
Proceedings of Machine Learning Research 76:1–18, 2017 Algorithmic Learning Theory 2017

Learning MSO-definable hypotheses on strings

Martin Grohe grohe@informatik.rwth-aachen.de

Christof Löding loeding@informatik.rwth-aachen.de

Martin Ritzert ritzert@informatik.rwth-aachen.de

RWTH Aachen University

Germany

Editors: Steve Hanneke and Lev Reyzin

Abstract

We study the classification problems over string data for hypotheses specified by formulas
of monadic second-order logic MSO. The goal is to design learning algorithms that run in
time polynomial in the size of the training set, independently of or at least sublinear in the
size of the whole data set. We prove negative as well as positive results. If the data set is
an unprocessed string to which our algorithms have local access, then learning in sublinear
time is impossible even for hypotheses definable in a small fragment of first-order logic. If
we allow for a linear time pre-processing of the string data to build an index data structure,
then learning of MSO-definable hypotheses is possible in time polynomial in the size of the
training set, independently of the size of the whole data set.

1. Introduction

We study classification problems in a declarative framework (introduced in Grohe and
Turán, 2004; Grohe and Ritzert, 2017) where instances are elements or tuples of elements
of some background structure and hypotheses are specified by formulas of a suitable logic,
using parameters (or constants) from the background structure. The background structure,
say B, captures properties of and relations between data points and more generally all kinds
of structural information about the data. Over this background structure we can specify a
parametric model by a formula ϕ(x̄; ȳ) of some logic L, which has two types of free variables,
the instance variables x̄ = (x1, . . . , xk) and the parameter variables ȳ = (y1, . . . , y`). Then
instances of our classification problem are tuples ū ∈ U(B)k, where U(B) denotes the
universe of B. For each choice v̄ ∈ U(B)` of parameters, the formula defines a function
Jϕ(x̄ ; v̄)KB : U(B)k → {0, 1} by

Jϕ(x̄ ; v̄)KB(ū) :=

{
1 if B |= ϕ(ū ; v̄),

0 otherwise,

where B |= ϕ(ū ; v̄) denotes that the structure B satisfies ϕ if the instance variables x̄ are
interpreted by ū and the parameter variables ȳ by v̄. We regard Jϕ(x̄ ; v̄)KB as a hypothesis
over the instance space U(B)k, which we want to generate from a training set of labeled

c© 2017 M. Grohe, C. Löding & M. Ritzert.

Learning MSO-definable hypotheses on strings

examples (ūi, λi) ∈ U(B)k × {0, 1}.1 We call hypotheses of the form Jϕ(x̄ ; v̄)KB for an
L-formula ϕ(x̄ ; ȳ) L-definable hypotheses over B.

In this paper, background structures are strings, which may model text data, but also
traces of program executions, DNA sequences, transaction sequences, and in general streams
of symbolic data. The logic L that we use to define our models is monadic second-order
logic MSO, which may be the best studied logic for strings and is closely related to finite
automata (see Thomas, 1997). Some of our results, in particular the lower bounds, hold for
fragments of MSO such as first-order logic FO and even the existential and quantifier-free
fragments of FO.

Within this framework, we may study two kinds of algorithmic problems, parameter
learning (or parameter estimation), where we regard the formula ϕ(x̄ ; ȳ) as fixed and try
to find parameters v̄ that fit the data, and model learning (or model estimation), where we
want to find a suitable formula ϕ(x̄;ȳ) and parameters v̄. Our algorithms follow an empirical
risk minimization paradigm; for the model learning problem, we bound the quantifier rank
of the formula ϕ(x̄ ; ȳ) to avoid overfitting. Hence the algorithmic problem we need to solve
is finding a parameter tuple v̄, and for the model learning problem a formula ϕ(x̄ ; ȳ), such
that the hypothesis Jϕ(x̄ ; v̄)KB is consistent with, or minimizes the error on the training
examples.

The input of the learning algorithms (both for parameter and model learning) consists
of a set T = {(ū1, λ1), . . . , (ūt, λt)} of labeled examples, but the algorithms also need access
to the background structure B. We usually think of B as being very large, and we want to
avoid holding it in main memory or even looking at the whole structure. That is, we are
looking for learning algorithms with a running time that is polynomial in t (the number
of training examples), but sublinear in the background structure B under a reasonable
model of accessing B. In (Grohe and Ritzert, 2017), the background structure B is a graph,
presumably of small degree, and the learning algorithms only have local access to B, that is,
they can only retrieve the neighbors of vertices that they already hold in memory. Initially,
these are the vertices appearing in the training examples. The main result of (Grohe and
Ritzert, 2017) is that model learning for first-order logic is possible in time polynomial in
the number t of training examples and the maximum degree d of the background graph B.
The strings that we study as background structures in this paper are equipped with the
≤-relation which is of unbounded degree. Hence the results of (Grohe and Ritzert, 2017)
do not apply in this setting. The polynomial that bounds the running time depends on the
quantifier rank q of the formula ϕ(x̄ ; ȳ) and the lengths k, ` of the tuples x̄, ȳ. The crucial
point is that this running time is independent of the size n of the background structure (in
a uniform cost model; otherwise it is poly-logarithmic in n).

1.1. Our Results

For the strings studied as background structures in this paper, we have also have a natural
notion of local access: algorithms are only allowed to (directly) access the successor and
predecessors of positions of a string that they already hold in memory. Our first result
(Theorem 2) is negative: we prove that every (model or parameter) learning algorithm

1. As such, this framework only allows it to describe binary classification problems, but it is easy to extend
it to general classification problems.

2

Learning MSO-definable hypotheses on strings

producing an FO-definable hypothesis consistent with the training examples (if there is one)
necessarily needs time at least linear in n. Only if ϕ(x̄ ; ȳ) is quantifier-free (Theorem 6)
or existential with only one instance variable, that is, k = 1, (Theorem 7) we obtain a
model learning algorithm for FO running in time polynomial in t, independently of n. We
can strengthen our linear lower bound in such a way that it already applies to existential
FO-formulas with two free instance variables (Theorem 8).

