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Abstract

An extremal point of a positive threshold Boolean function f is either a maximal zero or a
minimal one. It is known that if f depends on all its variables, then the set of its extremal
points completely specifies f within the universe of threshold functions. However, in some
cases, f can be specified by a smaller set. The minimum number of points in such a set
is the specification number of f. Hu (1965) showed that the specification number of a
threshold function of n variables is at least n + 1. Anthony et al. (1995) proved that this
bound is attained for nested functions and conjectured that for all other threshold functions
the specification number is strictly greater than n + 1. In the present paper, we resolve
this conjecture negatively by exhibiting threshold Boolean functions of n variables, which
are non-nested and for which the specification number is n + 1. On the other hand, we
show that the set of extremal points satisfies the statement of the conjecture, i.e. a positive
threshold Boolean function depending on all its n variables has n+ 1 extremal points if and
only if it is nested. To prove this, we reveal an underlying structure of the set of extremal
points.

1. Introduction

A Boolean function is called a threshold function (also known as linearly separable or a halfs-
pace) if there exists a hyperplane separating true and false points of the function. Threshold
functions play fundamental role in the theory of Boolean functions and they appear in a
variety of applications such as electrical engineering, artificial neural networks, reliability
theory, game theory etc. (see, for example, (Crama and Hammer, 2011)).

We study the problem of teaching threshold functions in the context of on-line learning
with a helpful teacher (Goldman and Kearns, 1995). Speaking informally, teaching an un-
known function f in a given class is the problem of producing its teaching (or specifying)
set, i.e. a set of points in the domain which uniquely specifies f. In the present paper, the
universe is the set of threshold functions and a specifying set for f is a subset S of the points
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of the Boolean cube such that f is the only threshold function which is consistent with f
on S.

It is not difficult to see that in the worst case the specifying set contains all the 2™ points
of the Boolean cube. However, in some cases, a threshold function f can be specified by a
smaller set, for instance, when f depends on all its variables and is positive (or increasing),
i.e. a function where an increase of a variable cannot lead to a decrease of the function.
In this case, f can be specified by the set of its extremal points, i.e. its maximal false and
minimal true points, of which there are at most (U%ll J) (Anthony et al., 1995). Moreover,

this description can also be redundant, i.e. sometimes a positive threshold function f can be
specified by a proper subset of its extremal points. The minimum cardinality of a teaching
set of f,i.e. the minimum number of points needed to specify f, is the specification number of
f. The maximum specification number over all functions in a class is the teaching dimension
of the class.

Hu (1965) showed that the specification number of a threshold function with n variables
is at least n + 1. Anthony et al. (1995) proved that this bound is attained for so-called
nested functions by showing that positive nested functions contain precisely n + 1 extremal
points. They also conjectured that for all other threshold functions with n variables the
specification number is strictly greater than n + 1.

Our contribution As our first result, we disprove the conjecture of Anthony et al. (1995)
by showing that for any n > 4 there exist threshold functions with n variables which are
non-nested and for which the specification number is n + 1.

To state our second result, we observe that for positive nested functions the specifying
set coincides with the set of extremal points. This is not the case in our counterexamples to
the above conjecture. Therefore, our negative resolution of the conjecture leaves open the
question on the number of extremal points: is it true that for any positive threshold function
different from nested, the number of extremal points is strictly greater than n + 17 In this
paper, we answer this question positively. Moreover, we prove a slightly more general result
dealing with so-called linear read-once functions, which is an extension of nested functions
allowing irrelevant variables (see Section 2 for precise definitions). More formally, we prove
that a positive threshold function f with & > 0 relevant variables has exactly k+ 1 extremal
points if and only if f is linear read-once. Our solution is based on revealing an underlying
structure of the set of extremal points.

Related work Upper and lower bounds and the average value for the specification number
of a threshold Boolean function are obtained in (Anthony et al., 1995).

A number of papers are devoted to the teaching dimension for the class of threshold
functions of k-valued logic, i.e. halfspaces defined on the domain {0,1,...,k — 1}". Upper
bounds for the teaching dimension are obtained in (Hegedus, 1994; Chirkov and Zolotykh,
2016). A tight lower bound is stated in (Shevchenko and Zolotykh, 1998). The special case
n = 2 is considered in (Alekseyev et al., 2015; Zamaraeva, 2016, 2017).

