
Proceedings of Machine Learning Research 76:1–12, 2017 Algorithmic Learning Theory 2017

Graph Verification with a Betweenness Oracle

Mano Vikash Janardhanan mjanar2@uic.edu
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
Chicago, IL 60607

Editors: Steve Hanneke and Lev Reyzin

Abstract
In this paper, we examine the query complexity of verifying a hidden graph G with a
betweenness oracle. Let G = (V,E) be a hidden graph and Ĝ = (V, Ê) be a known graph.
V and Ê are known and E is not known. The graphs are connected, unweighted and have
bounded maximum degree ∆. The task of the graph verification problem is to verify that
E = Ê. We have access to G through a black-box betweenness oracle. A betweenness
oracle returns whether a vertex lies along a shortest path between two other vertices.
The betweenness oracle nicely captures many real-world problems. We prove that graph
verification can be done using n1+o(1) betweenness queries. Surprisingly, this matches the
state of the art for the graph verification problem with the much stronger distance oracle.
We also prove that graph verification requires Ω(n) betweenness queries – a matching lower
bound.

1. Introduction and previous work

Graph learning and graph verification problems arise in various situations. Consider the
internet graph where vertices correspond to routers and edges correspond to physical con-
nections. It is often the case that one knows the set of vertices in the network (routers)
but does not know the edges (physical connections). To learn the physical connections, one
has to use computer network diagnostic tools (such as traceroute and mtrace) which give
information about the shortest paths in the network. Assume one has access to the internet
graph through such an oracle. A natural question to ask is what is the best way to use the
oracle to find the physical connections between the routers. In other words, what is the
minimum number of queries needed to learn the edge set of the graph?

Graph learning and graph verification problems are well-studied problems in the area
of graph algorithms. In both these problems, there is a hidden graph which one has access
to through a black-box oracle. In graph learning problems, the task is to use this oracle to
learn the edge set of the graph. Graph learning problems are also referred to as the graph
reconstruction problems. Graph learning problems has been studied extensively (Alon and
Asodi, 2005; Alon et al., 2004; Angluin and Chen, 2008; Beerliova et al., 2006; Dall’Asta
et al., 2006; Hein, 1989; Reyzin and Srivastava, 2007a).

In graph verification problems, one is given another input graph and the task is to verify
that the graph one has access to through an oracle is the same as the input graph. Graph
verification problems have received a lot of attention recently (Beerliova et al., 2006; Er-
lebach et al., 2006; Kannan et al., 2015; Mathieu and Zhou, 2013; Reyzin and Srivastava,

c© 2017 M.V. Janardhanan.

Graph Verification with a Betweenness Oracle

2007a). Graph verification problems have many applications for Internet Service Providers
(ISPs). The ISPs have knowledge about the structure of the network based on past infor-
mation. And at any point of time, they might wish to verify that there is no fault in the
network. In any internet protocol network, fault detection methods are critical for providing
quality of service guarantees.

Some of the oracles studied in literature include the distance oracle by Kannan et al.
(2015), layered-graph oracle by Beerliova et al. (2006), edge detection and edge counting
oracle by Reyzin and Srivastava (2007a), etc. Among these, the most natural and well-
studied one is the distance oracle (Erlebach et al., 2006; Kannan et al., 2015; Mathieu and
Zhou, 2013; Reyzin and Srivastava, 2007b). The distance oracle takes as input two vertices
and returns the distance between the two vertices. This oracle nicely captures applications
in computational biology. One example in computational biology is the problem of learning
evolutionary trees (Hein, 1989; King et al., 2003; Waterman et al., 1977). Researchers can
obtain the distance between two species in an unknown evolutionary tree. This can be
thought of as making a distance query. But each query requires a lot of research effort.
Hence the objective is to learn the evolutionary tree with the minimum number of queries.
In general, for both graph learning and graph verification problems, we assume that making
queries is costly. Hence, we are concerned with optimizing the worst-case query complexity
herein.