The negative results are not very surprising, because the local access model to the
background string B is extremely restrictive. For example, it is impossible for an algorithm
to find the first position in B that is labeled by symbol ‘a’. We also consider a less restrictive
access model, where we allow a linear time pre-processing of the background string to build
an index data structure that allows for more global access to B. The pre-processing takes
place before the algorithm sees the training examples. Then in the actual learning phase,
the algorithm only has local access to B and the index structure, that is, is only allowed
to follow pointers. Our main result (Theorem 9) states that after such a linear time (in
n) pre-processing phase, both parameter and model learning for MSO-definable hypotheses
are possible in time polynomial in t.

Technically, this theorem heavily relies on the connections between monadic second-
order logic, finite automata, and semi-group theory. The index data structure we built in
the pre-processing phase is the Simon Factorization Forest (Simon, 1990; Kufleitner, 2008)
for a suitable monoid associated with MSO-definable hypotheses.

1.2. Related Work

Closely related to our framework is that of inductive logic programming (ILP) (see, for ex-
ample, Cohen and Page, 1995; Kietz and Dzeroski, 1994; Muggleton, 1991, 1992; Muggleton
and Raedt, 1994). The two main differences are that we encode background knowledge in
a background structure, whereas the ILP framework axiomatizes it in a background theory,
and that we work with MSO, whereas ILP focuses on FO, possibly in a recursive setting.
Other recent logical frameworks for machine learning, mainly in the context of database
and verification applications can be found in (Abouzied et al., 2013; Bonifati et al., 2016;
Löding et al., 2016; Garg et al., 2016; Jordan and Kaiser, 2016).

There are also numerous results on learning automata and regular languages, negative
(Angluin, 1978; Gold, 1978; Pitt and Warmuth, 1993; Kearns and Valiant, 1994; Angluin,
1990) as well as positive (Angluin, 1987; Rivest and Schapire, 1993; Kearns and Vazirani,
1994; Oncina and Garćıa, 1992), the latter mainly in an active learning framework. Tech-
nically, all these results seem unrelated to ours.

2. Preliminaries

We considers strings (or words) over an alphabet Σ. The set of all such finite strings is
denoted by Σ∗, and the empty word by ε. In the logical setting, we view words as structures
B over the signature τ = {<, (Ra)a∈Σ) with universe U(B) = {1, . . . , n} for words of length
n. We also refer to the elements of U(B) as positions of the word. The relation < is
the natural ordering of the positions, and each Ra is a unary predicate for the a-labeled
positions. Note that we do not have a direct successor relation for positions (this is only
relevant for the results in Section 4 which can be extended to include the successor relation

3

Learning MSO-definable hypotheses on strings

but become much more technical in that setting). In general, we do not distinguish between
the relational representation and the sequence of alphabet symbols.

We use standard first-order logic (FO) over these word structures. Monadic second-order
logic (MSO) extends FO by additional quantification over sets of positions. We use lowercase
letters x, y, z to denote first-order variables and the corresponding uppercase letters for set
variables. The quantifier rank of a formula ϕ is the maximal number of nested quantifiers
in the formula.

We refer to the introduction for the basic definitions on our learning model. For a
formula ϕ(x̄ ; ȳ) we define the arity of ϕ(x̄ ; ȳ) to be the number of instance variables in x̄.
For the case of a single instance variable x we speak of unary formulas.

For a word B, a training set T ⊆ U(B)k × {0, 1} is called ϕ-consistent if there are
parameters v̄ ∈ U(B)` such that for all (ū, λ) ∈ T the classification is λ = Jϕ(x̄ ; v̄)KB(ū).
We also say that v̄ is consistent with ϕ, B, and T .

As mentioned in the introduction, we distinguish between parameter learning and model
learning. For the parameter learning problem, we assume a fixed formula ϕ(x̄ ; ȳ). A
parameter learner L for ϕ has as input a word B and a training set T over B. Using the
access model for B explained in the introduction, L produces as output a tuple v̄ = L(B, T)
of parameters. We say that L is a consistent parameter learner for ϕ if L(B, T) is consistent
with ϕ, B, T for all possible B and ϕ-consistent T .

For the model learning problem, the formula ϕ(x̄ ; ȳ) has to be found by the algorithm.
However, we do fix a maximum quantifier rank q and the number ` = |ȳ| of parameters.
Note that the arity k = |x̄| is also fixed, because the instance space of our learning problem is
U(B)k. The view that q, k, ` are fixed, which will be important for our complexity analysis,
is motivated by an analogy with database theory. Our whole declarative learning framework
is inspired by the declarative framework of relational database systems. The logic in which
we specify our models and hypotheses corresponds to the database query language, and
the background structure corresponds to the database. It is common in database theory to
analyze the complexity of the query evaluation problem, which corresponds to the learning
problems we consider here, by regarding the query as fixed and the database as the variable
input; this perspective is known as data complexity (Vardi, 1982). The data complexity
approach is justified by arguing that queries are usually human-written and not too large,
certainly in comparison with the size of the data, and that therefore we can treat the query
size as constant. Similarly, if we aim for explanatory and human-understandable models
in machine learning, and want to avoid over-fitting, we may want to restrict the quantifier
rank and the number of the parameters of the formulas defining the models. Adapting the
database terminology, we may say that in this paper we analyze the data complexity of
parameter and model learning.

Now if we fix q, k, `, there is only a finite number of formulas ϕ(x̄ ; ȳ) that our algorithm
needs to consider, because up to logical equivalence there is a only a finite number of MSO-
formulas of quantifier rank at most q with at most k + ` free variables. We may actually
assume that there is a fixed formula ϕ(x̄ ; ȳ) of quantifier rank q and with |ȳ| = `. Then the
goal of our model learning algorithm is to compute, given a training set T and structure
B such that T is ϕ-consistent, a formula ϕ′(x̄ ; ȳ′) and a parameter tuple v̄′ such that
v̄′ is consistent with ϕ′, B, and T . Furthermore, for simplicity we may assume that the
learning algorithm “knows” ϕ(x̄;ȳ). These assumptions are justified by the observation that

4

Learning MSO-definable hypotheses on strings

otherwise the algorithm can iterate through all the (finitely many) possible formulas. Note
that this makes model learning a simpler problem than parameter learning (in the sense
that an algorithm for parameter learning yields a model learning algorithm). In (Grohe and
Ritzert, 2017, Section 3), there is a simple example illustrating that model learning can be
strictly simpler (also see Example 1 below). We may further allow the formula ϕ′(x̄ ; ȳ′) to
have a larger quantifier rank q′ ≥ q and a larger number `′ := |ȳ′| ≥ ` of parameter variables
than ϕ. We refer to such a learning algorithm L as a (q′, `′)-formula learner. We say that
L is a formula learner for ϕ if it is a (q′, `′)-formula learner for ϕ for some numbers q′, `′.
Note that each parameter learner for ϕ is also a (q, `)-formula learner for ϕ.

