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Abstract

We give algorithms for estimating the expectation of a given real-valued function φ : X → R
on a sample drawn randomly from some unknown distribution D over domain X, namely

Ex∼D[φ(x)]. Our algorithms work in two well-studied models of restricted access to data
samples. The first one is the statistical query (SQ) model in which an algorithm has access
to an SQ oracle for the input distribution D over X instead of i.i.d. samples from D. Given
a query function φ : X → [0, 1], the oracle returns an estimate of Ex∼D[φ(x)] within some
tolerance τ . The second, is a model in which only a single bit is communicated from each
sample. In both of these models the error obtained using a naive implementation would scale
polynomially with the range of the random variable φ(x) (which might even be infinite). In
contrast, without restrictions on access to data the expected error scales with the standard
deviation of φ(x). Here we give a simple algorithm whose error scales linearly in standard
deviation of φ(x) and logarithmically with an upper bound on the second moment of φ(x).

As corollaries, we obtain algorithms for high dimensional mean estimation and stochastic
convex optimization in these models that work in more general settings than previously
known solutions.

1. Overview

We consider the problem of estimating the expectation D[φ]
.
= Ex∼D[φ(x)], where D is

the unknown input distribution over X and φ : X → R. We study this problem in the
statistical query (SQ) model in which an algorithm has access to a statistical query oracle
for D in place of i.i.d. samples from D as in the traditional setting of statistics and machine
learning. The most commonly studied SQ oracle was introduced by Kearns (1998) and gives
an estimate of the mean of any bounded function with fixed tolerance.

Definition 1.1 Let D be a distribution over a domain X and τ > 0. A statistical query
oracle STATD(τ) is an oracle that given as input any function φ : X → [0, 1], returns some
value v such that |v −D[φ]| ≤ τ .

A special case of statistical queries are counting or linear queries in which the distribution
D is uniform over the elements of a given database S ∈ Xn. In other words the goal is to
estimate the empirical mean of φ on the given set of data points. This setting is studied
extensively in the literature on differential privacy (see (Dwork and Roth, 2014) for an
overview) and our discussion applies to this setting as well.
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Tolerance τ of statistical queries roughly corresponds to the number of random samples
in the traditional setting. Namely, the Chernoff-Hoeffding bounds imply that n i.i.d. samples
allow estimation of D[φ] with tolerance τ = Θ(1/

√
n) (with high probability). However, if

the variance of φ(x) is low then n random samples will likely give a more accurate estimate.
To address this discrepancy a somewhat stronger oracle was introduced in (Feldman et al.,
2012).

Definition 1.2 Let D be a distribution over a domain X and n > 0. A statistical query
oracle VSTATD(n) is an oracle that given as input any function φ : X → [0, 1] returns a

value v such that |v − p| ≤ max

{
1
n ,

√
p(1−p)
n

}
, where p

.
= D[φ].

An important property of the accuracy guarantees of the VSTAT oracle is that the
guarantees can be easily implemented in the model which allows only a single bit to be
communicated about each sample. Formally, a 1-bit sampling oracle for D is defined as
follows (Ben-David and Dichterman, 1998).

Definition 1.3 (1-STAT oracle) Let D be a distribution over the domain X. The
1-STATD oracle is the oracle that given any function h : X → {0, 1}, takes an independent
random sample x from D and returns h(x).

Identical and closely related models are often studied in the context of distributed statistical
estimation with communication constraints (e.g. Luo, 2005; Rajagopal et al., 2006; Ribeiro
and Giannakis, 2006; Zhang et al., 2013; Steinhardt and Duchi, 2015; Steinhardt et al., 2016;
Suresh et al., 2016).

