 31 Any algorithm that PAC learns C, over the uniform distribution needs
Q(2%/¢) random examples or value queries.

Finally, observe that the {0, 1}-valued parity function on k bits is computed by a k-
DNF formula and any polynomial that 1/4-approximates in ¢; distance on the uniform
distribution must have degree at least k. Thus, we have the following degree lower bound
for polynomials that ¢, approximate a-self-bounding functions on the uniform distribution
on {0,1}".

Corollary 32 Fiz an a > 1 and € € (0,1/4]. There exists an a-self-bounding function
f:{0,1}™ — [0,1], such that every polynomial p that e-approxzimates f in €1 norm with
respect to the uniform distribution has degree d > a/(4e€).

Proof Let k = - (ignoring rounding issues for simplicity) and f be a {0, 1}-valued parity
on some set of k variables. By Lemma 26 f is k-self-bounding. Then, as in the proof of
Lemma 29, for r = 4% > 1, g defined by g(z) =1 — %@) is an a-self-bounding function.
Let p be a polynomial of degree d that approximates g within an ¢; error of ¢ with respect
to the uniform distribution on {0, 1}". Then, as in the proof of Lemma 29, p’ = 1—r(1—p)
is a polynomial of degree d and approximates f within an ¢; error of at most i ce=1/4.
For the {—1,1}-valued parity x = 2f(z) — 1 and any polynomial p’ of degree less than
k, E[x - p'] = 0. Further, E[|x —p'|] > 1 — E[x - p'] = 1. This implies that for f the ¢; error
of any polynomial of degree at most k — 1 is at least 1/2. In particular, d > a/(4e). [ |

We remark that slightly weaker versions of Cor. 31 and Cor. 32 are known for monotone
submodular functions. Specifically, they require 2%™*) random examples or value queries
to PAC learn and also degree Q(e=2/3) to approximate (Feldman et al., 2013).
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