Example 1 Suppose our background string B is over the alphabet Σ = {a, b}.
Let ϕ1(x ; y) = Ra(x)∧ x ≤ y. Let L1 be the algorithm that, given a training set T (and

local access to B), returns the largest position v such that (v, 1) ∈ T . It is easy to see that
L1 is a consistent parameter learner for ϕ1.

Now consider ϕ2(x ; y) = Ra(x) ∧ Rb(y) ∧ x ≤ y. Then a consistent parameter learner
for ϕ2 has to search for the first position v in B that is labeled by b and is greater than or
equal to all u such that (u, 1) ∈ T . It may take time linear in |B| to find such a v.

However, it is easy to construct a (0, 1)-formula learner L2 for ϕ: given T , it returns
the formula ϕ1(x ; y) and as parameter the largest position v such that (v, 1) ∈ T .

We only require our learning algorithms to return hypotheses consistent with the training
set. In fact, all of our algorithms can be generalized in such a way that they return a
hypothesis with minimum training error if there is no consistent one (we leave the details
to the full version of this paper).

To justify that such learning algorithms return hypotheses that generalize well, we appeal
to the standard result from PAC-learning (also see Section 3.1): A consistent learner is also a
PAC-learner over a hypothesis space with bounded VC-dimension using a training sequence
of size polynomial in the VC-dimension and the constants of the error bounds (see Shalev-
Shwartz and Ben-David, 2014). The following theorem shows that our hypothesis space is
of bounded VC-dimension.

Theorem 1 (Grohe and Turán (2004)) For q, k, ` there is a d such that for every string
B the family of all hypotheses Jϕ(x̄ ; v̄)KB, where ϕ(x̄ ; ȳ) is an MSO-formula of quantifier
rank at most q, |x̄| = k, |ȳ| = `, and v̄ ∈ U(B)`, has VC-dimension at most d.

3. Non-learnability of unary FO-definable concepts

Theorem 2 There is no consistent formula learner for unary FO formulas whose running
time is sublinear in the length of the string.

The theorem follows immediately from the following lemma.

Lemma 3 There is an FO formula ϕ(x ; y) = ∃z∀z′ψ(z, z′, x, y) with quantifier-free ψ
such that for all (q, `)-formula learners L with a sublinear running time the following holds.
There is a string B and a ϕ-consistent training set T of size |T | = 2` + 3 such that the
hypothesis HT produced by L on input B and T is not consistent with T .

5

Learning MSO-definable hypotheses on strings

Proof We consider strings over the alphabet Σ = {a, b, c}. We view strings over Σ as
consisting of a-blocks (sequences of successive a-positions) that are separated by b or c.
The entry of an a-block is the position directly before that block, which is then labeled
b or c (if the string starts with a, then the first block does not have an entry). The
formula ϕ(x ; y) selects those a-positions whose block entry is either before y and labeled
b, or behind (including) y and labeled c. So the behavior of the formula switches at the
parameter position. The concrete formula is

ϕ(x ; y) = Ra(x) ∧ ∃z(z < x) ∧ ((Rb(z) ∧ z < y) ∨ (Rc(z) ∧ z ≥ y))

∧ ∀z′((z < z′ < x)→ Ra(z′)) (1)

Let L be a (q, `)-formula learner for arbitrary numbers q, ` whose running time is sublinear
in the length of the string.

We choose s such that for every MSO formula with ` parameters and quantifier rank at
most q, there is an equivalent finite automaton with at most s states. Then we choose r in
such a way that the running time of the learner L on an input string B of length

n = (2`+ 3)(3s!)(2r + 2)

is at most r. This choice of r is possible since the runtime of L is sublinear in the length of
the input string.

Next, we construct strings B0, . . . , B` of length n and parameter positions vi such that
ϕ(x ; y) selects the same set of positions for all Bi with parameter vi. These strings have
the following shape:

Bi = (AbAc)
iAb(AbAc)

`+1−i,

where the strings Ab and Ac are defined as Ab = (ba2r+1)3s! and Ac = (ca2r+1)3s!.
Each Bi contains two successive Ab. The parameter position vi for Bi is chosen to be the

first b in the second of the two successive Ab. Since the behavior of ϕ flips at the parameter
position, it should be clear that ϕ indeed selects the same set of positions for each Bi with
parameter vi, or formally, Jϕ(x, vi)KBi = Jϕ(x, vj)KBj for all i, j. This allows us to construct
a single training set that is ϕ-consistent over all Bi. The training set T contains one position
in each substring Ab or Ac of Bi. The positions are chosen in the middle of an a-block (of
length 2r+ 1), which itself is in the middle of all the a-blocks of the respective substring Ab

or Ac. Formally, these are the positions |Ab| ·j+ |Ab|
2 +r+2 for j ∈ {0, . . . , 2`+2} (note that

|Ab| = |Ac| so we do not need to distinguish them in the definition of the positions). The
classification of these positions starts with 1 and then alternates between 0 and 1 (identical
for every Bi).

By the choice of r, the algorithm L only has access to a-positions when it is executed
on Bi with training set T . Hence, it does not see any difference between the Bi and
produces the same hypothesis for all Bi. In particular this includes the same set of at most
` parameters since these are part of the hypothesis. So there is one string B∗ for which no
parameter is inside the two successive Ab substrings. We now show that the hypothesis on
this B∗ cannot distinguish the two positions in the two successive Ab substrings, whereas
their classification in the training set is different. This shows that the hypothesis produced
by L on input B∗ and T is not consistent with T .

6

Learning MSO-definable hypotheses on strings

The hypothesis cannot distinguish the examples from the AbAb block. To show this we
observe that the formula learner L produces a hypothesis ψ(x, v̄′) for Bi and T (we use v̄′

for the parameters because the notation vi is already in use in this proof).
For the hypothesis formula ψ(x, ȳ) there is an equivalent DFA (deterministic finite au-

tomaton) A. This DFA reads words over Σ that are annotated in some form to mark the
position u of the instance variable, and the positions of the parameters. In particular, it
accepts Bi annotated with a position u and the positions v̄′ from the hypothesis if, and only
if, ψ(u, v̄′) holds in Bi. By the choice of s, there is such a DFA A with at most s states.

We show that this DFA wrongly classifies one of the examples from the two successive
Ab subwords in Bi. More formally, let u1 < u2 be the positions from the training set that
fall into the two successive Ab subwords of Bi. Let B1

i and B2
i be the strings annotated with

the parameters v̄′ and additionally B1
i is annotated with u1 as instance for x, and similarly

for B2
i and u2. We know that these two positions are classified differently in the training

set. Note also that Bi was chosen such that no parameter is inside the two successive Ab’s.
We analyze the runs of A on B1

i and B2
i on the two successive Ab subwords. The idea

is illustrated in Figure 1. Let A′ denote A with the middle a-position carrying the marker
for the position of x, and let A∗ = A

1
2
s!A′A

1
2
s!−1. Then the two successive Ab subwords

in B1
i and B2

i including the markers for u1 and u2 are of the form C1 = As!A∗A4s! and
C2 = A4s!A∗As!. This implies that the state before A∗ is the same in both runs: After
reading the first s! copies of A, the state is some σ1 for both words (up to this point, B1

i

and B2
i are the same). Then B1

i is followed by A∗. In B2
i , the DFA reads another 3s! copies

of A. Since s! is a multiple of every possible length of a loop in A, and A has already read
s! copies of A, the state before A∗ in B2

i is also σ1. The same argument is used to show
that both runs end on the same state σ2 after having read C1 and C2, respectively.

Therefore, A cannot distinguish C1 and C2 and thus accepts both, B1
i and B2

i , or rejects
both. This means that A will either accept or reject both training examples u1 and u2.

σ0 σ1 σ2 σ2 σ2 σ2 σ2

σ2σ2σ1σ0 σ1 σ1 σ1

As! As! As! As! As!

As! As! As! As!

Ab

As!

A∗

A∗

Ab

A∗ = A
s!

2 A′A
s!

2
−1 where A′ is A with an example on the middle a

Figure 1: State transitions of A on the AbAb block for the two different training examples

7

Learning MSO-definable hypotheses on strings

3.1. PAC Learning

The general aim in machine learning is to perform well on unseen examples. This is for-
malized in Valiant’s probably approximately correct learning model. The idea is that a
learning algorithm is probably approximately correct (PAC), if over most of the training sets
(’probably’) it outputs a classification algorithm (or hypothesis) which has a low expected
error on new examples (’approximately’). To get any bounds on the expected error, a fixed
underlying but unknown probability distribution D over the examples is assumed. Then the
examples are chosen independently from this distribution D. When talking about training
sets, we implicitly assume that those are chosen independently according to some unknown
but fixed distribution D.

Here we show that there is no PAC learning algorithm with sublinear runtime.

Definition 4 Let L be a learning algorithm which outputs on input of B and T a hypothesis
HT . Then L is probably approximately correct (PAC) if for all probability distribution D
over the instance space

Pr
T∼D

[errD(HT) < ε] > 1− δ.

Here the probability is taken over the training set T where T ∼ D means that the
training examples are chosen independently according to D. Furthermore, errD(HT) is the
expected error on (new) examples chosen according to D.

This means that a learning algorithm is probably approximately correct (PAC) if with
high probability over the choice of the training set T , the expected error of the hypothesis
HT on new instances is low.

Theorem 5 Let L be a sublinear (q, `)-formula learner. Then L is not a PAC learning
algorithm.

Proof We choose a string B and a training set T of size |T | = 2`+3 according to Lemma 3.
Now we let D be the uniform distribution over the position appearing in T . Then if we
draw examples from the distribution D, the learner only sees examples from T , and hence
we know that it makes a mistake. There is a small technical issue here: if we draw the
examples randomly from T , the learner L may actually only see a subset T ′ ⊆ T , because
some may be repeated. However, without loss of generality we may assume that L does not
perform worse if it sees more examples. Hence if we denote the hypothesis produced by L
on input B and T ′ ⊆ T by HT ′ , then HT ′ is not consistent with T , and we have

errD(HT ′) ≥ 1

2`+ 3
,

because HT ′ is wrong on at least one of the 2`+ 3 elements in the support of D. Thus with
ε = 1

2`+3 we have
Pr

T ′∼D
[errD(HT ′) < ε] = 0.

This implies that L is not a PAC learning algorithm.

8

Learning MSO-definable hypotheses on strings

4. Quantifier-free and existential formulas

The non-learnability result from Section 3 applies to formulas with at least one quanti-
fier alternation (Lemma 3). In this section we therefore consider simpler classes, namely
quantifier-free and existential formulas. A quantifier-free formula ψ consists of atoms check-
ing membership in the relations τ = {<, (Ra)a∈Σ} or boolean combinations of those. Exis-
tential formulas are of the form ϕ(x̄) = ∃z̄ψ(x̄, z̄) where ψ is quantifier-free.

For quantifier-free and unary existential formulas, there are formula learners running in
time polynomial in |T |.

Theorem 6 There is a consistent formula learner for unary quantifier-free formulas whose
running time is in O(|T |) for a training set T . For arbitrary quantifier-free formulas with
k instance and ` parameter variables there is a consistent formula learner running in time
O((2|T |k + 1)`|T |).

Note that even in the more general case, the runtime of the algorithm is polynomial in
|T | for a fixed `. The proof uses the fact that evaluating a quantifier-free formula over an
ordered word only depends on the labels and relative positions of the nodes assigned to the
free variables. The number of possible different configurations therefore only depends on k
and ` which means that all of those can be checked. For a proof of this theorem we refer to
the full version of this article.

In Theorem 7 we generalize the first part of Theorem 6 to unary existential formulas. In
contrast to the quantifier-free case, where ` can be taken from ϕ for some ϕ-consistent train-
ing set, the constructed hypothesis uses a relatively long formula. The formula constructed
for the hypothesis is based on the observation that existentially quantified conjunctions can
only define an interval per label a ∈ Σ. Theorem 8 states that this cannot be extended to
arbitrary existential formulas. Again, we refer to the full version of the paper for proofs of
these theorems.