In this paper, we look at the query complexity of the graph verification problem with
a betweenness oracle. The betweenness oracle, introduced by Abrahamsen et al. (2016),
returns whether a given vertex lies along a shortest path between two other vertices. When
the graphs are connected, unweighted, and have bounded maximum degree ∆, we prove
the worst-case query complexity has an upper bound of n1+o(1). We also prove a lower
bound of Ω(n). The betweenness oracle also has many natural applications in the study of
evolutionary trees. For evolutionary trees, the method for calculating evolutionary distance
is error-prone. If we use the betweenness oracle approach, we only need to query whether
one species lies in the shortest path connecting two other species. Such a query is more
natural for evolutionary trees.

Intuitively, the betweenness oracle is expected to be much weaker than the distance
oracle. Notice that a betweenness query can be simulated by three distance queries. Let
x, y and z be vertices of a graph and d(·, ·) denote the distance between two vertices in
the graph. Then, d(x, y) + d(y, z) = d(x, z) if and only if y lies on a shortest path between
x and z. Conversely, it is easy to see that in a path graph, one needs Ω(n) betweenness
queries to simulate a single distance query.

For degree-bounded graphs, Abrahamsen et al. (2016) showed that the graph learning
problem with a betweenness oracle has the same worst-case query complexity as its analogue
with a distance oracle. However, the problem of verifying a graph with a betweenness oracle
remained open. In this paper, we give matching lower and upper bounds for this problem.
The main result of Abrahamsen et al. (2016) is the following:

Theorem 1 Learning a graph can be done with Õ(n3/2 ·∆4) betweenness queries, where ∆
is the maximum degree of the graph.

2

Graph Verification with a Betweenness Oracle

1.1. The problem

The hidden graph to be verified is denoted as G = (V,E). A pair of vertices (u, v) ∈ V 2 is
called a non-edge if (u, v) /∈ E. This can be also denoted as (u, v) ∈ NE where NE is the
set of non-edges of G. Similarly, the given graph Ĝ = (V, Ê) has non-edge set N̂E defined
in a similar way.

In graph learning problems, we are given an oracle access to G, and the task is to
determine E. In graph verification problems we are given Ĝ and an oracle access to G, and
asked to verify that E = Ê.

Given a subset U ⊂ V , G[U] is the subgraph induced by U . For the rest of the paper,
we assume that the graph is connected, unweighted and has maximum degree ∆. We have
access to G through a betweenness oracle.

Definition 2 A betweenness query denoted as betG(u, v, w) is true if and only if there
exists a shortest path in G between u and w that passes through v. Often, the subscript will
be dropped when G is clear from context.

We prove matching lower bound and upper bound for the query complexity of the graph
verification problem with a betweenness oracle.

2. Lower bound

In this section, we consider an instance of the graph verification problem where the input
graph Ĝ is a caterpillar tree and the hidden graph G is a slight modification of Ĝ. Then,
we show that Ω(n) betweenness queries are required to catch this modification.

Theorem 3 Graph verification requires Ω(n) betweenness queries.

Proof Let Ĝ be the caterpillar tree with spine from v1 to vn/2 and one vertex connected
to each vertex in the spine (Figure 1). |Ĝ| = n − 1 and n is an even number. Consider a
new graph H obtained from Ĝ by doing the following (Figure 2):

• Fix some i ∈ [1, n/2− 1]

• Delete the edge between vi and vi+1

• Add an edge between vn/2+i and vi+1

Suppose the hidden graph G is H (Figure 2). The betweenness queries that give away the
difference between Ĝ and H contain vn/2+i as one of its three arguments in betG(·, ·, ·).
There are n/2− 1 vertices of the form vn/2+i and each query can cover at most 3 of them.
This gives the desired lower bound.

