
Proceedings of Machine Learning Research 76:1–12, 2017 Algorithmic Learning Theory 2017

An efficient query learning algorithm for zero-suppressed
binary decision diagrams

Hayato Mizumoto hayato mizumoto@shino.ecei.tohoku.ac.jp

Shota Todoroki shota todoroki@shino.ecei.tohoku.ac.jp

Diptarama diptarama@shino.ecei.tohoku.ac.jp

Ryo Yoshinaka ry@ecei.tohoku.ac.jp

Ayumi Shinohara ayumi@ecei.tohoku.ac.jp

Graduate School of Information Sciences, Tohoku University

6-6-05, Aramakiaza Aoba, Aoba-ku, Sendai City, Miyagi, Japan

Editors: Steve Hanneke and Lev Reyzin

Abstract

A ZDD is a directed acyclic graph that represents a family of sets over a fixed universe
set. In this paper, we propose an algorithm that learns zero-suppressed binary decision
diagrams (ZDDs) using membership and equivalence queries. If the target ZDD has n
nodes and the cardinality of the universe is m, our algorithm uses n equivalence queries
and at most n(blogmc+ 4n) membership queries to learn the target ZDD.

Keywords: Zero-suppressed binary decision diagrams; Query learning; MAT learning

1. Introduction

A zero-suppressed binary decision diagram (ZDD) (Minato, 1993) is a data structure that
can efficiently compress and represent large-scale combination data over a universe X. An
important virtue of ZDDs is that various set operations can be performed efficiently on
ZDDs. This paper proposes an efficient algorithm for learning ZDDs under Angluin’s query
learning model (Angluin, 1987). In her model a learner can ask two types of queries, called
equivalence queries (EQs) and membership queries (MQs). An EQ asks whether a learner’s
hypothesis, which is a ZDD in our case, represents the learning target. If it is the case, the
learning is done. Otherwise, the learner gets a counterexample. An MQ asks whether a
datum, which is a subset of X in our case, belongs to the learning target.

There are data structures somewhat similar to ZDDs, that can be used for representing
families of sets. One possible approach to learn ZDDs via queries would be to use existing
learning algorithms for those data structures. Since Angluin proposed the query learning
model, deterministic finite state automata (DFAs) have been a major target. A family F
of subsets of X = {x1, . . . , xm} can be represented as a set LF of binary strings such that
b1 . . . bm ∈ LF if and only if {xi | bi = 1 } ∈ F . The algorithm by Rivest and Schapire (1993)
learns DFAs corresponding to such families of sets with nA EQs and O(nA(nA + logm))
MQs, where nA denotes the size of the learning target DFA. No algorithms with lower query
complexity have been proposed so far. Another data structure can be used to represent a
family of sets is a binary decision diagram (BDD) (Bryant, 1986). Actually, ZDDs are
closer to BDDs than DFAs and ZDDs were originally proposed based on BDDs. BDDs are

c© 2017 H. Mizumoto, S. Todoroki, S. Diptarama, R. Yoshinaka & A. Shinohara.

An efficient query learning algorithm for zero-suppressed binary decision diagrams

supposed to represent Boolean functions, but through a straightforward translation, one
can assume that they represent families of sets. BDDs tend to be much more compact than
DFAs if data sets to represent include “symmetric” substructures. Nakamura (2005) has
proposed an efficient algorithm that learns BDDs with nB EQs and O(nB(nB + logm))
MQs, where nB is the size of the learning target BDD, based on classical algorithms for
DFAs by Rivest and Schapire (1993) and Kearns and Vazirani (1994). However, when
representing the same data (modulo the above trivial translation), those numbers nA, nB
and nZ , the size of the ZDD, can often be significantly different. For any n1 ∈ {nA, nB, nZ}
and n2 ∈ {nB, nZ}, it holds that n1 ≤ nA and n1 ≤ (m+ 1)(n2 + 1)/2 (Knuth, 2009), and
there are data for which we have nA ≥ m(nB−1)/2 (Nakamura, 2005). Using those existing
learning algorithms for learning ZDDs requires O(mnZ) EQs and O((mnZ)(mnZ + logm))
MQs in the worst case. ZDDs tend to be much more compact than DFAs and BDDs when
the data sets to represent are large but sparse. Therefore, using existing algorithms does
not seem to be the best solution for learning ZDDs.

In this paper, we propose an algorithm for learning ZDDs following Nakamura’s for
BDDs. It uses nZ EQs and O(nZ(nZ + logm)) MQs, which achieves the same query
complexity as the existing best algorithms for DFAs and BDDs. Thus, our algorithm has
an advantage when learning data for which a ZDD is more suitable than a DFA or a BDD.

2. Preliminaries

The set of strings of length k over an alphabet Σ is denoted by Σk. We let Σ∗ =
⋃

k≥0 Σk,

Σ+ =
⋃

k>0 Σk, Σ≤m =
⋃

k≤m Σk, and Σ<m =
⋃

k<m Σk. We allow to write ak to mean the

unique element of {a}k, while a∗ means {a}∗ for a ∈ Σ. The length of a string p is denoted
by |p|. The empty string is denoted by ε. For a string p = a1 . . . ak ∈ Σk, we write pre(p, i)
for the prefix a1 . . . ai of length i and suf(p, i) for the suffix ak−i+1 . . . ak of length i. In this
paper, we treat binary strings over {0, 1}, where, for example, 10i means the string where
0 follows i times after the first occurrence of 1, rather than the ith power of ten.

2.1. Zero-suppressed binary decision diagram

A zero-suppressed binary decision diagram (ZDD) (Minato, 1993) is a data structure for
representing a family of sets over a fixed totally ordered universe X = {x1, . . . , xm} in a
compact manner. A ZDD is formally a directed acyclic graph such that
• it has exactly one node of in-degree 0, called the root,
• it has exactly two nodes ⊥ and > of out-degree 0, called ⊥-terminal and >-terminal,

respectively,
• every internal node has 2 outgoing edges called the 0-edge and 1-edge, where the node

directed from a node by its b-edge is called the b-child for b ∈ {0, 1},
• every internal node v is labeled by an element of the universe,
• if a node and a child of it are labeled with xi and xj , respectively, then i < j.

A path π from a node to a descendant in a ZDD represents a subset of X

[[π]] = {xi ∈ X | the 1-edge of a node labeled with xi is on π }

2

An efficient query learning algorithm for zero-suppressed binary decision diagrams

and a ZDD D represents a family [[D]] of subsets of X by

[[D]] = { [[π]] | π is a path from the root to the >-terminal of D } .

There can be different ZDDs that represent the same family of sets. We call a ZDD
reduced if it satisfies the following properties:
• there are no distinct nodes whose 0-children are identical and 1-children are identical,
• there is no node whose 1-child is the ⊥-terminal.

If a ZDD violates the first condition, such two nodes can be merged. If a ZDD violates
the second condition, such a node v can be suppressed and the edges pointing to v can
be redirected to the 0-child of v. Let us call the former merging reduction and the latter
zero-suppression reduction. Those reduction operations do not change the semantics of the
ZDD. It is known that for any family of sets over X with a fixed ordering, a reduced ZDD
is minimum and unique up to isomorphism (Minato, 1993).

One can represent a subset Y of X by a binary string b1 . . . bm ∈ {0, 1}m such that bi = 1
iff xi ∈ Y . Moreover by identifying a ZDD D and the indicator function {0, 1}m → {⊥,>}
of the represented set family, we write D(b1 . . . bm) = > if the corresponding set is in [[D]].
Moreover, we say that a binary string b1 . . . bk ∈ {0, 1}≤m reaches a node v in D if there is
a path π from the root to v such that [[π]] = {xi ∈ X | bi = 1 } and v is labeled with xk+1,
assuming that the terminal nodes are labeled with xm+1. The set of strings that reach some
nodes in D is denoted as Reach(D). For two binary strings p, q ∈ {0, 1}≤m of the same
length, we write p ≈D q if D(pr) = D(qr) for any r ∈ {0, 1}m−|p|.

Fig. 3 shows a ZDD D∗ on the left bottom corner, for which [[D∗]] = {{x3}, {x1, x2},
{x1, x3}, {x1, x2, x3}}.

Lemma 1 Let D be a reduced ZDD and p ∈ {0, 1}<m a binary string. We have p ∈
Reach(D) if and only if there is r such that D(p1r) = >. For any p1, p2 ∈ Reach(D), p1
and p2 reach the same node if and only if p1 ≈D p2. The number of nodes of D is exactly
the number of equivalence classes in Reach(D)/ ≈D, unless [[D]] = 2X or [[D]] = ∅.

2.2. Query learning

We will work under the learning model proposed by Angluin (1987). Hereafter we fix our
learning target to be a reduced ZDD D∗. A learner can ask two types of queries to the
teacher, called an equivalence query (EQ) and a membership query (MQ). An EQ instance
is a ZDD D and the teacher answers Yes if D(p) = D∗(p) for all p ∈ {0, 1}m. Otherwise,
the teacher gives a counterexample r ∈ {0, 1}m such that D(r) 6= D∗(r). An MQ instance is
an arbitrary string p ∈ {0, 1}m, to which the teacher answers whether D∗(p) = >. Through
communication with the teacher, the learner must identify D∗.

3. Data Structures for Learning ZDDs

Following Nakamura (2005), we use two types of auxiliary data structures when learning a
ZDD. One is an augmentation of a ZDD, which we call a ZDD with access strings (ZDDAS),
and the other is a collection T of binary trees T0, . . . , Tm, called classification forest/trees.
Those data structures will be monotonically expanded during learning.

3

An efficient query learning algorithm for zero-suppressed binary decision diagrams

3.1. ZDD with Access Strings

A ZDDAS S is obtained from a ZDD D with the following augmentation.
• If the root of D is not labeled with x1, we add a dummy root node with label x1 in
S. The dummy root of S has only one child, which is the root of D, connected by a
0-edge.
• Edges have an extra label. If a b-edge goes from a node labeled with xi to another

with xj , the edge is labeled with b0j−i−1. In this labeling, we assume that the terminal
nodes are labeled with xm+1.
• Each internal node v labeled with xi has another label of a binary string p ∈ {0, 1}i−1

called an access string and no distinct nodes have the same access label.
• The access strings of the ⊥-terminal and >-terminal nodes are ⊥ and >, respectively.

By stripping the extra labels and removing the dummy node (if exists) from S, one obtains
the original ZDD D, which we will denote by S̃. Our algorithm maintains a ZDDAS S
instead of a ZDD and asks an EQ on S̃. Since no distinct nodes can have the same access
string, we will use the access string as the name of a node in S. Note that the extra label of
each edge is determined by the labels of the nodes, so this is redundant but convenient to
decide the node where p reaches without paying attention to the labels xi on nodes. On the
other hand, the choice of an access string is arbitrary, so different ZDDAS may correspond
to the same ZDD, but those strings give us a guide to grow the ZDDAS. We would like S
to finally satisfy that for any string p ∈ {0, 1}<m and any internal node q in S
• p reaches q in S if and only if p ≈D∗ q

and that for any string p ∈ {0, 1}m
• p reaches > in S if and only if D∗(p) = >.

Note that we do not guarantee that S̃ is reduced in the middle of learning, but it will be
reduced at the end of learning.

We denote an edge in S labeled with q that goes from a node p to r by a triple (p, q, r).
The sets of nodes and edges of S are denoted by V and E, respectively. We define Vi =
V ∩ {0, 1}i for i < m and Vm = {⊥,>}. At the beginning of learning, our algorithm has
a ZDDAS with only a dummy and the terminal nodes. We add a non-dummy node with
label p to V only when we find an evidence that shows
• p ∈ Reach(D∗), which is witnessed by a string r such that D∗(p1r) = > (thus zero-

suppression reduction does not apply to p),
• q 6≈D∗ p for every q ∈ V|p|, which is witnessed by a string rq such that D∗(prq) 6=
D∗(qrq) (thus merging reduction does not apply to p and q).

3.2. Classification Trees

For each 0 ≤ i ≤ m, we have a binary tree called a classification tree Ti. We will use
classification trees to determine where outgoing edges of a node in S should point. Each Ti
works as a function from {0, 1}i to Vi ∪ {µ}, where µ is a special symbol different from any
of 0, 1,⊥,>. It will be guaranteed that Ti(p) = q if p ≈D∗ q and q ∈ V , and that Ti(p) = µ
if p /∈ Reach(D∗).

Formally, each Ti for 0 < i < m satisfies the following properties (see Fig. 3).
• Each internal node is labeled by a string of length m− i.
• Each internal node has two children, called ⊥-child and >-child.

4

An efficient query learning algorithm for zero-suppressed binary decision diagrams

• Ti has one special leaf node labeled by the special symbol µ, which we call the µ-leaf.
• Every internal node on the path from the root to the µ-leaf is labeled with a string

starting with 1.
• Every node on the path from the root to the µ-leaf except the root is a ⊥-child of its

parent.
• Each leaf node but the µ-leaf is labeled by an element of Vi.
• No distinct leaves in Ti have the same label.

On the other hand, T0 is just a node, which is labeled either µ (when the root of S is a
dummy) or ε (otherwise). Tm has just three nodes and no µ-leaf. The root of Tm is labeled
with ε and its ⊥-child and >-child are labeled with ⊥ and >, respectively.

Each classification tree Ti classifies strings p of length i in the following manner with
the aid of MQs. We start from the root of Ti. If the current internal node is labeled with
q, we ask the MQ on pq and go to the D∗(pq)-child. When we reach a leaf node, return the
node label. Therefore, classifying a string p ∈ {0, 1}m by Tm is nothing but an MQ on p.
For 0 < i < m, we get Ti(p) 6= µ if and only if we find a witness r ∈ 1{0, 1}m−i−1 such that
D∗(pr) = > on the path from the root to µ. We remark that to know the value Ti(p) for
p ∈ {0, 1}i, one requires at most |Vi| MQs.

Since distinct Ti and Tj have disjoint domains, we can omit the subscript and simply
write T (p) for Ti(p) and call T the classification forest.

3.3. Invariant Properties

When learning D∗, our algorithm maintains the ZDDAS S and classification forest T so
that they satisfy the following invariant properties.
C1. (1) V̂ ⊆ Reach(D∗), where V̂ is obtained by removing a dummy and terminal nodes

from V ,
(2) p 6≈D∗ q for any distinct p, q ∈ V̂ ,

C2. (1) T (p) = p for all p ∈ V̂ ,
(2) T (p) = µ for any p ∈ {0, 1}<m \ Reach(D∗),

C3. (p, b0k, T (pb0k)) ∈ E for the smallest k satisfying T (pb0k) 6= µ, for each p ∈ V̂ and
b ∈ {0, 1}. Moreover, if ε is a dummy node, (ε, 0k, T (0k)) ∈ E for the smallest k
satisfying T (0k) 6= µ.

Lemma 2 If our ZDDAS S has n non-dummy nodes, where n is the number of nodes of
D∗, then S̃ is equivalent to D∗.

Proof For each node p ∈ V̂ , let ψ(p) be the node of D∗ where p reaches. By C1(1),
this is well-defined and ψ(p) is labeled with x|p|+1 in D∗. Moreover, define ψ(⊥) = ⊥ and
ψ(>) = >.1 Then ψ is a bijection from non-dummy nodes of S to the nodes of D∗ by C1(2).

To prove S̃ and D∗ are isomorphic, we show that for any p ∈ V̂ and q ∈ V , if D∗ has a
b-edge from ψ(p) to ψ(q), then (p, b0j , q) ∈ E for j = |q| − |p| − 1, assuming |⊥| = |>| = m.
Suppose q is not a terminal node. Since both pb0j and q reach the same node ψ(q) in D∗, we
have pb0j ≈D∗ q. By the definition of classification by T , we have T (pb0j) = T (q), and this
is actually T (pb0j) = T (q) = q by C2(1). In addition, for any j′ < j, pb0j

′
/∈ Reach(D∗),

which implies T (pb0j
′
) = µ by C2(2). Therefore, we conclude (p, b0j , q) ∈ E by C3.

1. We use the same letters to represent the terminal nodes of both S and D∗.

5

An efficient query learning algorithm for zero-suppressed binary decision diagrams

Suppose thatD∗ has a b-edge from ψ(p) to a terminalB ∈ {⊥,>}. ThenD∗(pb0
m−|p|−1) =

B. By definition Tm(pb0m−|p|−1) = B. In addition, for any j′ < j, pb0j
′
/∈ Reach(D∗), which

implies T (pb0j
′
) = µ by C2(2). Therefore, we conclude (p, b0j , B) ∈ E by C3.

4. Algorithm

We present our learning algorithm in this section, whose pseudo codes are shown as Algo-
rithms 1 to 4, where S and T are treated as global variables. A running example is described
in Section 5.

Algorithm 1: Learning ZDDs

Let (S, T) := Initial-Hypothesis(D∗(0
m));

Let A := EQ(S̃);
while A 6= Yes do

call Update-Hypothesis(A);

Let A := EQ(S̃);

end

output S̃;

4.1. Initial Hypothesis

Each classification tree Ti for i < m is initialized to be the tree with a single node labeled
µ, while Tm is a tree with three nodes respectively labeled with ε,> and ⊥. The initial
ZDDAS has only a dummy node and the terminal nodes, V = {ε,⊥,>}. By making the
first MQ on 0m, we let E = {(ε, 0m, D∗(0m))}.

4.2. Updating Hypothesis

Suppose the learner has got a counterexample r ∈ {0, 1}m to an EQ on S̃. If our ZDDAS
S has a dummy node and r starts with 1, this means that S(r) = ⊥ 6= D∗(r) = > and
ε ∈ Reach(D∗). In this case, we promote ε to be non-dummy. Then we need to give a 1-edge
to this node ε. We search for the smallest j such that T (10j) 6= µ and add (ε, 10j , T (10j))
to E. The unique node of the classification tree T0 is relabeled with ε.

Suppose otherwise. The string r may but not necessarily reach a terminal node in
S. For technical convenience, we assume D∗(⊥) = ⊥, D∗(>) = > and |⊥| = |>| = m
hereafter. Let p0, . . . , pk be (the access labels of) the nodes that prefixes of r reach, where
p0 = ε is the root, |pi−1| < |pi| for i = 1, . . . , k, and pk is the last node where a prefix
of r reaches in S. Let ri for i = 0, . . . , k be the suffix of r of length m − |pi|. We know
that D∗(r) 6= S(r). Our learner asks an MQ on pkrk. Then either D∗(pkrk) = D∗(r) or
D∗(pkrk) = S(r) holds. If pk ∈ {⊥,>}, then rk is empty and we assume pkrk = pk. In this
case, we do not need to ask a teacher to get the value D∗(pk). By definition it is S(r) and
thus D∗(pkrk) = S(r) 6= D∗(r).

(Case 1) Suppose D∗(r) = D∗(pkrk) 6= S(r). In this case, pk is not terminal. Thus r
does not reach a terminal in S. This means that S(r) = ⊥ and D∗(pkrk) = > and that

6

An efficient query learning algorithm for zero-suppressed binary decision diagrams

no prefix of rk labels an outgoing edge of pk. There are b ∈ {0, 1}, i ≥ 0 and r′k ∈ {0, 1}∗
such that rk = b0i1r′k and the b-edge of pk is labeled with b0j for some j > i. We call
EdgeSplit(pk, b0

i, 1r′k).
(Case 2) Suppose D∗(r) 6= D∗(pkrk) = S(r). One can find j by binary search such that

D∗(r) = D∗(p0r0) = D∗(pjrj) 6= D∗(pj+1rj+1) = D∗(pkrk) = S(r)

with the aid of MQs on piri for at most dlog ke different numbers i. Let q be such that
(pj , q, pj+1) ∈ E, i.e., rj = qrj+1. Now rj+1 witnesses that pjq 6≈D∗ pj+1, so the edge
labeled by q from pj should not point to pj+1. We call NodeSplit(pj , q, rj+1). We note that
pj cannot be the root node. (Otherwise, it must hold pjq = q = pj+1 by C2(1) and C3
and thus pjq ≈D∗ pj+1.) Moreover, pj+1 is not terminal. (Otherwise, we would not have
(pj , q, pj+1) ∈ E by C3.)

Algorithm 2: Update-Hypothesis

Input: a counterexample r
if T0(ε) = µ and r ∈ 1{0, 1}m−1 then

Add (ε, 10j , T (10j)) to E for the smallest j such that T (10j) 6= µ;
Relabel the unique node of T0 with ε;

else
Let (p0, p1, . . . , pk) be the sequence of nodes where prefixes of r reach in S;
if D∗(r) = D∗(pk · suf(r,m− |pk|)) then

Let q ∈ {0, 1}0∗ and r′ be such that suf(r,m− |pk|) = q1r′;
call EdgeSplit(pk, q, 1r

′);

else
Find i such that D∗(pi · suf(r,m− |pi|)) 6= D∗(pi+1 · suf(r,m− |pi+1|));
call NodeSplit(pi, q, suf(r,m− |pi+1|)) for (pi, q, pi+1) ∈ E;

end

end

4.3. EdgeSplit

The function EdgeSplit takes three strings p ∈ V , q ∈ {0, 1}0∗ and r ∈ 1{0, 1}∗ such that
• |pqr| = m,
• (p, q0j , p′) ∈ E for some j > 0 and p′ ∈ V ,
• D∗(pqr) = >.

While pq does not reach a node in the current S, the fact D∗(pqr) = > witnesses pq ∈
Reach(D∗). EdgeSplit adds a new node pq to V and replaces (p, q0j , p′) with (p, q, pq) in E
(see Fig. 1(a)). We need to

1. determine the nodes that the two edges of pq should point to,
2. redirect some edges towards the new node pq.

For the first point, we add a 0-edge (pq, 0j , p′) and a 1-edge (pq, 10k, T (pq10k)) to E, for
the smallest k such that T (pq10k) 6= µ.

Concerning the second point, S may have nodes whose edges should point to pq but
did not before creating the node because of the absence of that node. We modify the

7

An efficient query learning algorithm for zero-suppressed binary decision diagrams

௝

௝௞

(a)

|௣௤| |௣௤|

(b)

Figure 1: EdgeSplit(p, q, r) updates (a) ZDDAS S and (b) classification tree T|pq|.

classification tree T|pq| by replacing the µ node with the tree of height 1, whose root, ⊥-
child and >-child are labeled with r, µ and pq, respectively (see Fig. 1(b)).

Then for every (s, t, u) ∈ E such that |s| < |pq| < |st|, we classify st′ by T|pq| where t′ is
the prefix of t such that |st′| = |pq|. Since st′ was classified into µ before updating T , it is
enough to ask an MQ on st′r to know the value of T (st′). If D∗(st

′r) = >, then we update
E to be (E \ {(s, t, u)}) ∪ {(s, t′, pq)}.

Algorithm 3: EdgeSplit

Input: p ∈ V , q ∈ {0, 1}0∗ and r ∈ 1{0, 1}∗ such that D∗(pqr) = > and (p, q0j , p′) ∈ E for
some j > 0 and p′ ∈ V

Add pq to V ;

Let E := (E \ {(p, q0j , p′)}) ