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Abstract

This work studies the parameter identification problem for the Markov chain choice model
of Blanchet, Gallego, and Goyal used in assortment planning. In this model, the product
selected by a customer is determined by a Markov chain over the products, where the
products in the offered assortment are absorbing states. The underlying parameters of
the model were previously shown to be identifiable from the choice probabilities for the
all-products assortment, together with choice probabilities for assortments of all-but-one
products. Obtaining and estimating choice probabilities for such large assortments is not
desirable in many settings. The main result of this work is that the parameters may
be identified from assortments of sizes two and three, regardless of the total number of
products. The result is obtained via a simple and efficient parameter recovery algorithm.
Keywords: discrete choice modeling, parameter identification, Markov chains

1. Introduction

In assortment planning, the seller’s goal is to select a subset of products (called an as-
sortment) to offer to a customer so as to maximize the expected revenue. This task can
be formulated as an optimization problem given the revenue generated from selling each
product, along with a probabilistic model of the customer’s preferences for the products.
Such a discrete choice model must capture the customer’s substitution behavior when, for
instance, the offered assortment does not contain the customer’s most preferred product.
Our focus in this paper is the Markov chain choice model (MCCM) proposed by Blanchet
et al. (2016). In this model, the product selected by the customer is determined by a Markov
chain over products where the products in the offered assortment are absorbing states. The
current state represents the desired product; if that product is not offered, the customer
transitions to another product according to the Markov chain probabilities, and the process
continues until the desired product is offered or the customer leaves. MCCM generalizes
widely-used discrete choice models such as the multinomial logit model (Luce, 1959; Plack-
ett, 1975), as well as other generalized attraction models (Gallego et al., 2014); it also well-
approximates other random utility models found in the literature such as mixed multinomial
logit models (McFadden and Train, 2000). At the same time, the MCCM permits computa-
tionally efficient unconstrained assortment optimization as well as efficient approximation
algorithms in the constrained case (Blanchet et al., 2016; Désir et al., 2015); this stands in
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contrast to some richer models such as mixed multinomial logit models (Rusmevichientong
et al., 2010) and the nested logit model (Davis et al., 2014) for which assortment opti-
mization is generally intractable. This combination of expressiveness and computational
tractability makes MCCM very attractive for use in assortment planning.

A crucial step in this overall enterprise—e.g., before assortment optimization may take
place—is the estimation of the choice model’s parameters from observational data. Param-
eter estimation for MCCM is only briefly considered in the original work of Blanchet et al.
(2016). In that work, it is shown that the parameters can be determined from the choice
probabilities for the all-products assortment, together with the assortments comprised of
all-but-one product. This is not satisfactory because it may be unrealistic or unprofitable to
offer assortments of such large cardinality. Therefore, it is desirable to be able to determine
the parameters from choice probabilities for smaller cardinality assortments. We note that
this is indeed possible for simpler choice models such as the multinomial logit model (see,
e.g., Train, 2009), but these simpler models are limited in expressiveness—for example, they
cannot express heterogeneous substitution behavior.

In this paper, we show that the MCCM parameters can be identified from the choice
probabilities for assortments of sizes as small as two and three, independent of the total
number of products.! We also give a simple and efficient algorithm for reconstructing the
parameters from these choice probabilities.

2. Model and notation

In this section, we describe the Markov chain choice model (MCCM) of Blanchet et al.
(2016), along with notations used for choice probabilities and model parameters.

The set of n products in the system is denoted by N := {1,2,...,n}. The “no purchase”
option is denoted by product 0. Upon offering an assortment S C A, the set of possible
outcomes is S; := S U {0}: either some product in S is purchased, or no product is
purchased.

Underlying the MCCM is a Markov chain with state space AVy. The (true) parameters
of the model are the initial state probabilities A = (\;);cnr, and the transition probabilities
P = (pij)(ij)ensxn, (a row stochastic matrix). The transition probabilities satisfy the
following properties:

1. poo =1 and pg; =0 for j € N (i.e., the “no purchase” state is absorbing).
2. pii =0 for i € N (ie., no self-loops in product states).

3. The submatrix p = (pi ;)@ jyenxn is irreducible.

i7cj)
We use p; = (pij)jen, to denote the i-th row of p.

In MCCM, the customer arrives at a random initial state X7 chosen according to A. At
timet=1,2,...:

o If X; =0, the customer leaves the system without purchasing a product.