Observation 1 When the target graph G has maximum degree ∆, graph learning requires
Ω(n∆ logn) betweenness queries. This is because the number of connected graphs with max-
imum degree ∆ is Ω(nΩ(∆n)) (see McKay and Wormald, 1990). Hence, information theo-
retically, we get the desired lower bound.

3

Graph Verification with a Betweenness Oracle

vn/2

vn/2 − 1

vn/2 − 2

v1

v2

v3

vn/2+1

vn/2+2

vn/2+3

vn/2+n/2−2

vn/2+n/2−1

Figure 1: Representation of Ĝ

vi−1

vi

vi+1

vi+2 vn/2+i+1

vn/2+i

vn/2+i−1

Figure 2: Representation of H

3. Definitions

The full generality of the following definitions are not necessary for this paper. But we do
it to maintain consistency with Abrahamsen et al. (2016).

Definition 4 Let G = (V,E) and v ∈ V . Let Ni(v) denote the set of vertices that are
distance i or less from v. Let N(v) = N1(v). Hence N(v) is the set that contains v and all
its neighbours. When x, y ∈ V , let δ(x, y) denote the distance between x and y in G.

Definition 5 Given a graph G = (V,E), a subset X ⊂ V is said to be starshaped with
respect to centre x ∈ X if for all v ∈ X, every shortest path from x to v is entirely contained
in X.

Definition 6 Given a graph G = (V,E) and a starshaped set X ⊂ V with centre x ∈ X,
a node v ∈ X is said to be in layer i if δ(x, v) = i. The set of nodes in layer i is denoted
L(x)X

i . When X = V , the superscript is dropped and written as L(x)i.

4

Graph Verification with a Betweenness Oracle

Definition 7 Given a graph G = (V,E) and a starshaped set X ⊂ V with centre x ∈ X,
a subgraph τ(x)X is a spanning tree with respect to centre x if it is a tree such that for
all v ∈ X, τ(x)X contains a shortest path from x to v. Given a starshaped set X ⊂ V with
centre x ∈ X, the subgraph S(x)X obtained by removing all edges in the same layer L(x)X

i

is called the shortest path graph with respect to centre x.

Definition 8 Given a starshaped set X ⊂ V with centre x ∈ X, if v ∈ L(x)X
i , then u is a

parent of v with respect to centre x if u ∈ N(v)∩L(x)X
i−1. This can be written as u ∈ px(v).

Note that px(v) is a set. Given a starshaped set X ⊂ V with centre x ∈ X, if v ∈ L(x)X
i ,

then u is a child of v with respect to centre x if u ∈ N(v) ∩ L(x)X
i+1.

Definition 9 The ancestor relation is the transitive closure of the parent relation and the
descendant relation is the transitive closure of the child relation. The set of ancestors of
a vertex v with respect to centre x is denoted Ax(v) and the set of descendants is denoted
Dx(v). The subscript is dropped when the centres x is clear from context.

For Ĝ = (V, Ê), we define δ̂(x, y), N̂i(v), N̂(v), L̂(x)X
i , τ̂(x)X , Ŝ(x)X , p̂x(v), Âx(v) and

D̂x(v) in a similar way.

4. Main result

The main result is Theorem 10 and its proof proceeds in two steps- edge verification and
non-edge verification. The proof relies on some techniques developed earlier for graph
verification with a distance oracle and graph learning with a betweenness oracle. For edge
verification, we use some results from Abrahamsen et al. (2016). For non-edge verification,
we use some results from Kannan et al. (2015). These results are stated without proof
before being used.

Theorem 10 Let Ĝ be a connected graph with maximum degree ∆. For graph verification
using a betweenness oracle, there is a deterministic algorithm with a query complexity of
n1+O

(√
(log log n+log ∆)/ log n

)
. When ∆ = no(1), this gives us a query complexity of n1+o(1).

When ∆ = no(1), Kannan et al. (2015) devised a recursive algorithm that does non-
edge verification using n1+o(1) distance queries. To simulate a distance query, we need
Ω(n) betweenness queries. Hence, a brute force generalization of their approach can not
give query complexity better than n2+o(1). The main contributions of this paper are the
following:

• Edge verification can be done using O(n∆2) betweenness queries. This is proved in
Lemma 15.

• We prove that the recursive approach for non-edge verification developed in Kannan
et al. (2015) can be implemented using n1+o(1) betweenness queries.

5

Graph Verification with a Betweenness Oracle

4.1. Edge verification

We start by proving a bound on the number of betweenness queries required for edge
verification. Before doing that, we need the following three results (stated without proof)
from Abrahamsen et al. (2016).

Lemma 11 (Abrahamsen et al. (2016)) Every starshaped set X with centre x has a
node s ∈ X with the property ⌈ |X|

3∆

⌉
≤ |D(s)| ≤

⌈ |X|
3

⌉
Further, D(s) and (X −D(s)) ∪ {s} are both starshaped with centres s and x respectively.

Lemma 12 (Abrahamsen et al. (2016)) Let X ⊂ V be a starshaped set with centre x.
One can discover all edges in G[X] using O(|X|2) betweenness queries.

Lemma 13 (Abrahamsen et al. (2016)) Given a starshaped set X with centre x, and
the shortest path graph of X, one can decide whether or not there exists an edge between
any two nodes u and v in the hidden graph using O(1) betweenness queries.

For doing edge verification, we start by recursively applying Lemma 11 to partition the
edge set of a spanning tree of Ĝ and then apply Lemma 12 to verify that all edges of the
spanning tree of Ĝ is present in G. Then, we use Lemma 14 to show that G and Ĝ have
the same layer structure. After this, we only need to verify edges within the same layer and
edges between adjacent layers. These type of edges require O(1) query per edge.

Lemma 14 (Layer Structure Verification) Let Ĝ = (V, Ê) be a connected graph. Sup-
pose τ̂(x)V is a spanning tree of Ĝ with respect to centre x and every edge in τ̂(x)V has
been verified to be present in G. Then, n betweenness queries are sufficient to verify that
L(x)V

i = L̂(x)V
i for all i.

Proof To show L(x)V
i = L̂(x)V

i for i ≤ k, we need to establish there is no edge in G going
from L̂(x)V

i to L̂(x)V
i−s for i ≤ k and s > 1. We prove this by induction on k.

Query bet(x, p, v) for v ∈ L̂(x)V
k and some p ∈ p̂x(v). Because every edge in τ̂(x)V has

been verified to be present in G, bet(x, p, v) will return false if and only if there is an edge
in G from v to some vertex in L̂(x)V

k−s for s > 1. Hence, it takes |L̂(x)V
k | queries to show

there is no edge in G from L̂(x)V
k to L̂(x)V

i−s for s > 1. Continuing for all layers takes at
most n queries.

Lemma 15 Given Ĝ and access to G through a betweenness oracle, verifying all edges of
Ĝ are present in G can be done with O(n∆2) betweenness queries.

Proof We start by proving that every edge of a spanning tree of Ĝ is present in G. Fix
a centre x in Ĝ and let τ̂(x)V be a spanning tree with respect to centre x. Now, we
partition the edge set of τ̂(x)V by doing the following. Recursively apply Lemma 11 to
obtain starshaped sets {S1, S2, . . . , Sh} that satisfy the following properties:

6

Graph Verification with a Betweenness Oracle

• k
3∆ ≤ |Si| ≤ k for all i where k = c∆ and c is a constant.

• Every edge of τ̂(x)V is present inside exactly one Si.

In other words, Si’s partition the edge set of τ̂(x)V . Note that the Si’s are sets of vertices
that are not disjoint.