The problem of teaching is closely related to the problem of learning (Angluin, 1988;
Aizenstein, 1998). Learning threshold functions with membership or/and equivalence queries
is studied by Maass and Turan (1994); Hegedus (1994, 1995); Zolotykh and Shevchenko
(1997). Special case n = 2 is considered in (Bultman and Maass, 1995). Learning threshold
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Boolean functions with small weights is investigated in (Abboud et al., 1999; Abasi et al.,
2016).

Teaching or/and learning different classes of read-once (or repetition-free) functions are
considered in (Angluin et al., 1993; Bshouty et al., 1995; Chistikov, 2011; Chistikov et al.,
2014). The importance of linear read-once functions in learning theory is evidenced, in
particular, by their connection with special types of decision lists (Rivest, 1987).

Organization of the paper All preliminary information related to the paper can be
found in Section 2. The refutation of the conjecture is presented in Section 3. Section 4
contains the results about extremal points of a threshold function. Section 5 concludes the
paper with a number of open problems.

2. Preliminaries

Let B = {0,1}. For a point x € B™ we denote by (x); the i-th coordinate of x, and by X
the point in B™ with (X); = 1 if and only if (x); = 0 for every i € [n].

Let f = f(z1,...,2,) be a Boolean function on B™. For k € [n] and oy € {0,1} we
denote by f|;, —q, the Boolean function on B"~! defined as follows:

f|xk:ak(x17 sy Th—1, Lh+1,- - - 7$n) = f(xlv sy Th—1, Oy Tt 15 - - 'an)'

For i1,...,ix € [n] and a1,...,ar € {0,1} we denote by flxi1=a1,...,xik=ak the function
(f|xi1:aly~~~:xik,1:ak—1)|wik:ak' We say that f\w¢1=a1,.-.,zik=ak is the restriction of f to z;; =
ait, ..., x;, = ag. We also say that a Boolean function g is a restriction of a Boolean function
f if there exist i1,...,1; € [n] and aq,...,a4 € {0,1} such that g = f\xilzah...,xi

g(X) = f|l‘7;1:a1,...,$ik:ak (X) fOI' every Xe Bn_k'

L=ag 1€

Definition 1 A wvariable xy, is called irrelevant for f if fi,, -1 = flz,—0- Otherwise, xy is
called relevant for f. If xy is irrelevant for f we will also say that f does not depend on xy,.

Following the terminology of (Crama and Hammer, 2011), we say that x € B™ is a true
point of f if f(x) =1 and that x € B™ is a false point of f if f(x) = 0.

2.1. Positive functions and extremal points

By < we denote a partial order over the set B", induced by inclusion in the power set lattice
of the n-set. In other words, x <y if (x); = 1 implies (y); = 1. In this case we will say that
x is below y. When x < y and x # y we will sometimes write x < y.

Definition 2 A Boolean function f is called positive monotone (or simply positive) if f(x) =
1 and x < y imply f(y) =1.

For a positive Boolean function f, the set of its false points forms a down-set and the
set of its true points forms an up-set of the partially ordered set (B™,<). We denote by

Zf the set of maximal false points,

U/ the set of minimal true points.



SPECIFYING A POSITIVE THRESHOLD FUNCTION VIA EXTREMAL POINTS

We will refer to a point in Z/ as a mazimal zero of f and to a point in U7 as a minimal
one of f. A point will be called an extremal point of f if it is either a maximal zero or a
minimal one of f. We denote by

r(f) the number of extremal points of f.

2.2. Threshold functions

Definition 3 A Boolean function f on B™ is called a threshold function if there exist n
weights wy, ..., w, € R and a threshold t € R such that, for all (z1,...,x,) € B",

n
f(xl,...,:nn) =0 <— Zwil‘i <t.
=1

The inequality wizy + ... + wpx, < tis called threshold inequality representing function
f. It is not hard to see that there are uncountably many different threshold inequalities
representing a given threshold function, and if there exists an inequality with non-negative
weights, then f is a positive function.

