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Abstract

Averaging ensembles of randomly oriented low-dimensional projections of a singular co-
variance represent a novel and attractive means to obtain a well-conditioned inverse, which
only needs access to random projections of the data. However, theoretical analyses so far
have only been done at convergence, implying good properties for ‘large-enough’ ensem-
bles. But how large is ‘large enough’? Here we bound the expected difference in spectral
norm between the finite ensemble precision matrix and the infinite ensemble, and based
on this we give an estimate of the required ensemble size to guarantee the approximation
error of the finite ensemble is below a given tolerance. Under mild assumptions, we find
that for any given tolerance, the ensemble only needs to grow linearly in the original data
dimension. A technical ingredient of our analysis is to upper bound the spectral norm of a
matrix-variate T, which we then employ in conjunction with specific results from random
matrix theory regarding the estimation of the covariance of random matrices.
Keywords: Ensemble Learning, Compressive Learning, Random Matrix Theory, Matrix-
variate T

1. Introduction

Obtaining an invertible approximation to a singular covariance matrix is a classical problem
in many high dimensional estimation settings where the available sample size is too small
relative to the feature dimension of the data. Examples include classification and clustering
with multivariate Gaussians, least squares regression, and more generally Gaussian graphical
models (Yuan & Lin, 2007; Meinshausen & Biithlmann, 2006).

Many methods have been proposed. The common idea is to restrict the number of
parameters that model the covariance. Two major branches of methods include rotation-
sensitive methods such as sparsity or structured sparsity restrictions (which posit that only
few features correlate with each other), and rotation-invariant methods, such as the Ledoit-
Wolf estimator (Ledoit & Wolf, 2004), ridge regularisation, and more recently proposed
random projection ensembles (Marzetta et al, 2011).

This paper is concerned with the latter approach, which may be more appropriate
when sparsity or other specific structural assumptions are not known and not justified
apriori. For instance, gene and protein association networks often present complex and dense
interactions between many genes or proteins at a stage of disease development (Krdamer et
al., 2009; Ideker & Sharan, 2012). To account for such situations, and also motivated by
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advances in compressive data acquisition, novel regularisation schemes have been identified
in the form of aggregating a large number of compressed estimates. Regularisation then
happens as a byproduct of reducing dimension, without having to impose sparsity or other
structure. In particular, Marzetta et al (2011) proposes such schemes as a general-purpose
approach to handling singular covariances, and interestingly, the same type of approximator
/ regulariser shows up when learning an ensemble of compressive linear Fisher discriminant
classifiers (Durrant & Kabéan, 2015) or an ensemble of compressive OLS regressors (Thanei
et al, 2017).

This novel way to regularise the covariance was demonstrated empirically to outperform
the Ledoit-Wolf estimator in the sense of Frobenius norm of the difference between the ap-
proximator consructed from a severely singular covariance estimate and the true covariance
(Marzetta et al, 2011), and also it significantly outperformed ridge regularisation in terms
of classification performance (Durrant & Kaban, 2015) on high dimensional gene expres-
sion data. However, all theoretical analyses have been conducted at the convergence of the
ensemble — that is, assuming an infinitely large ensemble. This paper is concerned with the
question of how close is the finite ensemble estimate from the infinite ensemble estimate,
and the related question of how large one needs to grow the ensemble to achieve a desired
closeness in the spectral norm.

More precisely, given a fixed d x d positive semi-definite rank p < d matrix M, consider
the following inverse covariance approximator:

icy,(M) = E[RT(RMRY)"'R] (1)

where R is a random k X d, matrix with i.i.d. standard Gaussian entries, and k < p — 1.
As shown by Marzetta et al (2011), icx(M) is always non-singular, even if M was sin-
gular. The spectral properties of icy(M) have been analysed from various angles (Marzetta
et al, 2011; Durrant & Kabdn, 2015; Thanei et al, 2017).
However, in practice, one can only estimate the matrix expectation in eq.(1) by em-
ploying a Monte Carlo sample average. Let Rjp, Ro,..., R, be independent copies of R.
Then,

. 1 &
i (M) = — > R (RiMR])™'R; (2)
=1

The question we study here is how large m needs to be so that
Er[llick(M) — icx(M)|[] < €? 3)

where || - || denotes the spectral norm.