Verifying all edges inside a Si takes O(k2) queries by Lemma 12. The total number of
starshaped sets is h which is at most 3∆n/k. Hence, the total number of queries to verify
the edges within every Si is O(n∆2). Note that we have not verified the shortest path graph
as there may be edges from layer i to layer i+ 1 that are not contained in any starshaped
set. However, since every edge of τ̂(x)V is inside some Si, we have shown that every edge
of τ̂(x)V is present in G.

Using Lemma 14, we get that G has the same layer structure as Ĝ by making at most
n queries. Now, use Lemma 13 to verify all edges in the same layer using O(1) query per
edge. Finally, to verify edges e = (y, z) from layer i to layer i+ 1, that are not contained in
τ̂(x)V , note that bet(x, y, z) is true if and only if e is present in G. This takes 1 query per
edge. The total number of such edges is at most n∆. Hence, we get the desired bound.

4.2. Non-edge verification

The algorithm for non-edge verification proceeds as follows. We start with V and split
it into cells U1, U2, . . . , Uk such that every edge in Ĝ is completely contained in some Ui.
These Ui’s are called extended Voronoi cells and will be defined soon. Using Lemma 21,
we can verify (with few queries) that every edge in G is completely contained in some Ui.
Then, we can recursively apply the splitting technique to each Ui.

Given a cell U , the algorithm for splitting U into extended Voronoi cells first selects
a set of centres {a1, a2, . . . , ak} = A ⊆ V using Algorithm 1. Then, it builds Voronoi cells
around these centres.

Definition 16 Given A ⊆ V and w ∈ V , the Voronoi cell of w with respect to A is defined
as

ĈA(w) = {v ∈ V : δ̂(w, v) < δ̂(A, v)}

We expand the Voronoi cells slightly so that every edge of Ĝ contained in U is completely
contained in one of the extended Voronoi cells produced by splitting U . Note that the
extended Voronoi cells are not disjoint.

Definition 17 Let A ⊆ V be the set of centres and U ⊆ V . Define for each a ∈ A, its
extended Voronoi cell D̂a ⊆ U as

D̂U
a =

(⋃
{ĈA(b) : b ∈ N̂2(a)} ∪ N̂2(a)

)
∩ U

The superscript U is dropped when clear from context. The following lemma as stated
in Kannan et al. (2015) guarantees that the splitting done using the centres algorithm does
not return too many cells and the size of each cell goes down significantly compared to the
size of U .

7

Graph Verification with a Betweenness Oracle

Lemma 18 Given a graph Ĝ = (V, Ê), a subset of vertices U ⊆ V , and an integer
s ∈ [1, n], Algorithm 1 computes a subset of vertices A ⊆ V such that the following conditions
hold:

• The expected size of the set A is at most 2s logn

• For every vertex w ∈ V , we have |ĈA(w) ∩ U | ≤ 4|U |/s

Remark 19 Lemma 18 does not hold for arbitrary graphs. The bounded degree condition
is necessary for its proof to go through. One obvious example where the bounded degree
condition is not satisfied and the conclusion of the lemma is not true is the star graph.

Also note that Algorithm 1 is randomized. Thorup and Zwick (2001) showed that it is
possible to derandomize it and the running time is still polynomial.

Algorithm 1: Finding Centres for a Subset (Kannan et al. (2015))

Function SUBSET-CENTRES(Ĝ, U, s)
A← ∅
while there exists w ∈ V such that |ĈA(w) ∩ U | > 4|U |/s do

W ← {w ∈ V : |ĈA(w) ∩ U | > 4|U |/s}
Add each element of W to A with probability min(s/|W |, 1)

end
return A

Now, we can recursively apply this technique for each extended Voronoi cell U ∈
{D̂a1 , D̂a2 , . . . , D̂as}. When applying the centres algorithm recursively, the following defini-
tions are useful. Each node of the recursion tree is a subset of V . The root is V and it is in
level 1 of the recursion. We use Nk to denote the set of nodes in level k. Hence N1 = {V }.
Let U ∈ Ni be a node in level i. If the centres algorithm returns A(U) = {a1, a2, . . . ak}
when run on U , then C(U) = {D̂U

a1 , D̂
U
a2 , . . . , D̂

U
ak
} are the children of U .