1. We focus on identifiability because estimation of choice probabilities from observational data is fairly
straightforward, especially when the assortments have small cardinality. However, this issue is revisited
in Section 5 in the context of sample complexity.
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e If the product X; is offered (i.e., X; € S), the customer purchases X; and leaves.

o If the product X; is not offered (i.e., X; ¢ S), the customer transitions to a new
random state X1 chosen according to pyx, and the process continues in time step
t + 1 as if the customer had initially arrived at Xy 1.

Another way to describe this process is that the Markov chain distribution is temporarily
modified so that the states Sy are absorbing, and the customer purchases the product upon
reaching such a state (or makes no purchase if the state is 0). The irreducibility of p ensures
that the customer eventually leaves the system (i.e., an absorbing state is reached). Note
that only the identity of the final (absorbing) state is observed, as it corresponds to either
a purchase or non-purchase. The (X¢)¢=12 . themselves do not correspond to observable
customer behavior, and hence the model parameters A and p cannot be directly estimated.

The choice probabilities are denoted by 7(j,S) for S C N and j € Si: this is the
probability that j is the final state in the aforementioned process. Blanchet et al. (2016)
relate the choice probabilities and the parameters A and p as follows:

1 ifi=0and 57=0,
No= 7N, piy = ”("’N\ﬂ{é%”“’/v) ifieN,jeN, andij, (1)
0 otherwise .

The relations in Equation (1) show that the parameters may be identified from choice prob-
abilities for the assortments S = A and S = N \ {i} for i € N. These choice probabilities
may be directly estimated from observations upon offering such assortments to customers.

3. Main result

The following theorem establishes identifiability of the MCCM parameters from choice prob-
abilities for assortments of sizes as small as two and three.

Theorem 1 There is an efficient algorithm that, for any r € {2,3,...,n—1}, when given
as input the choice probabilities (w(j,S));jes, for all assortments S C N of cardinality r
and r + 1 for a Markov chain choice model, returns the parameters A and p of the model.

The number of assortments for which the algorithm actually requires choice probabilities
is O(n?) when r < n/2, which is far fewer than () + (ril)’ the total numbers of assortments
of sizes r and r + 1. The details of this bound are shown following the proof of Theorem 1.
However, to simplify the presentation, we describe our parameter recovery algorithm as
using choice probabilities for all assortments of sizes r and r + 1.

The main steps of our algorithm, shown as Algorithm 1, involve setting up and then solv-
ing systems of linear equations that (as we will prove) determine the unknown parameters
A and (p;)ien- (Note that pg is already known.) The coefficients of the linear equations are
determined by the given choice probabilities via conditional choice probabilities m(j, S | )

for S C N and 4,5 € N, defined as follows:

m(j, S | i) = Pr(state j is reached before any state in S \ {j} | initial state is i) . (2)
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Algorithm 1 Parameter recovery algorithm for Markov chain choice model

input For some r € {2,3,...,n — 1}, choice probabilities (7(j,5));ecs, for all assortments
S C N of sizes r and r + 1.
output Parameters X and p.
1: for i € N do
2 Solve the following system of linear equations for p; = (pix)ken,

Z (S| k) pig = w(4,S|14) for all S € <N) st.i¢ Sand je Sy, (3)
keN "

where (j:,[ ) denotes the family of subsets of N of size r, and n(j, S | k) is defined in
Equation (5).

3: end for

4: Solve the following system of linear equations for XA = (5\1)16 N

S w(G S k)M = w(j,8) forall € <N> and j € S, (4)
kEN+ "

5: reburn A and p-

Note that the initial state in the MCCM is not observed, so these conditional probabil-
ities cannot be directly estimated. Nevertheless, they can be indirectly estimated via the
following relationship between the conditional choice probabilities and the (unconditional)
choice probabilities.

Lemma 2 For any S CN andi,j € Sy,

1 ifi=7,
W(],S | Z) - W(Z,SU{’L}) f GN\S? (5)
0 ifie S \{j}.

Proof The cases where i = j (= 7(j,S |i) =1) and i € Sy \ {j} (= 7(4,S | 1) =0) are
clear from the definition in Equation (2). It remains to handle the case where i € '\ S.
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Fix such a product ¢, and observe that

7(j,5) = Pr(j is reached before Sy \ {j})
= Pr(j is reached before S \ {j} A is not reached before S;.)
+ Pr (j is reached before Sy \ {j} A is reached before S;.)
= Pr(j is reached before (S U{i})\ {j})
+ Pr (j is reached before S \ {j} | i is reached before S} )
- Pr (i is reached before S )
= Pr(j is reached before (SU {i})+ \ {j})
+ Pr (j is reached before S, \ {;} | initial state is )
- Pr (i is reached before (S U {i})4 \ {i})
= w(j,SU{i}) +7(4,S i) n(>5).

The penultimate step uses the Markov property and the case condition that i € N\ S.
Rearranging the equation gives the relation claimed by the lemma in this case. |

Lemma 2 shows that the conditional choice probabilities for assortments S of size r can
be determined from the unconditional choice probabilities of assortments of size r and r -+ 1.
The systems of linear equations used in Algorithm 1 (Equations (3) and (4)) are defined in
terms of these conditional choice probabilities and hence are ultimately defined in terms of
the unconditional choice probabilities provided as input to Algorithm 1.

It is clear that the true MCCM parameters A and p satisfy the systems of linear equations
in Equations (3) and (4). However, what needs to be proved is that they are uniquely
determined by these linear equations; this is the main content of the proof of Theorem 1.

4. Proof of Theorem 1

In this section, we give the proof of Theorem 1.

4.1. The case without the “no purchase” option

For sake of clarity, we first give the proof in the case where the “no purchase” option is
absent. This can be regarded as the special case where \g = 0 and p; o = 0 for all i € N.
So here we just regard A = ()\j)jen and each p; = (psj)jen as probability distributions on
N. The general case will easily follow from the same arguments with minor modification.

4.1.1. PROOF STRATEGY

We make use of the following result about M-matrices, i.e., the class of matrices A that can
be expressed as A = sI — B for some s > 0 and non-negative matrix B with spectral radius
at most s. (Here, I denotes the identity matrix of appropriate dimensions.) In particular,
the matrix I — p is a (singular) M-matrix that is also irreducible.
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Lemma 3 (See, e.g., Theorems 6.2.3 & 6.4.16 in Berman and Plemmons, 1994)
If A € RP*P s an irreducible M-matriz (possibly singular), then every principal submatria?
of A, other than A itself, is non-singular. If A is also singular, then it has rank p — 1.

For each S € (JX) and j € S, define the vector

hjs = (7(j,S | k))ken -

For each i € N, the collection of the vectors {hjg : S # ¢ A j € S} provide the left-hand
side coefficients in Equation (3) for p;. We’ll show that the span of these vectors (in fact,
a particular subset of them) has dimension at least n — 1. This is sufficient to conclude
that p; is the unique solution to the system of equations in Equation (3) because it has
at most n — 1 unknown variables, and it is clear that p, satisfies the system of equations.
(In fact, there are really only n — 2 unknown variables, because we can force p;; = 0 and
pim = 1— 22;11 pik-) For the same reason, it is also sufficient to conclude that A is the
unique solution to the system of equations in Equation (4) (where, in fact, we may use all
vectors {hjgs: S € (J;[) NjeS}.

4.1.2. RANK OF LINEAR EQUATIONS FROM A SINGLE ASSORTMENT

We begin by characterizing the space spanned by {h;s : j € S} for a fixed S € (/:,/ ) We
claim, by Lemma 2, that the vectors in {h; g : j € S} are linearly independent. Indeed, if
this collection of vectors is arranged in a matrix [h; g : j € S], then the submatrix obtained
by selecting rows corresponding to j € S is the S x S identity matrix. Thus we have proved

Lemma 4 For any S € (j;/), dim (span{h;gs:j € S}) =|S| =r.

Note that in the case r = n — 1, we are done. But when r < n — 1, the linear equations
given by the {h; g : j € S} may not uniquely determine the p; for ¢ € N\ S. To overcome
this, we need to be able to combine linear equations derived from multiple assortments.
However, for a sum of subspaces V and W,

dim(V + W) # dim(V) + dim(W)

unless V' and W are orthogonal. In our case, the subspaces span{h;gs : j € S} and
span{h; g : j € S’} for different assortments S and S’ are not necessarily orthogonal (even
if S and S’ are disjoint). So a different argument is needed.

4.1.3. RANK OF LINEAR EQUATIONS FROM MULTIPLE ASSORTMENTS

Our aim is to show that the intersection of subspaces V' := span{h; s : j € S} Nspan{h; g :
j € S’} for different assortments S and S’ cannot have high dimension. We do this by
showing that the intersection is orthogonal to a subspace of high dimension.