As shown by Feldman et al. (2012), to simulate VSTATD(n) on a query φ : X → [0, 1],
one can take the mean of O(n) bits where each bit is equal to an independent coin flip with
bias φ(x) for a random sample x ∼ D. To do this, for each sample, we define a Boolean
function φθ whose value at a point x is the indicator of the condition φ(x) ≤ θ, where θ is
chosen uniformly from [0, 1] and then pass φθ to the 1-STATD oracle. This implies that
any algorithm that works in the SQ model with VSTAT can be simulated using the 1-bit
sampling oracle (see Thm. 2.1 for the formal statement). The correspondence between these
oracles is quite tight since n samples from the 1-bit sampling oracle can be simulated (with
high probability) using n queries to VSTATD(O(n)) (Feldman et al., 2012)1. Hence for most
of the discussion we will focus on results for the VSTAT oracle.

1.1. The problem

Here we address the case of estimating the expectation of a general real-valued φ. Specifically,
we want to design an algorithm that given access to VSTATD(n) estimates the expectation
of φ (almost) as well as possible using n random samples of φ(x). The main that we need to
deal with is that the accuracy of estimates in the restricted models we consider depends
linearly on the range of φ. In contrast, the standard deviation of the mean of φ on n
i.i.d. samples is equal to

√
(D[φ2]−D[φ]2)/n and does not depend on the range of φ (which

can even be infinite). Equivalently, for a given ε > 0, we want to estimate the expectation

1. Weaker version of this correspondence for STAT was first shown by Ben-David and Dichterman (1998)
and one for a more general communication model by Steinhardt et al. (2016).
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within ε with estimation complexity that is close to the sample complexity of this task. Here
the estimation complexity of a statistical query algorithm using VSTATD(n) refers to the
value n; for an algorithm using STATD(τ) it is 1/τ2.

While mean estimation is the most basic statistical problem, we are not aware of any
treatment of the general case for either the SQ or 1-bit sampling model. The closest literature
we are aware of considers the problem of mean estimation from sensor networks. In this
case each of the sensors can communicate a few bits but does not receive feedback. This
corresponds to asking queries non-adaptively in our model. Most of this literature operates
under substantially stronger assumptions such as knowing the distribution D up to a shift
(or, equivalently, having an unbiased noise from a fixed distribution added to some unknown
value) (e.g. Ribeiro and Giannakis, 2006). In more general treatments we are aware of a
bound on the range is assumed with linear dependence of the error on this bound (e.g. Luo,
2005). As a result both the nature of algorithms and the resulting bounds appear to be
quite different from our setting.

Another useful property of the VSTAT oracle is that known lower bound techniques
against SQ algorithms using STATD(τ) also apply to the stronger VSTATD(1/τ2) oracle. As
a result lower bounds for VSTAT usually correspond more tightly to the known computational
and sample complexity bounds on the problem (e.g. Feldman et al., 2012, 2013, 2015;
Diakonikolas et al., 2016). One could also easily define a stronger statistical query oracle
whose accuracy scales with the standard deviation of φ(x). However, it is unknown how
to obtain lower bounds against this stronger oracle using existing analysis techniques
(e.g. Feldman et al., 2012, 2013; Feldman, 2016). From this point of view, our goal is to
show that such lower bounds can be obtained indirectly by simulating a stronger oracle
using the easier to analyze VSTAT oracle.

The first approach to this general case and the one most commonly used is simply to
scale/shift the range of the function φ to [0, 1] and then just ask a single query to VSTATD(n)
(the answer can then be scaled/shifted back). However that will result in error that is at least
R/n, where R = supx∈X φ(x)− infx∈X φ(x) (and in many cases the error will be Ω(R/

√
n)).

Another natural approach would be to truncate φ to be in some range [−R,R] such that
|D[φ]−D[φ′]| ≤ ε, where φ′ denotes the truncated function. The expectation of φ′ can then
be estimated by scaling it to [0, 1] as before. This approach would provide a reasonably
accurate estimate when φ(x) is strongly concentrated (e.g. sub-gaussian), a good estimate
of the standard deviation is known and we know the mean up to a constant multiple of
standard deviations (an example of such analysis appears in (Feldman et al., 2015)). But
there are many common settings of φ and D where these assumptions would not apply.