Problems of this kind are known to be challenging in general, and are the subject of
study in non-asymptotic random matrix theory (Rudelson, 1999; Youssef, 2013; Ahlswede
& Winter, 2002). In covariance estimation it is known from the work of Rudelson (1999)
that, for general distributions with support on the sphere of radius v/d the required size
is m = O(dlogd), but for many distributions m = O(d) is sufficient. A lot of progress
has been made in the past few years on identifying distributions in the latter category
(Adamczak et al, 2012). Relatively recently, work by Youssef (2013) extended such results
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to the matrix-covariance setting, and gave some generic conditions under which m € O(d).
This order is the best we can hope for, especially since we will have to deal with sums
of heavy tailed matrices. Some known examples in which m € O(d) suffices are sums of
subgaussian or subexponential matrices (Ahlswede & Winter, 2002).

As we shall see, since p < d, the random matrix elements of the sum of our interest
each contain a heavy-tailed sub-matrix with dependent entries. Controlling these is where
most of the difficulty lies. The next section provides the key technical ingredients needed,
namely we develop a high probability upper bound on the spectral norm of a matrix-variate
T, and we list the specific tools from random matrix theory that we will need. Hereafter
we use the shorthand p=d —p > 1.

2. Technical ingredients

2.1. Upper bound on the spectral norm of a matrix-variate T

Let P and @ be two independent random matrices with i.i.d. standard normal entries, of
size k x p, and k x r respectively, and assume that & < p — 1. Noting that PPT ~ W(p, I,
is a Wishart matrix independent of @, by Theorem 4.2.1 in (Gupta & Nagar, 1999), the
matrix J := (PPT)_1/2Q has a zero mean matrix-variate T-distribution, Tk« (0, I, I, V)
with

v=p—k+1. (4)

Here, and throughout this paper, we refer to the parametrisation from (Gupta & Nagar,
1999), so the k x r matrix J has the following probability density:

Fk ( vt+k+r—1

J Te (57 et + 707) 22582 5
P = i i+ 007) Q
where I'y(a) = 72 P T (a+ 1) is the multivariate Gamma function. A property

of this matrix-distribution is that J! ~ T}..4(0, I, I, v), by Theorem 4.3.3 in (Gupta &
Nagar, 1999).
The goal of this section is to prove a polynomially decaying upper bound on the following:

Pr {Amax (QT(PPT)1Q) - Lz_l > t} <? (6)

where Apmax denotes largest eigenvalue of its argument.

We should note that the matrix-variate T is different from a multivariate t vector re-
shaped into a matrix (Daz-Garcia & Gutiérrez-Jaimez, 2012). Instead, the matrix-variate
T-distribution implies that both the rows and the columns of J are statistically dependent
on each other, so existing bounds on the spectral norm of random matrices are not readily
available.

We have:

v—2
k
= Pr{\max(JJ")(v —2) > tk}

Pr{)\maX(QT(PPT)_lQ) : ”‘Tk_l > t} = Pr{)\maX(JTJ) >t
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< Pr{Te(JJ")(v —2) > tk}

k
Prd SR (v —2) = th (7)
j=1

where J; denotes the j-th row of J.

By Theorem 4.3.9 in (Gupta & Nagar, 1999), all marginal distributions of the rows
(and columns) of J are distributed as multivariate t with the same degree of freedom v. In
particular, J; above is distributed as a multivariate ¢ with v degrees of freedom — in the
parametrisation we are using, the pdf of this random vector is given by plugging k£ = 1 into
eq. (5). It is then easy to check that Jj\/v — 2 is isotropic — indeed, its variance matrix
exists since k < p — 1 (hence v > 2) and it evaluates to I,.

We first give the following lemma, which may be of independent interest.

Lemma 1 (Chernoff-type bound on square norm of t distributed random vectors)
Let x ~ Ty(0,14,v). Then Vt > d,

[SIIcH

Pr{|jz]? >t} < (f) (fij)ﬁ (8)

Remark 2 Lemma 1 s tight in the sense that in the limit when v — oo it recovers a
Chernoff bound for the square norm of Gaussian random vectors. For t > d, we have:

d v+d d
_fd\T: (d+v\ T [d\ 2 t—d )
_ — — - >
Vlgrolo(t> <t+V> (t> eXp( 2 >_PT{HyH >t} (9)

For finite v, the following bound highlights that the r.h.s. in Lemma 1 tightens with
increasing v. That is, concentration is better for higher degrees of freedom. This agrees
with the intuition that a heavier tail (smaller v) implies more mass spread-out in the tails,
hence concentration becomes weaker.