2. Recall that a principal submatriz of a p X p matrix A is a submatrix obtained by removing from A the
rows and columns indexed by some set I C [p].
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For each i € N, let a; denote the i-th row of the matrix A := I — p (which is an
M-matrix). That is, a; := e; — p;, where e; is the i-th coordinate basis vector. Recall that
if i € N'\ S, then p, satisfies Equation (3). This fact can be written in our new notation as

hjsei—hj.p;, = a/hjs =0, j€S.
In other words,
Lemma 5 For any S € (j;/), span{h;g:j € S} Lspan{a;:i€ N\ S}.

Now consider two assortments S and S’, and the intersection of their respective sub-
spaces. It follows from Lemma 5 that

span{hjg:j € S} Nspan{h;gs : j € S’} L spanfa;:i e N\ (SNS")}.

This orthogonality is the key to lower-bounding the dimension of the sum of these subspaces,
which we capture in the following general lemma.

Lemma 6 Let .7 be a family of subsets of N', S" be a subset of N, and /" := U {S'}.
Define the subspaces

Vy = span{hjgs:Se.”,je S},
Vs = span{h;g :j €S},
Vgr i= Vo 4+ V.

Then
dim (Vgr) > dim (V) + |S'| — max{l,

(UsesrS) NS’ } :
Proof Let So := Jgcs S. Fix any v € Vo N Vg, Then, by Lemma 5, a/v = 0 for all
i€ N\ So)UWN\S) =N\ (SonS’). In other words,
VonVe L W,
where W :=span{a; : i € N'\ (SoNS")}, and
dim (Vo N V) < dim(Wt) = n—dim(W).

To determine dim(WV), observe that W is the span of rows of certain rows of the M-matrix
A. By Lemma 3, the principal submatrix of A corresponding to N'\ (SgN.S’) is either non-

singular (when Sp N S’ # () or is A itself; in either case, it has rank n — max{1,|Sp N 5’|}
Hence,

dim(W) = n—max{1,|SyN S|}
as well. Combining the dimension formula with the last two equation displays gives
dim(Vgr) = dim(Vy + V)
= dlm(Vy) + dlm(VS/) — dim(Vy/ N VS”)
> dim(Vy) + dim(Vs/) — max{1, |So N 5’| }.

The claim now follows from Lemma 4. [ |
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4.1.4. CHOICE OF ASSORTMENTS

We now choose a collection of assortments and argue, via Lemma 4 and Lemma 6, that
they define linear equations of sufficiently high rank. Specifically, for each i € N, we need
a collection . C (j:,[) such that each S € . does not contain 7, and

dim | span U {hjs:jeSt]| > n—1. (6)
Ses
Lemma 7 Suppose the assortments S1,S9,...,57 € (/1\0[) have a pairwise common inter-

section Sn = S¢NSy for allt #t', and |Sn| = r—1. Then dim (span UZ:1{hj,St 1j € Sih) >
T+r—1.

Proof Let d. := dim (spanlJ;_,{hjs, : j € S¢}) for 7 € {1,2,...,T}. By Lemma 4, we
know that dy = r. Now, assume d; > 7+ r — 1, and use the fact » > 2 and Lemma 6 to
conclude that d,y1 > d.+r—(r—1) =d;+1 > 7+r. The claim now follows by induction.
|

Fix any ¢ € N and S € (NT\_{II}), and observe that [N\ (Sn U {i})| = n —r. Consider
the collection of size-r assortments given by

S = {SnU{k} ik e N\ (SnU{i})} . (7)

These assortments do not contain ¢, they have the common intersection Sn, with |Sn| = r—1,
and there are n — r assortments in total. So by Lemma 7, the collection . satisfies the
dimension bound in Equation (6).

As was already argued in the proof strategy, this suffices to establish the uniqueness of
the p, and A as solutions to the respective systems of linear equations in Equation (3) and
Equation (4).

This concludes the proof of Theorem 1 without the “no purchase” option. |

4.2. The general case with the “no purchase” option

We now consider the general case, where the “no purchase” option is present. The main
difference relative to the previous subsection is that p is no longer irreducible, as the “no
purchase” state 0 is absorbing. However, the submatrix p = (p; j) (i j)enxn @ irreducible,
so I — p is an irreducible M-matrix.

The definition of h; g, for S C N and j € Sy, is now taken to be

hjs = (7(j, S| k))ren, -

Because the indexing starts at 0, we still define a; to be the i-th row of A = I — p, so
a; = e; — p,;. (In particular, ag is the all-zeros vector.)