Let k € N,k > 2. A Boolean function f on B™ is k-summable if, for some r € {2,...,k},
there exist  (not necessarily distinct) false points x1, ..., x, and r (not necessarily distinct)
true points yy,...,y, such that  ; ;x; = > . ;y; (where the summation is over R"). A
function is asummable if it is not k-summable for all k£ > 2.

Theorem 4 (Elgot, 1961) A Boolean function is a threshold function if and only if it is
asummable.

2.3. Linear read-once functions and nested functions

A Boolean function f is called linear read-once if it is either a constant function, or it can
be represented by a nested formula defined recursively as follows:

1. both literals £ and T are nested formulas;

2. xVt, xANt, TV, T At are nested formulas, where x is a variable and ¢ is a nested
formula that contains neither x, nor T.

Eiter et al. (2002) showed that the class of linear read-once functions is precisely the
intersection of threshold and read-once functions.

A linear read-once function is called nested if it depends on all its variables. For example,
the function (x1 V z2)zsxs considered as a function of 5 variables z1, ..., x5 is linear read-
once, but not nested, since x4 is an irrelevant variable. If this function is considered as
a function of 4 variables x1, x2, x3, x5, then all its variables are relevant and therefore the
function is also nested.

It is not difficult to see that a linear read-once function f is positive if and only if a
nested formula representing f does not contain negations.
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2.4. Specifying sets and specification number

Let F be a class of Boolean functions of n variables, and let f € F.

Definition 5 A set of points S C B"™ is a specifying set for f in F if the only function in
F consistent with f on S is f itself. In this case we also say that S specifies f in the class
F. The minimal cardinality of specifying set for f in F is called the specification number of
f (in F) and denoted or(f).

Let H,, be the class of threshold Boolean functions of n variables. Hu (1965) and later
Anthony et al. (1995) showed that the specification number of a threshold function of n
variables is at least n + 1.

Theorem 6 (Hu, 1965; Anthony et al., 1995) For any threshold Boolean function f of n
variables oy, (f) > n+ 1.

It was also shown in (Anthony et al., 1995) that the nested functions attain the lower
bound.

Theorem 7 (Anthony et al., 1995) For any nested function f of n variables oy, (f) = n+1.

2.5. Essential points

In estimating the specification number of a threshold Boolean function f € H,, it is often
useful to consider essential points of f defined as follows.

Definition 8 A point x is essential for f (with respect to class Hy,), if there exists a function
g € Hy such that g(x) # f(x) and g(y) = f(y) for every y € B", y # x.

Clearly, any specifying set for f must contain all essential points for f. It turns out that
the essential points alone are sufficient to specify f in H,, (Cover, 1965). Therefore, we have
the following well-known result.

Theorem 9 (Cover, 1965) The specification number oy, (f) of a function f € H, is equal
to the number of essential points of f.

2.6. The number of essential points versus the number of extremal points

It was observed in (Anthony et al., 1995) that in the study of specification number of thresh-
old functions, one can be restricted to positive functions. To prove Theorem 7, Anthony
et al. (1995) first showed that for a positive threshold function f, which depends on all its
variables, the set Z/ U U¥ of extremal points specifies f. Then they proved that for any
positive nested function f of n variables |Zf UU/| =n + 1.

In addition to proving Theorem 7, Anthony et al. (1995) also conjectured that nested
functions are the only functions with the specification number n + 1 in the class H,,.

Conjecture 10 (Anthony et al., 1995) If f € H, has the specification number n + 1, then
f is nested.
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In the present paper, we disprove Conjecture 10 by demonstrating for every n > 4 a
threshold non-nested function of n variables with the specification number n + 1.

On the other hand, we show that the conjecture becomes a true statement if we replace
‘specification number’ by ‘number of extremal points’. In fact, we prove a more general
result saying that a positive threshold function f with k relevant variables is linear read-
once if and only if it has exactly k 4+ 1 extremal points. For this purpose, the following
special type of functions appears to be technically useful.