Definition 20
SU
{a} = {(a′, p, u) : a′ ∈ N̂2(a), u ∈ U, p ∈ p̂a′(u)}

SU
A =

⋃
a∈A

SU
{a}

Lemma 21 (Recursion step) Assume that Ê ⊆ E. Let U ∈ Nk and A be the centres
returned by the algorithm on U . If bet(a, u, v) = b̂et(a, u, v) for all (a, u, v) ∈ SU

A , then
every edge of G contained in U is contained in some D̂U

ai
∈ C(U).

Proof Suppose there exists an edge e = (v1, v2) in G that is not completely contained in
any of the C(U). Let v1 ∈ D̂a1 and v2 ∈ D̂a2 . By assumption, v1 /∈ D̂a2 and v2 /∈ D̂a1 .

If v1 ∈ N̂2(a1), then bet(v1, p, v2) 6= b̂et(v1, p, v2) for p ∈ p̂v1(v2). Hence, v1 /∈ N̂2(a1).
By the same argument, v2 /∈ N̂2(a2). For the rest of the proof, we assume v1 /∈ N̂2(a1) and
v2 /∈ N̂2(a2). The definitions below are also represented in Figure 3.

8

Graph Verification with a Betweenness Oracle

1. δ̂(a1, v1) = m1

2. δ̂(a1, v2) = m2

3. δ̂(a2, v1) = l1

4. δ̂(a2, v2) = l2

a1

v2

a2

v1

m1 m2

l1 l2

Figure 3: Pictorial representation of the definitions

Let b be a vertex at distance 2 from a2 in the shortest path from a2 to v1. Then,
δ̂(b, v1) ≥ δ̂(a1, v1) because v1 ∈ D̂a1 and v1 /∈ D̂a2 . Hence, we get l1 − 2 ≥ m1. Similarly,
m2 − 2 ≥ l2.

We claim that at least one of the following statements is true:

1. v1 ∈ L̂(a1)k and v2 ∈ L̂(a1)k+s for s > 1.

2. v2 ∈ L̂(a2)k and v1 ∈ L̂(a2)k+s for s > 1.

Suppose the first statement is false. Then, m1 − 1 ≤ m2 ≤ m1 + 1. Using l1 ≥ m1 + 2
and m2 ≥ l2 + 2, we get that l2 + 3 ≤ l1. Hence, the second statement is true.

If statement i is true, then with ai as centre, vi and vj belong to layers that are far
apart in Ĝ (where i ∈ {1, 2}, j 6= i and j ∈ {1, 2}). But they are close in G because there
is an edge between vi and vj . We exploit this to get a contradiction. Let vi ∈ L̂(ai)V

k and
vj ∈ L̂(ai)V

k+s for s > 1. Because there is an edge between vi and vj , vj ∈ L(ai)V
t for some

t ≤ k+ 1. Hence, with ai as center, the shortest path to vj has changed in G. This changes
the output of some betweenness query in G. In particular, if P denotes the set of vertices
along a shortest path from ai to vj in Ĝ, bet(ai, pv, v) 6= b̂et(ai, pv, v) for some v ∈ P and
pv ∈ p̂ai(v). This contradicts bet(a, u, v) = b̂et(a, u, v) for all (a, u, v) ∈ SU

A concluding the
proof.

Finally, we have all the machinery required to prove the main result. We need Lemma
15 for edge verification and Lemma 21 for recursion.

9

Graph Verification with a Betweenness Oracle

Proof [Proof of Theorem 10] First we do the edge verification using Lemma 15. For non-
edge verification, the proof follows closely the recursive verification analysis done in Kannan
et al. (2015).