1.2. Our contribution

We show that it is possible to deal with the case when no upper bound on variance is known
and we are only given a loose upper bound on the second moment of φ[x]. We prove that
access to VSTATD(n) suffices to estimate D[φ] within Õ(σ/

√
n), where σ =

√
D[φ2]−D[φ]2

is the standard deviation of φ(x). Thus VSTATD(n) can be used to obtain an estimate with
accuracy comparable to the accuracy implied by the Bernstein concentration inequality for
a sum of i.i.d. random variables combined with the median of means technique (without
the median step the accuracy will not be range-independent with high probability). The
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number of queries needed to implement this algorithm is logarithmic in the upper bound on
the second moment and n.

Theorem 1.4 There exists a statistical query algorithm that given an integer n, ζ > 0,
B > 0, φ : X → R such that D[φ2] ≤ B2 and access to VSTATD(n), outputs a value v such

that |D[φ]− v| ≤ 8σ log(8n)√
n

+ ζ, where σ2
.
= D[φ2]−D[φ]2. The algorithm uses 3 log(4nB/ζ2)

queries.

The algorithm is based on several relatively simple ideas. First, the bound on the moment
implies that for a suitable choice of quantiles of the distribution of φ(x) we can truncate
the range of φ to the values of these quantiles without changing the mean of φ too much.
We show that VSTAT(n) oracle allows to find the necessary quantiles. This step requires
discretizing the range of φ and contributes the additional ζ term in the error. Note that we
cannot eliminate this error term without knowing a lower bound on σ but the dependence of
the number of queries on 1/ζ is just logarithmic. Further, we show that after this truncation,
the length of the range of the function becomes O(B/ε). We then describe an algorithm
whose error scales linearly with the square root of the second moment of φ(x) instead of the
square root of the mean as is guaranteed by VSTAT. The algorithm reduces the computation
of the mean of φ to multiple computations of a mean of φ conditioned on being in an interval
of constant dynamic range. A logarithmic number of such intervals are sufficient to cover
the range of φ after the truncation2. Finally, to go from an error bounded in terms of the
second moment to an error bounded in terms of the standard deviation we show that after
shifting the function φ by the value of an approximate median, the second moment will be
upper-bounded by a constant multiple of the variance.

An immediate corollary of this result and Theorem 2.1 is the following upper bound on
the accuracy that can be obtained using n queries to 1-bit sampling oracle.

Theorem 1.5 There exists an algorithm that given B > 0, δ > 0, ζ > 0, φ : X → R such
that D[φ2] ≤ B2 and access to n queries to 1-STATD, with probability ≥ 1− δ, outputs a

value v such that |D[φ]− v| = σ·Õ(logn·log(nB/ζ)·log(1/δ))√
n

+ ζ, where σ2
.
= D[φ2]−D[φ]2.

We also give a simpler algorithm and bounds for the case when we have an upper bound
on σ and/or already have an estimate of D[φ] within O(σ) (see Lemma 3.2). In this case the
algorithm’s queries are non-adaptive, that is, query functions do not depend on answers to
previous queries. Adaptivity of queries is particularly important for the distributed setting
that motivates the 1-bit sampling model since queries need to be communicated back to
clients that hold the samples. This step is likely to be slow or even impossible in some
systems (such as the sensor systems considered in (Luo, 2005)).

We remark that while the bounds we give are stated primarily for VSTATD(n), they imply
identical upper bounds for STATD(1/n). However STATD(1/n) has estimation complexity
of n2 and better bounds for it might be possible in some cases. We also note that we have
not attempted to optimize the constants or even the log factors for the 1-bit sampling case.
Deriving tighter bounds for this case directly is a natural open problem.