Definition 11 We say that a Boolean function f = f(x1,...,x,) is split if there exists
i € [n] such that fi,,—o = 0 or flpz,—1 = 1.

In what follows, we will need the next two observations, which can be easily verified.
Observation 1 Any positive linear read-once function is split.

Observation 2 Any restriction of a linear read-once function is also linear read-once.

3. Non-nested functions with small specification number

In this section, we disprove Conjecture 10. To this end, we show in the following theorem
that the minimum value of the specification number is attained in the class of threshold
functions not only by nested functions.

Theorem 12 For a natural number n, n > 4 let f, = f(x1,...,2zy) be a function defined
by its DNF

129 V2123V -V 2X1Tp_1V 2T2X3...2Tp.
Then f, is positive, not linear read-once, threshold function, depending on all its variables,

and the specification number of f, is n + 1.

Proof Clearly, f,, depends on all its variables. Furthermore, f, is positive, since its DNF
contains no negation of a variable. Also, it is easy to verify that f is not split, and therefore
by Observation 1 f is not linear read-once.

Now, we claim that the CNF of f, is

(r1 V)1 Vas)...(x1 Va,)(xaVas V- Va,_1).

Indeed, the equivalence of the DNF and CNF can be directly checked by expanding the
latter and applying the absorption law:

(k1 Vag)(zr Vas)...(x1Vay)(ze VeV -V I,_1)
= (r1 Vxoxs...xp)(x2 Va3V -V, 1)
=x12x2 V123V - VIX1Tpn_1V T2T3...2Tn.

From the DNF and the CNF of f, we retrieve the minimal ones

x1 = (1,1,0,...,0,0),
xs = (1,0,1,...,0,0),
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and maximal zeros of f,

yl = (050717" 7171)7
Yo = (0,1,0,.. 7171)7
Yn—2 = (071717 707 1)7
Z] = (071717 7170)7
Zy = (Lovov 707 1)7

respectively (see Theorems 1.26, 1.27 in (Crama and Hammer, 2011)). It is easy to check
that all minimal ones x1,Xs,...,X,_1 satisfy the equation

(2n —5)xy + 2(x2 + 23+ + Tp_1) + Tp = 2n — 3,
and all maximal zeros yy,¥s,-..,¥Y,_2, %1, 22 satisfy the inequality
(2n —=5)z1 + 22+ 23+ -+ xp1) + T < 2n — 4.

Hence the latter is a threshold inequality representing fi,.

Since for a positive threshold function f which depends on all its variables the set of
extremal points specifies f, and every essential point of f must belong to each specifying
set, we conclude that every essential point of f,, is extremal.

Let us show that the points y,,¥s,...,¥,_o are not essential for f,,. Suppose to the
contrary that there exists a threshold function g; that differs from f, only in the point y;,
i € [n—2],ie, gi(y;) =1 and g;(x) = fn(x) for every x # y;. Then x; +y, = z1 + 22,
and hence g; is 2-summable. Therefore by Theorem 4 function g; is not threshold. A

contradiction.
The above discussion together with Theorems 6 and 9 imply that all the remaining n+ 1
extremal points X1, Xo, ...,X,—1,21, Z2 are essential, and therefore oy, (fn) =n + 1. [ |

4. Extremal points of a threshold function

The main goal of this section is to prove the following theorem.

Theorem 13 Let f = f(z1,...,zy,) be a positive threshold function with k > 0 relevant
variables. Then the number of extremal points of f is at least k+ 1. Moreover f has ezactly
k + 1 extremal points if and only if f is linear read-once.