Algorithm 2 is the recursive algorithm for non-edge verification. It starts with U = V
and queries every (u, v, w) ∈ SU

A where A is the set of centres returned by the centres
algorithm. Then, it repeats the process for each D̂a. The tree interpretation of the recursion
process discussed earlier will be useful for the rest of the proof. In Algorithm 2, QUERY

(
SU
{a}

)
means querying every (u, v, w) ∈ SU

{a} and QUERY(X,Y, Z) means querying every 3-tuple
of the form (x, y, z) such that x ∈ X, y ∈ Y and z ∈ Z. If the queries in QUERY

(
SU
{a}

)
returns the expected result for all a ∈ A(U), by Lemma 21, we conclude that every edge of
G contained in U is contained in some D̂U

ai
∈ C(U). Now, we need to fix the constants in

Algorithm 2 and compute its query complexity.

Algorithm 2: Recursive Verification

Procedure VERIFY-SUBGRAPH(Ĝ, U)
if |U | > n0 then

A← SUBSET-CENTRES(Ĝ, U, s)
for a ∈ A do

QUERY
(
SU
{a}

)
VERIFY-SUBGRAPH(Ĝ, D̂a)

end
else

QUERY(U,U, U)
end

Define

k0 =
⌊√

logn
log(logn · 128(∆2 + 1)3)

⌋
Define s = n1/k0 , n0 = (4(∆2 + 1))k0 . n0 is going to be a threshold on |U|. If the size of

|U | falls below this, we stop the recursion. If |U | > n0, the number of centres returned by
the algorithm is |A(U)| ≤ 2s logn and for any W ∈ C(U), |W | ≤ (∆2 + 1) ·max(4|U |/s, 1).
By induction, we get for any U ∈ Nk, |U | ≤ n(4(∆2 + 1)/s)k−1 for all 1 ≤ k ≤ k0 + 1.

Consider the queries made by the leaf nodes of the tree (i.e. |U | ≤ n0). The depth of
the tree is at most k0 + 1 . Hence, there are at most (2s logn)k0 leaves. Each leaf node
makes at most |U |3 ≤ (4(∆2 + 1))3k0 queries. Hence, the total number of queries in this
step is at most n(logn · 128(∆2 + 1)3)k0 ≤ n1+1/k0 .

Now consider the recursive calls made by non-leaf nodes (i.e. |U | > n0). Here, k ∈ [1, k0].
For a fixed k, there are at most |Nk| = (2s logn)k−1 calls at level k. Each such call
takes at most |A(U)||SU

{a}| = (∆2 + 1)∆|A(U)||U | queries where U ∈ Nk. Hence, the
total number of queries for a fixed k is at most ∆ · n1+1/k0(logn · 8(∆2 + 1))k. Summing
over k ∈ [1, k0], we find the total number of queries made by non-leaf nodes is at most
2∆ · n1+1/k0(logn · 8(∆2 + 1))k0 ≤ 2∆ · n1+2/k0 . This completes the proof.

10

Graph Verification with a Betweenness Oracle

5. Open problems

For the graph learning problem with a distance oracle, there is an upper bound of Õ(n3/2∆4)
for graphs with constant ∆ and the lower bound is Ω̃(n∆). The main open problem is to
find an algorithm with an upper bound of n1+o(1) · f(∆) where f(∆) is some function of
∆. For the graph verification problem with a distance oracle, there is an upper bound of
n1+O

(√
(log log n+log ∆)/ log n

)
and a lower bound of Ω(n). It would be interesting to find an

algorithm where the dependence on ∆ is of the form Õ(nf(∆)).
For the betweenness oracle, the state of the art for degree-bounded graphs is almost

the same as that of the distance oracle stated above. The main difference comes from the
dependence on ∆. Because betweenness queries are weaker, the dependence on ∆ becomes
worse. But the fact that the weaker query can get us almost the same upper bound gives
motivation for improving the upper bounds for distance oracle. This paper shows how the
partitioning technique developed for the graph verification problem in Kannan et al. (2015)
is robust enough to be extended to a betweenness oracle. It would be interesting to see if
this technique can be extended to other oracles.