2. We remark that this step is different from computing the expectation of each of the (most-significant)
bits of the value of φ.
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1.3. Applications

As an example application we consider the problems of mean vector estimation and stochastic
optimization in the SQ model (Feldman et al., 2015). In the `2 mean vector estimation
problem the goal is to estimate x̄

.
= Ex∼D[x] within ε in the `2 norm, where D is a

distribution over vectors in Rd. This problem is central to implementation of gradient-based
(or first-order) optimization methods in the stochastic setting. In (Feldman et al., 2015) it
was showed that using either a randomly rotated basis or Kashin’s representation (Lyubarskii
and Vershynin, 2010) this problem can be solved using O(d) queries to STATD(Ω(ε)) when
D is supported on the unit ball. A related technique is also used in (Suresh et al., 2016) for
a low communication model. Our results give a simpler and more general algorithm for the
problem using the VSTATD(Õ(1/ε2)) oracle or queries to 1-STATD.

Corollary 1.6 There exists a statistical query algorithm that given ε ∈ (0, 1) and B > ε,
for any distribution D over Rd such that Ex∼D[‖x‖22] ≤ B2 and Ex∼D[‖x− x̄‖22] ≤ 1 outputs
a vector x̂ such that ‖x̂− x̄‖2 ≤ ε, where x̄

.
= Ex∼D[x]. The algorithm uses O(d(log(dB/ε)))

queries to VSTATD(O((log(1/ε)/ε)2)).

High dimensional mean estimation is the key component of the SQ algorithms for stochastic
convex optimization and learning of linear threshold functions. Specifically, they are used to
estimate the gradient of the expected objective function in a variety of gradient descent-
based algorithms. Without constraints on data access, it is well-known that stochastic
gradient descent will achieve low expected error as long as the variance of the gradients
is bounded (e.g. Nemirovski et al., 2009). It is natural to ask whether this case can also
be handled in the SQ and 1-bit sampling models. Corollary 4.1 immediately implies that
the optimization algorithms in (Feldman et al., 2015) can be extended from the setting in
which the (sub-)gradients of all the functions in the support of the input distribution are
uniformly upper-bounded to the setting in which only variance of (sub-)gradient vectors is
upper-bounded (additional details can be found in (Feldman et al., 2015)). These corollaries
can in turn be easily translated to the 1-bit sampling model and we describe an example of
such corollary in Section 4.

2. Preliminaries

For integer n ≥ 1 let [n]
.
= {1, . . . , n}. Random variables are denoted by bold letters, e.g., x.

We denote the indicator function of an event A (i.e., the function taking value zero outside
of A, and one on A) by 1{A}.

We will use the following notation for a truncation operation. For a real value z and
a ∈ R+, let

ma(z) :=


z if |z| ≤ a
a if z > a
−a if z < −a.

Let ra(z)
.
= z −ma(z).

We consider mean estimation with two related oracles. The first one is the VSTAT
oracle from (Feldman et al., 2012) (see Def. 1.2) that strengthens the STATD oracle of
Kearns (1998) (see Def. 1.1). Clearly, VSTATD(n) is at least as strong as STATD(1/

√
n)
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(but no stronger than STATD(1/n)). When the range of φ is {0, 1}, one way to think
about VSTAT is as providing a confidence interval for the bias p, namely [v − τv, v + τv],
where τv ≈ max{1/n,

√
(v(1− v)/n}. The accuracy τv that VSTAT ensures corresponds

(up to a small constant factor) to the width of the standard confidence interval (say, with
95% coverage) for the bias p of a Bernoulli random variable given n independent samples
(e.g. Clopper-Pearson interval (Clopper and Pearson, 1934)). Therefore, at least for Boolean
queries, it captures precisely the accuracy that can be inferred when estimating the mean
using n random samples. For more general real-valued queries (even those with range in
[0, 1]) the accuracy of VSTATD(n) might no longer reflect the accuracy that will be achieved
given n i.i.d. samples.