We will prove Theorem 13 by induction on n. The statement is easily verifiable for n = 1.
Let n > 1 and assume that the theorem is true for functions of at most n—1 variables. In the
rest of the section we prove the statement for n-variable functions. Our strategy consists of
three major steps. First, we prove the statement for split functions in Section 4.2. This case
includes linear read-once functions. Then, in Section 4.3, we prove the result for non-split
functions f which have a variable z; such that both restrictions f|,,—o and f|,,—; are split.
Finally, in Section 4.4, we consider the case of non-split functions f, where for every variable
z; of f at least one of the restrictions f|,,—¢ and f|;,—1 is non-split. In this case, the proof is
based on a structural characterization of the set of extremal points, which is of independent
interest and which is presented in Section 4.1.
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4.1. The structure of the set of extremal points

We say that a maximal zero (resp. minimal one) y of f(x1,...,x,) corresponds to a variable
x; if (y)i =0 (resp. (y)i =1). A pair (a,b) of points in B" is called x;-extremal for f if

1. ais a maximal zero of f corresponding to z;;
2. b is a minimal one of f corresponding to x;; and
3. (a); > (b); for every j € [n] \ {i}.

Claim 1 Let f be a positive function and i € [n]. Then

1. for every maximal zero a of f corresponding to x; there exists a minimal one b of f
corresponding to x; such that (a,b) is an x;-extremal pair for f;

2. for every minimal one b of f corresponding to x; there exists a maximal zero a of f
corresponding to x; such that (a,b) is an x;-extremal pair for f.

Proof We prove the first part of the claim, the second part can be proved similarly. Consider
a maximal zero a of f corresponding to z; and the vector b’ such that (a); = (b’); for all
j # i and (b’); = 1. Since a < b’ and a is a maximal zero, we have f(b’) = 1. Let b be
a minimal one of f such that b < b’. Then (b); = 1 for otherwise b would be below a,
which in turn would contradict positivity of f. Now since a and b’ differ only in coordinate
i and b < b’, we conclude that (a); > (b); for every j € [n]\ {i}, and therefore (a,b) is an
xi-extremal pair for f. [ |

Let ¢ = g(y1,...,yn) be a positive function, and let {y;,,...,y; } be a subset of the
relevant variables of g. For every variable y;., j € [k] we fix an y; -extremal pair (a;;, b;;).
Now we define a graph H (g, ¥, , - - -, ¥i, ) @ an undirected graph with vertex set {a;,,b;; | j €
[k]} and edge set {{a;;,b;;} | j € [k]}. We call H(g,yi,...,¥i,) an extremal graph and
observe that this graph is not uniquely defined.

Lemma 14 If g is a threshold function, then H = H(g,Yi,,- .., Yi,) is an acyclic graph.

Proof It follows from the definitions of an z;-extremal pair and of an extremal graph that
H does not have multiple edges and that H is a bipartite graph with parts A = {a;; | j € [k]}
and B = {b;, | j € [k]}. Suppose to the contrary that H has a cycle of length 2r, for some
r € {2,...,k}. Let R and @ be the sets of vertices of the cycle belonging to A and B,
respectively. For i € [n] and a € {0,1} we denote by R’ the set of vertices y € R with
(y)i = a. Similarly, Q¢ denotes the set of vertices y € Q with (y); = a.

Fix an index i € [n]|. By definition of an z;-extremal pair and of an extremal graph, there
is at most one edge between the vertices of @} and the vertices of R. Therefore, the number
2|Q¢| of the edges in the cycle incident to the vertices in Q! is at most one more than the
number 2| R}| of the edges incident to the vertices in RY. This implies that |Q}| < |RY|. If
this inequality is strict, we modify the set @ by choosing arbitrarily |R}| — |Q¢| points in
Q) and changing their i-th coordinates from 0 to 1. Since g is positive, the modified points
remain true points for g.
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Applying this procedure for each i € [n], we obtain the set R of false points and the set
Q of true points both of size r such that |Q}| = |R}| for all i. Therefore, >, px = doyeQ s
showing that g is k-summable. Hence, by Theorem 4, g is not threshold, which contradicts
the assumption of the lemma. |

4.2. Split functions

Lemma 15 Let f = f(x1,...,zy) be a positive threshold split function with k > 0 relevant
variables. Then the number of extremal points of f is at least k+ 1. Moreover f has exactly
k + 1 extremal points if and only if f is linear read-once.

Proof The case k = 0 is trivial, and therefore we assume that k& > 1.

Let z; be a variable of f such that fj;,—o = 0 (the case fi;,—1 = 1 is similar). Let
Jo = flz;—0 and f1 = fj;,—1. Clearly, x; is a relevant variable of f, otherwise f = 0, that is,
k = 0. Since every relevant variable of f is relevant for at least one of the functions fy and
f1, we conclude that f; has k — 1 relevant variables.

The equivalence fy = 0 implies that for every extremal point (v, ..., 01, Qit1,. .., Qn)
of fi, the corresponding point (o, ..., 1,1, @it1,...,0y) is extremal for f. For the same
reason, there is only one extremal point of f with the ¢-th coordinate being equal to zero,
namely, the point with all coordinates equal to one, except for the i-th coordinate. Hence,

r(f) =r(f)+ 1

1. If f; is linear read-once, then f is also linear read-once, since f can be expressed as
x; A\ f1. By the induction hypothesis r(f1) = k and therefore r(f) = k + 1.

2. If f; is not linear read-once, then from Observation 2 we conclude that f is also not
linear read-once. By the induction hypothesis r(f;) > k and therefore r(f) > k + 1.

4.3. Non-split functions with split restrictions

Claim 2 Let f = f(x1,...,2,) be a positive threshold non-split function. If there exists
i € [n] such that both fo = fiz,—0 and f1 = fiz,—1 are split, then there exists s € [n] \ {i}
such that fo,,—o =0 and fi,,—; = 1.

Proof Since fo is split, there exists p € [n] such that fo|, o = 0 or fo, —; = 1. We
claim that the latter case is impossible. Indeed, as foj,,—1 = fjz;=0,z,=1, Positivity of f and
f0|xp:1 = 1imply fg;=1,0,=1 = 1, and therefore f|, —; = 1. This contradicts the assumption
that f is non-split. Hence, fo|,,—o = 0. Similarly, one can show that fi,, _; =1 for some
r € [n]. If p =17, then we are done.

Assume that p # r. Let a be the point in B™ that has exactly two 1’s in coordinates
i and p. If f(a) = 1, then by positivity fl,,—1,.,—1 = fijz,=1 = 1, and the claim follows
for s = p. Let now b be a point in B™ that has exactly two 0’s in coordinates ¢ and r. If
f(b) = 0, then by positivity fiz;,—0,z,—0 = foz,=0 = 0, and the claim follows for s = r.
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Assume now that f(a) = 0 and f(b) = 1. Since fo|,,—o =0 and fi|, —; =1 we conclude
that f(a) = 0 and f(b) = 1. Therefore, a4+ a = b + b and hence by Theorem 4 f is not
threshold. This contradiction completes the proof. |

Corollary 16

(a) Variable xs from Claim 2 is relevant for both functions fy and fi.

(b) If a point a = (a1,..., Qi 1,Qi11,--.,0n) € B" L is an extremal point of fa,, o €
{0,1}, then &’ = (a1, ..., -1, Qiy1, ..., Qp—1) € B™ is an extremal point of f.
Proof

(a) Suppose to the contrary that fy does not depend on z4. Then f0|$5:1 = f0|$5:0 =0,
and therefore fo = f;,—0 = 0, which contradicts the assumption that f is non-split.
Similarly, one can show that x4 is relevant for fi.

(b) We prove the statement for o; = 1. For a; = 0 the arguments are symmetric. If
a is a maximal zero of fi, then a’ is a maximal zero of f. Indeed, for every point
b = (B1,...,Bi-1,8i, Bis1,---,Bn) € B" such that 8’ < b’ we have 5; = 1. Hence
a<b=(8,...,0i-1,8i41,---,5n), and f1(b) = f(b’). Therefore f(b’) = 0 would
imply that a is not a maximal zero of fi. This contradiction shows that a’ is a maximal
zero of f.

Let now a be a minimal one of f;. For convenience, without loss of generality, we
assume that s < 7. Suppose to the contrary, that a’ is not a minimal one of f, i.e.,
there exists a point b’ = (B1,...,8i-1, B, Bit1,---,5Bn) € B™ such that b’ < a’ and
f(®') = 1. Note that if 3; = 1, then b < a and f(b’) = fi(b), where as before,
b = (b1,...,08i-1,Bi+1,---,0n). Since a is a minimal one of fi, we conclude that
fi(b) = f(b') = 0, which is a contradiction. Therefore we assume further that 3; = 0
and distinguish between two cases:

Bs = 0. In this case B
f®) = (Bi A fo(b)) V (Bi A fi(b)) = fo(b) =0,

where the latter equality follows from fy|,, o = 0. This is a contradiction to our
assumption that f(b") = 1.