Acknowledgements

I thank Lev Reyzin for directing me towards this problem and for many helpful discussions.

References

Mikkel Abrahamsen, Greg Bodwin, Eva Rotenberg, and Morten Stöckel. Graph recon-
struction with a betweenness oracle. In 33rd Symposium on Theoretical Aspects of Com-
puter Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 5:1–5:14, 2016.
doi: 10.4230/LIPIcs.STACS.2016.5. URL http://dx.doi.org/10.4230/LIPIcs.STACS.
2016.5.

Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM Journal on Discrete
Mathematics, 18(4):697–712, 2005.

Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a
hidden matching. SIAM Journal on Computing, 33(2):487–501, 2004.

Dana Angluin and Jiang Chen. Learning a hidden graph using o(logn) queries per edge.
Journal of Computer and System Sciences, 74(4):546–556, 2008.

Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann,
Matúš Mihal’ak, and L Shankar Ram. Network discovery and verification. IEEE Journal
on selected areas in communications, 24(12):2168–2181, 2006.

Luca Dall’Asta, Ignacio Alvarez-Hamelin, Alain Barrat, Alexei Vázquez, and Alessandro
Vespignani. Exploring networks with traceroute-like probes: Theory and simulations.
Theoretical Computer Science, 355(1):6–24, 2006.

11

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.5
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.5

Graph Verification with a Betweenness Oracle

Thomas Erlebach, Alexander Hall, Michael Hoffmann, and Matúš Mihal’ák. Network dis-
covery and verification with distance queries. In Italian Conference on Algorithms and
Complexity, pages 69–80. Springer, 2006.

Jotun J Hein. An optimal algorithm to reconstruct trees from additive distance data.
Bulletin of mathematical biology, 51(5):597–603, 1989.

Sampath Kannan, Claire Mathieu, and Hang Zhou. Near-linear query complexity for graph
inference. pages 773–784, 2015.

Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based evolution-
ary tree reconstruction. In Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 444–453. Society for Industrial and Applied Mathematics,
2003.

Claire Mathieu and Hang Zhou. Graph Reconstruction via Distance Oracles, pages 733–744.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-39206-1. doi: 10.
1007/978-3-642-39206-1_62. URL http://dx.doi.org/10.1007/978-3-642-39206-1_
62.

Brendan D. McKay and Nicholas C. Wormald. Asymptotic enumeration by degree sequence
of graphs of high degree. European Journal of Combinatorics, 11(6):565 – 580, 1990.
ISSN 0195-6698. doi: http://dx.doi.org/10.1016/S0195-6698(13)80042-X. URL http:
//www.sciencedirect.com/science/article/pii/S019566981380042X.

Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus
on edge counting. In International Conference on Algorithmic Learning Theory, pages
285–297. Springer, 2007a.

Lev Reyzin and Nikhil Srivastava. On the longest path algorithm for reconstructing trees
from distance matrices. Information processing letters, 101(3):98–100, 2007b.

Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, pages 1–10. ACM,
2001.

Michael S Waterman, Temple F Smith, M Singh, and WA Beyer. Additive evolutionary
trees. Journal of theoretical Biology, 64(2):199–213, 1977.

12

http://dx.doi.org/10.1007/978-3-642-39206-1_62
http://dx.doi.org/10.1007/978-3-642-39206-1_62
http://www.sciencedirect.com/science/article/pii/S019566981380042X
http://www.sciencedirect.com/science/article/pii/S019566981380042X

	Introduction and previous work
	The problem

	Lower bound
	Definitions
	Main result
	Edge verification
	Non-edge verification

	Open problems