Remark 3 Fort > d the following holds:

(4 (L) < (1)

We apply our Lemma 1 to the r-dimensional random vector J;v/v — 2 ~ T,.(0, I, v), so
we can further bound the right hand side (RHS) of eq. (7) for all ¢t > ¢-r, where ¢ > 1 is a
constant. Since k is finite, we have:

[S1ISW

t—d d+v
_r=. 1
eXp< 2 t+V> (O)

k
Y oPr{llJ; Ve —2|” > t} (11)

j=1

()

eq. (7)

IN

v+r

()"

IN
N3
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2.2. Specific tools from random matrix theory

In addition to the tail bound developed in the previous section we will need the following
tools:

Definition 4 (Matrix Strong Regularity (MSR) condition (Youssef, 2013)) A
positive semidefinite random matrix U of dimension d x d and E[U] = I; satisfies MSR if
In, carsr > 0 constants s.t.

Pr{||[AUA| >t} < Ctj\l/[ff,w > carsr - rank(A), YA orthogonal projection in RY

where || - || denotes the operator norm.

Theorem 5 (Youssef (2013)) Let U be a d x d positive semidefinite matriz having
ElU] = 1; and satisfying the MSR for some n,cprsr > 0, and let Uy, Us,...,Up, be in-
dependent copies of U. Then, Ve € (0,1), for m = Cj - ﬁ, we have:

B S Ui ) < (13)
=1

where Cy is a constant that depends only on n and cprsr-

The exact expression of C is given in (Youssef, 2013).

3. Estimating the ensemble size

We define the generic term U,y of the matrix sum in icy, of eq. (2) as the following, where
an appropriate transformation is included in order to satisfy E[U)] = I4:

Unn = E[RT(BRMRT) 'R . RT(RMR")"'R - E[RT(RMR") 'R ~'/? (14)

By writing M = LAL" for the SVD decomposition of M, where A is the d x d diagonal
matrix of the eigenvalues of M, and LLT = LTL = I, observe that U(ary has the same
distribution as

Uary ~ L Ugpy - LT (15)

since R has the same distribution as RL.
Therefore it is enough to obtain a result of the form of eq. (13) for terms U; of the form
Ua), in other words, we can identify M with A. Indeed,

1 m
E[HEZUi(M)*IdII] E[||L(— ZUz(A) 1)L = H*ZUM) 14 (16)
i=1

i=1

and Uy satisfies E[Uy)] = I4.
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3.1. Roadmap

First we establish Lemmas 6 and 7, which split the problem into separately proving MSR
for the two block-diagonal sub-matrices. Of these, the sub-matrix that corresponds to the
null-space of M turns out to have a matrix-variate T distribution, and we make use of our
Lemma 1 to control its spectral norm. Dealing with the sub-matrix that corresponds to the
range-space of M is rather straightforward, and finally we leverage Theorem 5 to conclude
that, provided p—k+1 > Q(log(d— p)), the required ensemble size is linear in d. In Section
4 we demonstrate numerical simulations that confirm order-wise tightness.

3.2. Splitting up the problem

To get started with proving MSR for U,), we take a d X d projection matrix of rank
r € {1,..,d}. This necessarily has the form A = BT (BBT)"'B where B is an r x d
full row-rank matrix. We need to develop an upper bound on Pr {||AUx)Al| >t} for all
t>cCcpsR T

Denote by A the p x p diagonal matrix of the non-zero eigenvalues of M, and it will be
useful to split R as R = [ P S ] into the k& x p matrix P and the k& x p matrix S, where
p=d—p.