Theorem 7 There is a consistent formula learner for unary existential formulas whose
running time is in O(|T |) for a training set T .

Theorem 8 There is no consistent formula learner for binary existential formulas with
one parameter that runs in sublinear time.

5. Indexing

While it is impossible to learn the parameters of a fixed formula in sublinear time, we now
consider the case that the learning algorithm can preprocess and index the underlying string
before it enters the learning phase for this string. In this setting, the learning algorithm
consists of two phases, starting with a linear time (in |B|) indexing phase, in which the
algorithm can add an auxiliary data structure to B. The learning phase (sublinear in |B|)
then can use this auxiliary data structure to compute consistent parameters v̄ for a given
training set T . We refer to the running times of these two phases as indexing time and
learning time, respectively.

The main result in this section is about the learnability of unary MSO formulas in the
indexing model, as stated in the next theorem. Most of this section is devoted to the proof

9

Learning MSO-definable hypotheses on strings

of this theorem. At the end of the section we briefly mention the case of MSO formulas
with higher arity.

Theorem 9 There is a consistent parameter learner for unary MSO formulas with index-
ing time O(|B|) for a string B and learning time O(|T |) for a training set T over B.

As an example, consider the formula used in the proof of Lemma 3. The indexing phase
could annotate each position with the information whether it is in an a-block preceded by
b or by c. With this additional information it is easy to find a consistent parameter setting
for a given training set.

For this specific example, it is sufficient to simply annotate each position in B with
some extra information. In the general case, the auxiliary data structure is a tree whose
leafs are the positions of B, and each node contains information about the substring of B
in the subtree below this node. More formally, we use a factorization tree of the string
w.r.t. some finite monoid. We start by introducing monoids and factorization trees, and
then define the specific monoid that we use in the learning algorithm. We refer the reader
to Colcombet (2011) and Bojańczyk (2012) for some recent expositions that explain the
connections between monoids and regular languages in more detail.

A monoid (M, ·, 1M) consists of a set M , an associative multiplication operation · on M ,
and a neutral element 1M for this operation. Often we simply write M for the monoid, and
write the multiplication of two elements m1 and m2 as m1m2. The set of all finite words
over an alphabet Σ with concatenation as multiplication and the empty word as neutral
element is called the free monoid (generated by Σ). A mapping h : M →M ′ for monoids M
and M ′ is called a monoid morphism (just morphism for short) if h(m1m2) = h(m1)h(m2)
for all m1,m2 ∈M , and h(1M) = 1M ′ .

For a finite monoid M , a morphism h : Σ∗ → M , and a subset F ⊆ M of accepting
monoid elements, we define the language L(M,h, F) = {A ∈ Σ∗ | h(A) ∈ F}. A well known
theorem implicitly mentioned in early papers of automata theory by Rabin and Scott (1959)
states that a language is regular if, and only if, it can be accepted by a finite monoid in this
way.

We now turn to factorization trees. These can be seen as index structures for finite
words. Our techniques are based on the same ideas as the ones described in Bojańczyk
(2012).

Let M be a finite monoid, and let s = m1,m2, . . . ,mn be a sequence of elements from
M . A factorization tree T of s is a finite ordered tree (the successors of a node are ordered)
whose nodes v are labeled by elements T (v) of M , such that

• the sequence of leaf labels is s,

• for each inner node v with children v1, . . . , vi, the label of v is the product of the
monoid elements at its children: T (v) = T (v1) · T (v2) · · · T (vi)

Note that each node v of T defines an infix (factor) mj , ...,mj′ of s corresponding to the
leafs in the subtree below v. The label T (v) of v is the product mj ...mj′ of these elements.

For example, one can use a binary tree, whose height is then logarithmic in the length
of s. We use a class of factorizations introduced by Simon (1990) that also can have nodes
of higher arity with a specific property.

10

Learning MSO-definable hypotheses on strings

A Simon factorization tree T of s is a factorization tree with the following additional
property:

• if a node v of T has more than two children v1, . . . , vi, then the labels of all the
children are the same, and this label e is an idempotent element of M , that is ee = e
(it follows that T (v) = e, too).

We refer to such nodes as idempotent nodes.
The following theorem is due to Simon (1990). For the bound of 3|M | see Colcombet

(2011); Kufleitner (2008).

Theorem 10 (Simon factorization theorem) For every sequence s = [m1,m2, . . . ,mn]
of monoid elements from M , there is a factorization tree of height at most 3|M |. This fac-
torization tree can be computed in time poly(|M |) · n.

Factorization trees can also be applied for strings over an alphabet Σ (instead of a
sequence of monoid elements), given a monoid morphism h : Σ∗ → M . A Simon h-
factorization tree for a string B = a1 · · · an ∈ Σ∗ is a Simon factorization tree for the
sequence [h(a1), . . . , h(an)].

We now turn to the monoid that we use for building a factorization tree in the indexing
phase of the learning algorithm. We actually define two monoids, where the second one is
used for the factorization. Its elements consist of sets of elements of the first monoid that
we define.

In the following, let ϕ(x;ȳ) be a unary MSO formula with parameter variables y1, . . . , y`.
The formula ϕ(x ; ȳ) naturally defines a set of strings L̂(ϕ) over the alphabet Σ̂ = Σ ×
2{y1,...,y`}×{?, 0, 1}. The first component of a string B̂ ∈ Σ̂∗ defines a string B over Σ. The
third component encodes a training set TB̂, where ? indicates that the position is not in TB̂,
and 0, 1 correspond to the classification of the position in TB̂. The second component is

supposed to encode the parameter setting. We say that a string B̂ ∈ Σ̂∗ contains yi if there
is a position v labeled by (a, Y, b) ∈ Σ̂ such that yi ∈ Y , and we say that that B̂ contains yi
exactly once if there is exactly one such position. If B̂ contains each yi exactly once then
the second component encodes a valid parameter setting v̄ = (v1, . . . , v`).

Then we let L̂(ϕ) be the set of all strings B̂ ∈ Σ̂∗ such that B̂ contains each yi exactly
once, yielding a parameter setting v̄, and if B ∈ Σ∗ is the projection of B̂ to the first
component and TB̂ is the training set encoded by the third component, then Jϕ(x ; v̄)KB is
consistent with TB̂.

It is not difficult to see that a finite automaton for the formula ϕ(x ; ȳ) can be modified
to obtain a finite automaton for the language L̂(ϕ), which means that L̂(ϕ) can also be
accepted by a finite monoid. Let M̂ be a finite monoid, ĥ : Σ̂→ M̂ be a monoid morphism,
and F̂ ⊆ M̂ such that (M̂, ĥ, F̂) accepts L̂(ϕ).

For every subset K ∈ 2{y1,...,y`} of the parameters, we let

M̂K = {ĥ(A) | A ∈ Σ̂∗ contains all yi ∈ K exactly once but does not contain any yi 6∈ K},

and we let
M̂⊥ = {ĥ(A) | A ∈ Σ̂∗ contains some yi more than once}.

11

Learning MSO-definable hypotheses on strings

Without loss of generality we may assume that the sets M̂K for K ∈ 2{y1,...,y`} × {⊥} are
mutually disjoint. It is easy to see this, the idea is that we can introduce copies mK of all
elements m and adjust the homomorphism ĥ accordingly.

Then M̂ is the disjoint union of the sets M̂K for K ∈ 2{y1,...,y`} ∪ {⊥}. Observe that
F̂ ⊆ M̂{y1,...,y`} and that no substring of a string in F̂ is contained in M̂⊥.

We now define a second monoid M, which is used for the factorizations. The monoid
M̂ contains information about the parameters as encoded in the strings. In the learning
setting, these parameters are unknown and we need to synthesize parameters consistent
with the training set. We therefore introduce a monoid that contains information about all
possible parameter settings that could be encoded in the strings.

For this purpose, let Γ = Σ × {?, 0, 1} be the alphabet without the component for the
parameters. A string over Γ encodes a string over Σ together with a training set over B.

Let f : Σ̂∗ → Γ∗ be the function that projects strings over Σ̂ to the corresponding strings
over Γ, removing the parameter component of Σ̂. Based on this projection, each string A
over Γ defines a set h(A) of elements of M̂ by

h(A) = {m ∈ M̂ | ∃B̂ ∈ Σ̂∗ with f(B̂) = A and ĥ(A) = m}.

This defines a morphism h : Γ∗ → M using a new monoid structure M = {S | S ⊆ M̂}
with neutral element 1M = {1M̂}, the set containing only the neutral element of M̂ , and
multiplication S1 · S2 = {m1 ·m2 | m1 ∈ S1,m2 ∈ S2}.

In the following, we denote by BT ∈ Γ∗ the string that encodes B ∈ Σ∗ with training
set T over B. In particular, B∅ denotes this string for the empty training set (so B∅ is B
extended with ? at every position).

The next lemma states that we can compute parameters that are consistent with a given
training set T over a string B, based on a Simon h-factorization of BT .

Lemma 11 Let B ∈ Σ∗ and let T be a ϕ-consistent training set over B. Given a Simon
h-factorization tree T of BT , one can compute in linear time in the height of T a set of
parameters over B such that T is consistent with the parameters.

Proof A procedure for computing a consistent parameter setting as claimed in Lemma 11
is shown as Algorithm 1. The idea and notations are explained below.

The variable v is used for nodes of T , and m for monoid elements of M̂ . Recall that the
nodes of T are labeled with elements from M, which are sets of elements of M̂ .

The algorithm starts in the root of T , and picks some accepting element mroot in the
label of the root. Such an accepting element exists, since we assume that T is a ϕ-consistent
training set. Thus, there is a parameter setting that is consistent with T . Adding this
parameter setting to BT yields a string B̂T ∈ Σ̂∗. Then mroot = ĥ(B̂T) is accepting and it
is contained in the label of the root of T .

The algorithm then descends down the tree to find parameter positions that generate
the accepting element chosen at the root. It uses a stack because it has to descend on
several paths (to find a position for each parameter).

Recall that (M̂, ĥ, F̂) accepts L̂(ϕ), that M̂ is the disjoint union of the sets M̂⊥ and M̂K

for K ∈ 2{y1,...,y`}, that the set F̂ of accepting elements is contained in M̂{y1,...,y`}, and that

no string in F̂ has a substring in M̂⊥. As all elements m ∈ M̂ the algorithm visits (and

12

Learning MSO-definable hypotheses on strings

Input: Simon factorization tree T
Output: A consistent parameter setting (y1, . . . , y`)

1 v ← root(T)

2 Pick mroot ∈ T (v) ∩ F̂ // an accepting element in the label of v
3 push(mroot, v)
4 while not empty stack do
5 (m, v)← pop()
6 if leaf(v) then

// set the parameters traced to this leaf

7 Let K ⊆ {y1, . . . , y`} be such that m ∈ M̂K

8 Set yi ← v for each yi ∈ K
9 else

// descend further down the tree

10 Let v1 be the first and v2 be the last child of v
11 if v has two children then
12 Pick m1 ∈ T (v1), m2 ∈ T (v2) with m = m1m2

13 end
14 if v has more than two children then

15 Let e be the unique idempotent element in M̂∅ ∩ T (v)
16 Pick m1,m2 ∈ T (v) with m = m1em2

// See Claim in the proof of Lemma 11

17 end
18 if m1 6∈M∅ then push(m1, v1);
19 if m2 6∈M∅ then push(m2, v2);

20 end

21 end
22 return ŷ = (y1, . . . , y`)

Algorithm 1: Computing a consistent parameter setting from a factorization tree

pushes to the stack in lines 3 and 18) are substrings of mroot ∈ F̂ , no such m is an element
of M̂⊥.

In the main loop, Algorithm 1 traces monoid elements that are not in M̂∅ further down
the tree. Note that the elements m ∈ M̂∅ correspond to words that do not contain a
parameter.

The algorithm pops the next pair (m, v) with m ∈ M̂ and v a node of T from the stack.
If v is a leaf, then there is a set K such that M ∈ M̂K and K 6= ∅ because elements from
M∅ are never pushed onto the stack. The leaf v corresponds to a position in the string B.
This position is the value for the parameters in K.

If v is an inner node, then m can be written as product of M̂ elements in the labels at
the children of v. If v has only two children v1 and v2, then the algorithm can simply pick
elements m1 and m2 in the labels of v1 and v2 whose product is m. If v has more than two
children, then it is an idempotent node. The choices made by the algorithm in this case
are based on the following claim. Intuitively, this claim shows that for finding a consistent
parameter setting, it is sufficient to consider the first and the last child of idempotent nodes.

13

Learning MSO-definable hypotheses on strings

Claim: Let S ⊂ M̂ be the label of an idempotent node. Then S contains a unique idem-
potent element e ∈M∅, and each element m of S can be written as a product m = m1em2

with m1,m2 ∈ S.

Proof: Let v be an idempotent node with label S. Since T is a factorization tree of BT ,
the node v corresponds to a substring A of BT , and S = h(A). From the definition of
h(A) it follows that S contains exactly one element e ∈ M̂∅ (the element for the empty
parameter annotation of A). The product of two elements from M̂∅ is also in M̂∅. Since S
is idempotent, it follows that ee ∈ M̂∅ ∩ S, and thus ee = e.

We now show that each m ∈ S can be written as m = m1em2 with m1,m2 ∈ S. Let
K ⊆ {y1, . . . , y`} be such that m ∈ M̂K . Prove this by induction on the size of K.

If K = ∅, then m = e = eee, as shown above, and we let m1 = m2 = e. Otherwise, since
S is idempotent, m = m′1m

′
2 with m′1,m

′
2 ∈ S. From the definition of M̂K we obtain that

m′1 ∈ M̂K1 , m′2 ∈ M̂K2 with K1 ∪K2 = K and K1 ∩K2 = ∅. If K1 = ∅, then we choose
m1 = e and m2 = m′2 and obtain m1em2 = eem′2 = em′2 = m′1m

′
2 = m. The case K2 = ∅

is analogous. If K1 and K2 are nonempty, then both are strict subsets of K. By induction
m′1 = m′′1em

′′
2 for m′′1,m

′′
2 ∈ S, and hence m = m′′1em

′′
2m
′
2 and we can choose m1 = m′′1 and

m2 = m′′2m
′
2. Since S is idempotent, m2 ∈ S. This completes the proof of the claim. y

For the correctness of the algorithm, one can prove that the parameters selected by the
algorithm generate the accepting monoid element chosen at the root of T (by an induction
on the height of the node v in the tree). This means that the choice of parameters is
consistent with the training set. The running time is linear in the height of T because for
each parameter there is at most one monoid element on the stack, which means that the
algorithm follows at most ` paths in the tree.

This completes the proof of Lemma 11.

In order to apply Lemma 11 in our algorithm, we first have to compute a Simon h-
factorization tree T of BT for a given training set T . We can do this starting from a
factorization of B∅, as stated in the following lemma.

Lemma 12 Let B ∈ Σ∗ and let T be a training set over B. From a Simon h-factorization
tree TB of B∅, one can compute a Simon h-factorization tree T of BT in time O(height(TB)·
|T |). The height of T is in O(height(TB)).

Proof The rough idea is as follows: We cut B into factors at the positions occurring in
T . Each position in T becomes one factor (consisting of a single position), and the other
factors are the substrings between these positions. Then we insert the modified monoid
elements at the positions from T , by changing the ? into the classification of the position
in T . For the longer substrings (that are not touched by the training set) we compute a
factorization tree, which can easily be done based on the one for the whole string. We obtain
one monoid element for each factor (at the root of the trees for the longer strings). For this
new sequence of monoid elements we apply Theorem 10, obtaining a Simon factorization,
which can be combined with the existing factorization trees for the substrings to obtain a
factorization tree for BT .

More formally, let u1, . . . , ut ∈ {1, . . . , |B|} be the positions of B occurring in the training
set T in ascending order. Let u0 = 0 and ut+1 = |B|+1 to simplify the following definitions.

14

Learning MSO-definable hypotheses on strings

e

m

e e e e e e

m1 m3 m4m2

m5

e e e

e

m2 · e ·m3

m2 · e

m3m2

Figure 2: Simon factorization tree

For i ∈ {0, . . . , t} define Bi to be the substring of B∅ from position ui+1 to ui+1−1, and for
i ∈ {1, . . . , t} let γi = (a, c) ∈ Γ be the letter a of B at position ui, and c the classification
of ui in T . Then B0γ1B1γ2 · · ·Bt−1γtBt = BT

For the substrings Bi we can compute a Simon h-factorization tree Ti from TB. This
is done in a similar fashion as described in Bojańczyk (2012) for evaluating queries for
substrings on a Simon factorization tree. The idea is illustrated in Figure 2, which shows
a Simon factorization tree for the sequence [m1,m2, e, e, e,m3,m4, e,m5] on the left-hand
side of the figure. The right-hand side of the figure shows a Simon factorization tree for the
sub-sequence [m2, e, e, e,m3]. Basically one has to trace the paths towards the root from
the left-most and right-most leaf nodes of the tree for the sub-sequence. Along these paths
one has to update some labels, delete some nodes, and inserting some new nodes in order
to maintain the structure of a Simon factorization tree. In Figure 2, the nodes labeled with
a product of elements are the ones that have been inserted. One observes that the insertion
of new nodes might increase the height of the tree, but the height can at most double.

Let mi be the monoid element obtained at the root of the tree Ti. We obtain the
sequence

[m0, h(γ1),m1, h(γ2), . . . ,mt−1, h(γt),mt]

of monoid elements alternating between the roots of the trees Ti and the elements corre-
sponding to the modified positions in B. Then we compute a Simon h-factorization tree T ′
for this sequence [m0, h(γ1),m1, h(γ2), . . . ,mt−1, h(γt),mt] according to Theorem 10. We
can now plug in the trees Ti at the corresponding leafs of T ′ for mi. This results in a Simon
h-factorization tree for BT .

The complexity claims follow from the complexities in Theorem 10 and the fact that
the height of the trees Ti is linear in the height of TB.

Combining Theorem 10 with Lemma 11 and 12, we can build a learning algorithm as
claimed in Theorem 9.

• Indexing Phase: For a string B, compute a Simon h-factorization TB of B∅ according
to Theorem 10.

• Learning Phase: For a given Training set T , compute a Simon h-factorization tree
T of BT according to Lemma 12, and then compute a consistent set of parameters
according to Lemma 11.

15

Learning MSO-definable hypotheses on strings

The claimed complexities follow from the ones in Theorem 10 and Lemma 11 and 12. This
finishes the proof of Theorem 9.

Formulas of higher arity. The methods developed in this section for unary MSO formu-
las can be adapted to some extent to MSO formulas of higher arity. However, the learning
time of this adapted algorithm is not linear in the size |T | anymore.

Theorem 13 There is a consistent parameter learner for MSO formulas with indexing
time O(|B|) for a string B and learning time O((k|T |)`) for a training set T over B, and
` the number of parameters.

The main difference is that it is not possible to encode a complete training set for
examples of higher arity by an annotation of the string B. For this reason, one has to do an
exhaustive search over the possible parameter positions relative to the positions appearing
in the training set. Again based on a factorization tree, one can check for each such relative
positioning if concrete parameters with these relative positions exist that are consistent
with the training set. If they exist, one can synthesize them with the same idea as for
Algorithm 1. We save the details for a full version of this article.

6. Conclusion

We study the learnability results for MSO-definable hypotheses over string data. The key
question we ask is whether learning is possible in time independent of (or at least sublinear
in) the size of the background string. We prove that this is only possible if we allow to
build an index of the string first, in time linear in the size of the string.

It is an interesting open question whether our results can be extended to tree-structured
data (such as XML-documents). Note that there is no direct generalization of the factor-
ization forests for trees.

References

A. Abouzied, D. Angluin, C.H. Papadimitriou, J.M. Hellerstein, and A. Silberschatz. Learn-
ing and verifying quantified boolean queries by example. In R. Hull and W. Fan, editors,
Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 49–60, 2013.

Dana Angluin. On the complexity of minimum inference of regular sets. Information
and Control, 39(3):337–350, 1978. doi: 10.1016/S0019-9958(78)90683-6. URL https:

//doi.org/10.1016/S0019-9958(78)90683-6.

Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75
(2):87–106, 1987.

Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121–150, 1990.
doi: 10.1007/BF00116034. URL https://doi.org/10.1007/BF00116034.

Miko laj Bojańczyk. Algorithms for regular languages that use algebra. SIGMOD Record,
41(2):5–14, 2012.

16

https://doi.org/10.1016/S0019-9958(78)90683-6
https://doi.org/10.1016/S0019-9958(78)90683-6
https://doi.org/10.1007/BF00116034

Learning MSO-definable hypotheses on strings

A. Bonifati, R. Ciucanu, and S. Staworko. Learning join queries from user examples. ACM
Trans. Database Syst., 40(4):24:1–24:38, 2016.

W.W. Cohen and C.D. Page. Polynomial learnability and inductive logic programming:
Methods and results. New generation Computing, 13:369–404, 1995.

Thomas Colcombet. Green’s relations and their use in automata theory. In Language and
Automata Theory and Applications - 5th International Conference, LATA 2011, Tarrag-
ona, Spain, May 26-31, 2011. Proceedings, volume 6638 of Lecture Notes in Computer
Science, pages 1–21. Springer, 2011.

P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using decision trees
and implication counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 499–512, 2016.

E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978. doi: 10.1016/S0019-9958(78)90562-4. URL https://doi.

org/10.1016/S0019-9958(78)90562-4.

M. Grohe and M. Ritzert. Learning first-order definable concepts over structures of small
degree. ArXiv (CoRR), arXiv:1701.05487 [cs.LG], 2017. To appear in Proceedings of the
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, 2017.

Martin Grohe and Gy Turán. Learnability and definability in trees and similar structures.
Theory of Computing Systems, 37(1):193–220, 2004.

C. Jordan and L. Kaiser. Machine learning with guarantees using descriptive complexity
and smt solvers. ArXiv (CoRR), arXiv:1609.02664 [cs.LG], 2016.

Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994. doi: 10.1145/174644.174647.
URL http://doi.acm.org/10.1145/174644.174647.

Michael J. Kearns and Umesh V. Vazirani. An introduction to computational learning
theory. MIT Press, Cambridge, MA, USA, 1994. ISBN 0-262-11193-4.

J.-U. Kietz and S. Dzeroski. Inductive logic programming and learnability. SIGART Bul-
letin, 5(1):22–32, 1994.

Manfred Kufleitner. The height of factorization forests. In MFCS 2008, volume 5162 of
LNCS, pages 443–454. Springer, 2008.

C. Löding, P. Madhusudan, and D. Neider. Abstract learning frameworks for synthesis. In
M. Chechik and J.-F. Raskin, editors, Proceedings of the 22nd International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, volume 9636 of
Lecture Notes in Computer Science, pages 167–185. Springer Verlag, 2016.

S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–318,
1991.

17

https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
http://doi.acm.org/10.1145/174644.174647

Learning MSO-definable hypotheses on strings

S.H. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.

S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19-20:629–679, 1994.

José Oncina and Pedro Garćıa. Identifying regular languages in polynomial time. In Pro-
ceedings of the International Workshop on Structural and Syntactic Pattern Recognition,
volume 5 of Machine Perception and Artificial Intelligence, pages 99—108. World Scien-
tific, 1992.

Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be
approximated within any polynomial. J. ACM, 40(1):95–142, 1993. doi: 10.1145/138027.
138042. URL http://doi.acm.org/10.1145/138027.138042.

Michael O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:114–125, April 1959.

Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-
quences. In Machine Learning: From Theory to Applications, volume 661 of Lecture Notes
in Computer Science, pages 51–73. Springer, 1993.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–
94, 1990. doi: 10.1016/0304-3975(90)90047-L. URL http://dx.doi.org/10.1016/

0304-3975(90)90047-L.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 389–456. Springer-Verlag, 1997.

M.Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM
Symposium on Theory of Computing, pages 137–146, 1982.

18

http://doi.acm.org/10.1145/138027.138042
http://dx.doi.org/10.1016/0304-3975(90)90047-L
http://dx.doi.org/10.1016/0304-3975(90)90047-L

	Introduction
	Our Results
	Related Work

	Preliminaries
	Non-learnability of unary FO-definable concepts
	PAC Learning

	Quantifier-free and existential formulas
	Indexing
	Conclusion