The second oracle we consider is the 1-bit sampling oracle (see Def. 1.3). In the context
of learning theory it was first studied by Ben-David and Dichterman (1998). Our results for
this oracle will be obtained via the following simulation of the VSTATD oracle using the
1-STATD oracle.

Theorem 2.1 ((Feldman et al., 2012)) Let n, q > 0 be any integers and δ > 0. For
any algorithm A that asks at most q queries to VSTATD(n) there exists an algorithm B that
provides answers that satisfy the accuracy guarantees of VSTATD(n) to all the queries of A
with probability at least 1− δ. B uses O(qn · log(q/δ)) queries to 1-STATD.

3. Mean estimation using statistical queries

3.1. Non-adaptive algorithm

We start by showing how the accuracy of mean estimation can be improved given a reasonably
tight bound on the second moment of φ. The algorithm for this problem has the advantage
of being non-adaptive.

In the first step we show that the dependence on
√
D[φ] in the accuracy guarantees

of VSTAT can be strengthened to
√
D[φ2] at the expense of logarithmic factors in the

complexity. We will use log to denote the logarithm to base 2.

Lemma 3.1 There exists a statistical query algorithm that, for n,R > 0, any function
φ : X → [0, R] and any input distribution D over X, outputs a value v such that |D[φ]−v| ≤
4R
n + 2s·logn√

n
, where s

.
=
√
D[φ2]. The algorithm uses at most log n (non-adaptive) queries

to VSTATD(n).

Proof We assume for simplicity that R = 1 since we can always scale φ to this setting and
then scale back the result. We let t = blog nc and observe that

D[φ] = E
D

[
φ(x) · 1{φ(x)∈[0,2−t]}

]
+
∑
i∈[t]

E
D

[
φ(x) · 1{φ(x)∈(2−i,2−i+1]}

]
. (1)

For every i ∈ [t], we define φi to be the restriction of φ to values in the interval (2−i, 2−i+1],
scaled and shifted to the range [0, 1]. Namely

φi(x)
.
= 2i−1 · φ(x) · 1{φ(x)∈(2−i,2−i+1]}.

Note that for every x, φi(x) ∈ [0, 1]. Using this definition, we can rewrite eq.(1) as
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D[φ] = E
D

[
φ(x) · 1{φ(x)∈[0,2−t]}

]
+
∑
i∈[t]

2−i+1 ·D[φi]. (2)

For every i ∈ [t], we query function φi to VSTATD(n) to get an estimate vi of D[φi]. By
Chebyshev’s inequality,

D[φi] ≤ Pr
D

[φ(x) > 2−i] ≤ D[φ2]

2−2i
= 22i · s2.

Therefore, by the definition of VSTATD(n),

|vi −D[φi]| ≤ max

{
1

n
,

√
D[φi]

n

}
≤ 1

n
+

√
D[φi]

n
≤ 1

n
+

2is√
n
. (3)

Let v
.
=
∑

i∈[t] 2
−i+1 · vi.

Then, by eq. (2) and eq. (3) we get that

|D[φ]− v| =

∣∣∣∣∣∣ED [φ(x) · 1{φ(x)∈[0,2−t]}
]

+
∑
i∈[t]

2−i+1 · (D[φi]− vi)

∣∣∣∣∣∣
≤ E

D

[
φ(x) · 1{φ(x)∈[0,2−t]}

]
+
∑
i∈[t]

2−i+1 · |D[φi]− vi|

≤ 2−t +
∑
i∈[t]

2−i+1 ·
(

1

n
+

2is√
n

)

≤ 2

n
+

2

n
+

2t · s√
n
≤ 4

n
+

2s · log n√
n

.

In the algorithm above the parameter of VSTAT scales linearly with the range R. However
given a bound on D[φ2] we can truncate the range of φ with little change in expectation.
We use this in the lemma below.