Using the fact that E[RT(RART)™'R] is diagonal (Marzetta et al, 2011; Durrant &
Kaban, 2015), we can write:

Vi) Z(A)}
U= | ) i 17
W [Z(A) W 17)
where
Vig) = E[PT(PAPT)= P12 PT(PAPT) P - E[PT(PAPT) P71/ (18)
W) = E[ST(PAPT) 7 8]71/2. sT(PAPT) LS - E[ST(PAPT) 151/ (19)
Zpy = E[PT(PAPT)"'P]1/2. PT(PAPT) 'S - E[ST(PAPT) ' S]71/2 (20)

Then we can split the problem by showing the following;:

Lemma 6 Denote by A the p X p diagonal matriz of the non-zero eigenvalues of M, and
A is a rank v projection matriz in R:. For U defined as above, we have:

AU A < [[A1V(p) ALl + [[A2Wp) Azl (21)

where the p X p matriz A1 and the p X p matriz As are projections of rank r in R? and
R? respectively, constructed as the following: Let B be s.t. A = BT(BBT)B. Decompose
the r x d matrix B as a sum of two matrices of which the first matrix contains the first p
columns of B and zeros in its last p columns, and the second matriz has zeros in its first p
columns followed by the remaining p columns of B — that is, B = [ By 0 ] + [ 0 By ]

Now, A; := B;(B;BI')='/?B;,i € {1,2}.

To further simplify the problem, denote by Apax(+) and Apin(+) the largest and the small-
est eigenvalues respectively, and Apinzo(-) will denote the smallest non-zero eigenvalue of its
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matrix argument. We shall assume that x(A) = Apnax(M)/Aminzo(M) = Amax(A)/Amin(A)
is bounded by some constant independent of d. This is reasonable since we are talking
about the condition number of the non-random p x p matrix where p < d.

With this assumption we can show that it is enough to prove MSR for M := My =

0 0
then presents no difficulty using the following Lemma 7.

I, 0O S . . N
[ P ] That is, it is sufficient to consider the case A = I,,. Generalisation to other M

Lemma 7 Assume that k(A) is bounded independently of d. Then,

[AVin Al < w(A) - [ALV () Adll (22)
[A2Wipy Azl < w(A) - [[A2W (I,) As| (23)

where I, is the p-dimensional identity matriz.

The advantage is that the expectation that appears in icy(Mp) has a closed form in this
case:

k
. L 0
ick(Mo) = [ ’o kg ] (24)
p—k—1
This can be seen easily by computing:
k
EViu,)] = P
k
E[W([p)] - 0 — ke — 1IP
BlZg,) = 0

Lemma 7 implies that M can only change the constant cysgr. Indeed, if V(7)) satisfies

the MSR with n,cypsr > 0, then V{,) satisfies the MSR with 1 and cuysr - (k(A)).
Likewise, if W(; ) satisfies the MSR with 7', ¢};gp > 0, then W, satisfies the MSR, with »’
and dhys - (R(A))"7.

With the choice M := My, we will omit the index (I,) from the notations of U, V, W, Z,
and the form of U then becomes the following:

U= PT(PPT)_lp-% PT(PPT)_ls- \/P(P;kfl)
ST(PPT)—lp .V P(P};kfl) ST(PPT)_ls- pfllzfl
[v z
|1zt w

It is worth observing that the two diagonal blocks belong to different classes of matrix-
valued distributions. The block V' has all its non-zero eigenvalues equal to p/k, whereas the
block W has a heavy tailed matrix-variate distribution. The matrix norm of our interest is
dominated by the latter.

In the original problem, r takes values in {1,2,...,d}, so it may be also worth noting
that in the resulting two terms it is sufficient to consider r € {1,...,p} and r € {1,...p}
respectively, since for r > p we have |A1V A1]| = ||V, and likewise for » > p we have
AW Ag|| = [[W]].
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3.3. Main result

Using the preparatory work in the previous section, we can prove the following:

Theorem 8 Assume 3 < p < d, k finite, k < p—1, v = p—k + 1, and there exists

ptv

E —
c,n > 0 constants such that k (%) : (M) gt < eVt >c-p. Then RT(RMyRT) 'R -

t+v
k/p-1, 0 . .
0 kp—k—1)-1, satisfies the MSR with (c,n).
Remark 9 It can be shown' that the constant c required in Theorem 8 exists for any choice
of n, provided that v > alog(p) + a for some constant a.

Therefore, recalling that v = p— k+ 1, and p = d — p, a sufficient condition for MSR in our
case is that p — k +1 > Q(log(d — p)).

In practice, if M was a singular covariance estimate, then p is always no larger than the
sample size. In fact, p can be small for a number of reasons, e.g. because of small sample
size, or multiple collinearities in the data, or because the support of the relevant features
is in a small dimensional subspace. If p is too small relative to d then we cannot guarantee
the MSR condition. However, we see that it is enough for the range space dimension p to
be at least logarithmic in the null-space dimension (d — p) for the MSR condition to hold.
In particular, a setting with exponentially many irrelevant features relative to the sample
size (Ng, 2004; Kaban & Durrant, 2008) meets the condition.

Our main result, for the size of the compressive ensemble is an immediate corollary of
Theorem 8, is the following.

Corollary 10 (Required ensemble size) Under the same conditions as in Theorem 8,
Ve € (0,1), we have:

1 & _ _ _
E ||EZRZT(RZ-MORZ~T) 'R; — E[RT(RMoR")'R] ||| < e-|E[RT(RMoR")'R]||
=1

provided that the ensemble size is:

d

> e,
m > C1(c,n) sy
where C1(c,n) is an absolute constants independent of d.

The proofs are provided in the supplementary matrial?>. The next section provides a
numerical demonstration of our main finding.

1. Yaakov Baruch (https://mathoverflow.net/users/2480/yaakov-baruch), Implausible inequality?, URL
(version: 2017-08-20): https://mathoverflow.net/q/279128
2. http://www.cs.bham.ac.uk/~axk/64-proofs.pdf
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4. Numerical demonstration

We give an empirical demonstration of our finding, that under the mild conditions the
ensemble size m only needs to grow linearly with d.

We took the fixed singular matrix M = My with rank p = 50, generated random
Gaussian matrices R1, Ra, ..., R, and computed:

_E[IL X", RI(R:MRT)"'R; — E[RT(RMR")'R] ||
o [E[RT(RMRT)R]|

The expectations in the above have analytic forms, which we used. We increased the
ensemble size m progressively until € reached below a threshold, for two different choices of
the threshold: ¢ = 0.5 and ¢ = 0.3. We varied k and d, and ran 15 independent repetitions
of this experiment each time. The ensemble sizes (m) on the vertical axis of Figure 1 are
averages computed from the 15 independent repetitions.

From Figure 1 it is most apparent that for each k (equivalently v) the growth of the
required ensemble size (m) follows a linear trend as a function of d, as expected from
Corollary 10. The best linear fits are superimposed on these figures.

We then repeated the experiment, this time generating M randomly and then fixing it.
Again the rank was p = 50, and the condition number in the range space of M was equal
to k(M) = 1.5 each time. Figure 2 shows the ensemble sizes required for e to reach below
0.5. As expected from our Lemma 7 combined with Corollary 10, the required ensemble
size again grows linearly with d. These simulations suggest that our concentration bound
is tight order-wise.

We also find it interesting to notice on these figures that the slope decreases with v =
p — k — 1 through 7, but it increases with the same through cp;sr. There is clearly a
tradeoff in choosing v — which is indeed the users’ choice via setting & — in agreement
with the previous empirical observation in (Durrant & Kaban, 2015), namely that setting
k around the middle of its allowed range works well (and hence the assumption we made
that p/k is bounded is quite natural).

5. Conclusions and future work

We quantified the Monte Carlo error of a compressive ensemble based covariance regular-
isation scheme, and determined how many independent copies of the random matrix are
needed for the sample average of random matrices to get sufficiently close to the matrix
expectation. Under mild assumptions we found that the ensemble size only needs to grow
linearly with the dimension of the positive semi-definite input matrix.

An interesting avenue for future work would be to extend the approach presented here
beyond the use of Gaussian random projections in the ensemble members. In particular,
we can show that the multivariate ¢t-distribution with v degrees of freedom belongs to the
family of —1/v-concave distributions (see (Borell, 1975; Vempala, 2009) for definitions),
which suggests that such extension may be feasible as long as the lower diagonal block
belongs in this family.

A more distant extension of interest would be to consider other ensemble combinations
in the context of machine learning, for instance constrained mixture ensembles (Nabney et
al., 2005), especially in models where theoretical guarantees are scarce.
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Figure 1: Numerical experiment demonstrating that the required ensemble size grows lin-

Figure 2: Similar experiment, now using a generic singular matrix M of rank p = 50 (gen-
erated randomly and then fixed) with condition number (M) = 1.5 in its range
space. As suggested by Lemma 7, the required ensemble size remains linear in d.
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