Bs = 1. In this case, as = 1. Note that the equivalence f1|x5:1 = 1 means that function
f1 takes value 1 on every point with s-th coordinate being equal to 1. Together
with the minimality of a this implies that the only non-zero component of a is
as. Hence, the only non-zero component of b’ is 3s. Therefore f(b’) = 1 and
positivity of f imply f,,—1 = 1, which contradicts the assumption that f is
non-split.

10
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Lemma 17 Let f = f(z1,...,2n) be a positive threshold non-split function with k relevant
variables, and there exists i € [n] such that both fo = fiz,—o and f1 = f;,—1 are split. Then
the number of extremal points of f is at least k + 2.

Proof Let s € [n]\ {i} be an index guaranteed by Claim 2. Let P, Py, and P; be the
sets of relevant variables of f, fy, and fi, respectively. Since any relevant variable of f is
a relevant variable of at least one of the functions fy, fi and, by Corollary 16 (a), z, is a
relevant variable of both of them, we have

k‘:|P|S‘POUP1|—|—1:|P0|+|P1|—|P0ﬂpl|+1§|P0|—|—‘P1|

By the induction hypothesis, r(f;) > |P;| + 1, where ¢ = 0,1. Finally, by Corollary 16 (b)
the number r(f) of extremal points of f is at least 7(fo) +r(f1) > |Po| +|P1|+2>k+2. B

4.4. Non-split functions without split restrictions

Due to Lemmas 15 and 17 it remains to show the bound for a positive threshold non-split
function f = f(x1,...,2,) such that for every i € [n] at least one of fo = fj;,—o and
J1 = flz;=1 1s non-split.

Assume without loss of generality that z,, is a relevant variable of f, and let fo = f;,,—0
and f1 = f|;,—1. We assume that fo is non-split and prove that f has at least k+2 extremal
points, where k is the number of relevant variables of f. The case when fj is split, but f;
is non-split is proved similarly. Let us denote the number of relevant variables of fy by m.
Clearly, 1 < m < k—1. Exactly k — 1 —m of k relevant variables of f became irrelevant for
the function fy. Note that these k — 1 — m variables are necessarily relevant for the function
f1- By the induction hypothesis, the number r(fj) of extremal points of fj is at least m + 2.

We introduce the following notation:

Cy — the set of maximal zeros of f corresponding to x,;

Py — the set of all other maximal zeros of f, i.e., Py = zf \ Co;
C — the set of minimal ones of f corresponding to xz,;

Py — the set of all other minimal ones of f, i.e., P, = UT\ Cy.

For a set A C B"™ we will denote by A* the restriction of A into the first n—1 coordinates,
le, A*={(a1,...,an—1) | (a1,...,an—_1,0p) € A for some «a,, € {0,1}}.
By definition, the number of extremal points of f is

r(f) = [Col + [P + |Chf + [Ro| = |Col + [Pr] + |CT| + | Fg - (1)

We want to express 7(f) in terms of the number of extremal points of fy and f;. For this
we need several observations. First, for every extremal point (aq,...,a,—1,a,) for f the
point (o, ..., an—_1) is extremal for f,, . Furthermore, we have the following straightforward
claim.

Claim 3 Py is the set of minimal ones of fo and Py is the set of maximal zeros of fi.

11
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In contrast to minimal ones of fy, the set of maximal zeros of fj in addition to the points
in Cj may contain extra points, which we denote by Nj. In other words, AL Cy UNg.
Similarly, besides C7, the set of minimal ones of f; may contain additional points, which we
denote by Nj. That is, U/ = C} U N;.

Claim 4 The set Nj is a subset of the set Py of mazximal zeros of f1. The set N is a
subset of the set P;" of minimal ones of fo.