With these definitions, we have the following analogue of Lemma 4 and Lemma 5:
N )’

r

Lemma 8 Forany S € (

dim(span{h;gs:j€ S+}) = [S4] = r+1,
span{h;g:j€ Sy} L span{a;:ie N\ S}.
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Here, the key difference is that the dimension is r 4 1, rather than just 7.
We now establish an analogue of Lemma 6 (which is typographically nearly identical).

Lemma 9 Let . be a family of subsets of N', S" be a subset of N, and &' := . U{S'}.
Define the subspaces

Vo = span{h;s:S€.”,je S},
Vg = spanfh;g :j€ S},
Vy/ = Vy + VS/ .

Then

dim (V) > dim (V) + |5 — max{l, (Ugesr S) NS

Proof The proof is nearly the same as that of Lemma 6. Define Sy := (g S and take
v € Vo NVg. By Lemma 8, Vo N Vg L W, where W :=span{a; : i € N'\ (So N S’)}, and

dim(Vy NVy) < dim(Wt) = n+1— dim(W).

We now use the fact that I — p, which is a submatrix of A, is an irreducible M-matrix. By
Lemma 3, the principal submatrix of A corresponding to N\ (SpNS’) is either non-singular
(when SpNS" # 0) or is I — p; in either case, it has rank n — max{1,]Sy N .S’|}. So we have

dim(W) = n—max{1,|SoN S|} and dim(W*) = 1+ max{1,|SoNS'|}.

Finishing the proof as in Lemma 6, we have

dim(Vy) > dim(Vy) + dim(Ve) — 1 — max{1, |So N 5’|}
> dim(Vy) +r — max{1, |So N 5’|}
where the second inequality uses Lemma 8 (instead of Lemma 4). |

The choice of assortments demonstrating the subspace of required dimension is the same
as before, except now we show that the dimension is at least n. Again, fix some i € N, and
choose the collection of n — 7 assortments . C (/7\“/ ) as before (described in and directly
before Equation (7)). Following the inductive argument in the proof of Lemma 7, but now

using Lemma 8 and Lemma 9 (instead of Lemma 4 and Lemma 6), we have

dim | span U{hjyg:jES} > (r+1)+(n—r—-1)-(r—max{l,r —1}) = n.
Ses

Since each of the systems of linear equations from Equation (3) and Equation (4) have (at
most) n unknown variables, we conclude that the p; and A are unique as solutions to their
respective systems of linear equations.

This concludes the proof of Theorem 1. |
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4.3. Total number of assortments required

We now show that the number of assortments for which we need the choice probabilities is
O(n?) for r < n/2. Indeed, the construction given above based on Lemma 7 can be used to
avoid using all assortments of size r (and r + 1) in Algorithm 1.

We choose two sets Sn, S, € (TJY 1), which shall serve as “common intersection sets” (in

the sense used in Section 4.1.4), as follows. The first set Sy € (T/Y 1) is chosen arbitrarily;

it serves as the common intersection set for all i € N\ Sn. The second set S/, € (/X \_Slr‘) is
chosen arbitrarily as long as it is disjoint from Sn (which is possible because r < n/2); it
serves as the common intersection set for 7 € Sn.

For each i € N\ Sn, we need the equations for the assortments Sn U {k} for all k£ €
N\ (SnU{i}). Obtaining the equations for one such S U {k} requires choice probabilities
for assortments SnU{k} and SnU{k}U{j} for j € N\ (SnU{k}) as per Lemma 2. In total,
for all i € N\ Sn, we need choice probabilities for O(n?) assortments. For the remaining
i € Sn, we use the same argument for the disjoint common intersection set Sf,, and thus
require the choice probabilities for at most another O(n?) assortments.

5. Discussion

Our main result establishes the identifiability of MCCM parameters from choice probabil-
ities for assortments of sizes different from n — 1 and n. This is important because real
systems often have cardinality constraints on the assortment sizes. While such constraints
are typically considered in the context of assortment optimization (see, e.g., Désir et al.,
2015), it is also important in the context of parameter estimation.

One complication of using small size assortments to estimate the MCCM parameters is
that the number of different assortments required may be as large as O(n?). In contrast,
only n 4 1 assortments are needed when the sizes are n — 1 and n. On the other hand, the
statistical difficulty of estimating choice probabilities for large assortments may be higher
than the same task for smaller assortments. So the possible trade-offs in sample complexity
is not straightforward from this analysis. This is an interesting question that we leave to
future work.
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