Lemma 3.2 There exists a statistical query algorithm that given B > 0 and ε ∈ (0, B/16],
for any distribution D and function φ : X → R+ such that D[φ2] ≤ B2 outputs a value v
such that |D[φ]− v| ≤ ε. The algorithm uses at most 3 log(B/ε) (non-adaptive) queries to
VSTATD((8B log(B/ε)/ε)2).

Proof We first assume that B = 1. Observe that we can truncate the range of φ to
[0, a] for a

.
= 4/ε without a significant change in the expectation. Namely, we claim that

|D[ma(φ)]−D[φ]| ≤ ε/4. To see this when a = 4/ε note that φ−ma(φ) = ra(φ) and

E[ra(φ)] =

∫ ∞
0

Pr[ra(φ) ≥ t]dt =

∫ ∞
0

Pr[φ ≥ t+a]dt =

∫ ∞
a

Pr[φ ≥ t]dt ≤
∫ ∞
a

1

t2
dt =

1

a
≤ ε/4,

where we used Chebyshev’s inequality to obtain a bound on Pr[φ ≥ t].
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Now to estimate D[ma(φ)] we use Lemma 3.1 with n = (4 log(1/ε)/ε)2. For the given
range and our assumption that D[φ2] ≤ 1, this leads to an error of at most

16

(8 log(1/ε)/ε)2 · ε
+

2 log(8 log(1/ε)/ε)

8 log(1/ε)/ε
≤ ε

4 log(1/ε)2
+
ε · log(8 log(1/ε)/ε)

4 log(1/ε)
≤ 3ε

4
,

where we used the assumption that ε ≤ 1/16 to obtain the last inequality. Altogether this
implies that the output of the lemma on the truncated function will have an error of at most
ε. Finally, to generalize the analysis to any B > 0 we simply scale the random variable by
1/B and estimate its mean within ε/B.

3.2. Quantile estimation

To deal with the case where we do not have a tight upper bound on the second moment
we will need the following lemma about the estimation complexity of finding approximate
distribution quantiles using the VSTAT oracle. The algorithm itself is just the folklore
algorithm for finding an (approximate) quantile of a distribution using binary search.

Lemma 3.3 Let φ be a function with a finite range Z ⊂ R. There exists an SQ algorithm
that given p and δ such that 1 ≥ p ≥ 2δ > 0, outputs a point a ∈ Z such that PrD[φ ≥ a] ≥
p− δ and PrD[φ > a] < p. The algorithm uses log(|Z|) queries to VSTATD(4p/δ2).

Proof For any z ∈ Z, let pz
.
= PrD[φ ≥ z]. We perform a binary search to find the largest

point z such that the estimate of PrD[φ ≥ z] given by VSTATD(4p/δ2) is at least p− δ/2.
We denote the point by a and refer to estimates we have obtained by p̃z. By definition,
p̃a ≥ p− δ/2 and therefore pa ≥ p− δ, since otherwise

p̃a < p− δ + max

{√
p− δ
4p/δ2

,
δ2

4p

}
< p− δ + δ/2 = p− δ/2.

On the other hand for the smallest point in Z larger than a (denote it by a+) we know that
p̃a+ < p− δ/2. This implies that pa+ < p since otherwise

p̃a+ ≥ pa+ −max

{√
pa+

4p/δ2
,
δ2

4p

}
= pa+ −

δ

2
·
√
pa+
p
≥ √p · pa+ − δ/2 ≥ p− δ/2,

where in the penultimate step we multiplied the inequality by
√

p
pa+

which is at most 1 by

our contrapositive assumption. This means that PrD[φ > a] = pa+ < p.

As a special case we obtain the following corollary.

Corollary 3.4 Let φ be a function over X with a finite range Z ⊂ R. There exists an SQ
algorithm that given an integer n outputs a point a ∈ Z such that PrD[φ ≥ a] ≥ 8/n and
PrD[φ > a] < 16/n. The algorithm uses log(|Z|) queries to VSTATD(n).

One natural way to apply this lemma in the continuous setting is to first discretize the range
with some step size ζ and then use Lemma 3.3. This leads to the following version of Lemma
3.3:
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Corollary 3.5 Let φ : X → [−B,B] be a function and ζ > 0. There exists an SQ algorithm
that given p and δ such that 1 ≥ p ≥ 2δ > 0, outputs a point a that is an integer multiple of
ζ such that PrD[φ ≥ a] ≥ p− δ and PrD[φ ≥ a+ ζ] < p. The algorithm uses dlog(2B/ζ)e
queries to VSTATD(4p/δ2).

3.3. General case

Lemma 3.2 has estimation complexity that scales linearly with the bound on the second
moment and is the strongest statement we give without relying on adaptive queries. Next,
using Lemma 3.3, we describe a procedure that can estimate the mean with just logarithmic
dependence on a given upper bound on the second moment.

Lemma 3.6 There exists a statistical query algorithm that given an integer n, ζ > 0, B > 0
and φ : X → R+ such that D[φ2] ≤ B2, outputs a value v such that |D[φ]−v| ≤ 2s log(8n)√

n
+ζ,

where s
.
=
√
D[φ2]. The algorithm uses log(4Bn/ζ2) queries to VSTATD(n).

Proof We start by truncating and discretizing the range of φ, namely let ψ be equal to
φ rounded down to the closest multiple of ζ/2 and truncated at 2B/ζ. As in Lemma 3.2,
we note that the condition D[φ2] ≤ B2 implies that truncation to range [0, 2B/ζ] step can
affect the expectation by at most ζ/2. Clearly, rounding down to the closest multiple of ζ/2
also affects the expectation by at most ζ/2. This means that ψ has range Z of size at most
4B/ζ2, |D[φ]−D[ψ]| ≤ ζ and D[ψ2] ≤ s2.

We now further truncate the range of ψ to exclude values that are in the top 8/n quantile.
Namely, by Corollary 3.4, we can find a value a ∈ Z such that PrD[ψ ≥ a] ≥ 8/n and
PrD[ψ > a] < 16/n. Let ψa(x) be defined as ma(ψ(x)).

We first observe that s2 = D[ψ2] ≥ a2 · 8/n. Therefore a ≤ s
√
n√
8

. Next note that

|D[ψ]−D[ψa]| ≤
∑

z∈Z, z>a
z ·Pr

D
[ψ = z]

≤
√ ∑
z∈Z, z>a

Pr
D

[ψ = z] ·
√ ∑
z∈Z, z>a

z2 ·Pr
D

[ψ = z]

≤
√

Pr
D

[ψ > a] ·
√
D[ψ2] ≤ 4s√

n
, (4)

where we used the Cauchy-Schwartz inequality to obtain the second line.
We can now apply Lemma 3.1 to ψa and obtain a value v such that

|D[ψa]− v| ≤
2s log n√

n
+

4a

n
≤ 2s log n+

√
2s√

n
.

Combining this with eq. (4) and the properties of ψ we get the claim.

We can easily extend these results to variables with possibly negative range by estimating
the mean in the positive and the negative range separately. Further, one does not necessarily
need to split the range at 0. Any value a can be used and the resulting bound will be in terms
of sa

.
=
√
D[(φ− a)2] instead of s0 =

√
D[φ2]. Naturally, in order to reduce the error we
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should use a = D[φ] which would give an error in terms of variance σ2 = D[(φ−a)2]−D[φ]2.
The true mean is not known to us but, as we show below, we can use an (approximate)
median instead.

Lemma 3.7 Let z be a random variable over R and let a be any point such that Pr[z ≥
a] ≥ 1/3 and Pr[z ≤ a] ≥ 1/3. Then E[(z− a)2] ≤ 4(E[z2]−E[z]2).

Proof Let z̄
.
= E[z] and σ2

.
= E[(z− z̄)2]. Observe that

σ2 = E[(z− z̄)2] ≥ (z̄ − a)2 ·Pr[z ≥ |(z̄ − a)|] ≥ (z̄ − a)2/3.

Now

E[(z− a)2] ≤ σ2 + (z̄ − a)2 ≤ 4σ2.

Note that for a function with range Z such an approximate median can be found using
log(|Z|) queries to VSTATD(6). Therefore we immediately get the following results:

Theorem 3.8 There exists a statistical query algorithm that given an integer n, ζ > 0,
B > 0 and φ : X → R such that D[φ2] ≤ B2, outputs a value v such that |D[φ] − v| ≤
8σ log(8n)√

n
+ ζ, where σ2

.
= D[φ2] − D[φ]2. The algorithm uses 3 log(4nB/ζ2) queries to

VSTATD(n).

An alternative way to state essentially the same result is as follows.

Corollary 3.9 There exists a statistical query algorithm that given B > ζ > 0, ε ∈
(0, 1), for any distribution D and function φ : X → R such that D[φ2] ≤ B2 outputs
a value v such that |D[φ] − v| ≤ εσ + ζ. The algorithm uses O(log(B/(εζ))) queries to
VSTATD(O((log(1/ε)/ε)2)), where σ2

.
= D[φ2]−D[φ]2.

4. Applications

As application we consider the problems of mean vector estimation (Feldman et al., 2015).
In the `2 mean vector estimation problem the goal is to estimate x̄

.
= Ex∼D[x] within ε in `2

norm, where D is a distribution over vectors in Rd. Our results give a simple and general
algorithm for solving this problem using the VSTAT oracle.

Corollary 4.1 There exists a statistical query algorithm that given ε ∈ (0, 1) and B > ε,
for any distribution D over Rd such that Ex∼D[‖x‖22] ≤ B2 and Ex∼D[‖x− x̄‖22] ≤ 1 outputs
a vector x̂ such that ‖x̂− x̄‖2 ≤ ε, where x̄

.
= Ex∼D[x]. The algorithm uses O(d(log(dB/ε)))

queries to VSTATD(O((log(1/ε)/ε)2)).

Proof We apply the algorithm given in Thm. 1.4 to each of the coordinates of x with
ζ = ε/

√
2d. Namely, for each i ∈ [d] we use Thm. 1.4 to estimate the expectation of function

φi(x) = xi and let x̂i be the result. For every i ∈ [d], Ex∼D[‖xi‖22] ≤ B2 and hence, by
setting n = c(log(1/ε)/ε)2 for an appropriately chosen constant c, we will obtain that the
error in the estimation of coordinate i is at most

ε√
2
·
√

E
x∼D

[|xi|2]− x̄2i +
ε√
2d
.
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By observing that ∑
i∈[d]

E
x∼D

[|xi|2]− x̄2i = E
x∼D

[‖x− x̄‖22] ≤ 1

we obtain the claim.

We remark that if the SQ algorithm A is non-adaptive then the simulation in Theorem 2.1
produces a non-adaptive algorithm. This is particularly useful in the distributed setting
since it allows the bits from each of the samples to be communicated in parallel and does
not require any communication back to the clients.

These corollaries can in turn be translated to the 1-bit sampling model.
Combining Corollary 3.9 and Theorem 2.1 we obtain the following algorithm for estimating

the mean.

Corollary 4.2 There exists an algorithm that given ε, δ ∈ (0, 1) and B > ε, for any
distribution D over Rd such that Ex∼D[‖x‖22] ≤ B2 and Ex∼D[‖x− x̄‖22] ≤ 1 outputs a vector
x̂ such that, with probability at least 1− δ, ‖x̂− x̄‖2 ≤ ε, where x̄

.
= Ex∼D[x]. The algorithm

uses Õ(d/ε2 · log(B/(δε))) queries to 1-STATD.

We remark that in the high dimensional setting linear dependence on d is unavoidable for
the 1-bit sampling model (Zhang et al., 2013) whereas given entire samples, the achievable
accuracy is dimension independent.
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