Proof We will prove the first part of the statement, the second one is proved similarly.
Suppose to the contrary that there exists a point a = (o, ...,ap—1) € Nj \ PJ, which is a
maximal zero for fjy, but is not a maximal zero for fi. Notice that fi(a) = 0, as otherwise
(o, ..., ap—1,0) would be a maximal zero for f, which is not the case, since a ¢ C{. Since
a is not a maximal zero for fi, there exists a maximal zero b € B"~! for f; such that a < b.
But then we have fo(b) =1 and fi(b) = 0, which contradicts positivity of function f. MW

From Claim 3 we have r(fy) = |Zfo UU/0| = |C§| + |Ng| + | P}|, which together with (1)
and Claim 4 imply

r(f) = Gl + [P+ |C7 + [Fo| = |Col + [Pr] + [CT] + [Ng | + [Fg \ No
= r(fo) +|C7| + [Fy \ No|.
Using the induction hypothesis we conclude that r(f) > m + 2+ |Cy| + |Py \ N§|. To

derive the desired bound 7(f) > k+ 2, in the rest of this section we show that C} U Py \ N
contains at least k — m points.

(2)

Claim 5 Let z;, i € [n—1], be a relevant variable for fi, but irrelevant for fo. Then there
exists an x;-extremal pair (a,b) for fi such that a € Py \ Nj and b € Cy.

Proof First, let us show that an x;-extremal pair always exists. Since x; is relevant
for fi, there exists a pair of points x and y, which differ only in the i-th coordinate and
fi(x) # fi(y). Without loss of generality, let (x); = 0 and (y); = 1. Then by positivity,
fi(x) = 0 and fi(y) = 1. Let x’ be any maximal zero of f; such that x < x’. Then
obviously x is a maximal zero corresponding to x; and the existence of an z;-extremal pair
for f; follows from Claim 1.

We claim that (x); = 1 for every x € Nj. Indeed, if (x); = 0 for a maximal zero
x € Nj, then changing in x the i-th coordinate from 0 to 1 we would obtain the point x’
with fo(x') =1 # fp(x), which would contradict the assumption that z; is irrelevant for fj.
Similarly, one can show that (y); = 0 for every y € P;.

The above observations together with Claim 4 imply that every maximal zero for f;
corresponding to z; belongs to Py \ Nj and every minimal one for f; corresponding to z;
belongs to C}. Hence the claim. [ |

Recall that there are exactly s = k — 1 — m variables that are relevant for f; and
irrelevant for fo. We denote these variables by x;,,...,2;,. Let H be an extremal graph
H(fi,xi,...,zi,) defined in such a way that all its vertices belong to C; U P§ \ N§. Such
a graph exists by Claim 5. By Lemma 14 the graph H is acyclic, and hence it has at least
s + 1 vertices. Therefore, the set C7 U Pj \ Nj has at least s + 1 = k — m points. This
conclusion establishes the main result of this section.
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Lemma 18 Let f = f(x1,...,2y) be a positive threshold non-split function with k relevant
variables, and for every i € [n] at least one of the restrictions fo = fiz,—0 and fi1 = fiz,—1 is
non-split. Then the number of extremal points of f is at least k + 2.

5. Conclusion and open problems

In this paper we studied the cardinality and structure of two sets related to teaching positive
threshold Boolean functions: the specifying set and the set of their extremal points.

First, we showed the existence of positive threshold Boolean functions of n variables,
which are not linear read-once and for which the specification number is at its lowest bound,
n—+1 (Theorem 12). An important open problem is to describe the set of all such functions.

Second, we completely described the set of all positive threshold Boolean functions of
n relevant variables, for which the number of extremal points is at its lowest bound, n + 1.
This is precisely the set of all positive linear read-once functions (Theorem 13). It would be
interesting to find out whether this result is valid for all positive functions, not necessarily
threshold. In other words, is it true that a positive Boolean function of n relevant variables
has n + 1 extremal points if and only if it is linear read-once?

Finally, we ask whether the acyclic structure of the set of extremal points of a positive
threshold function f can be helpful in determining the specification number of f.
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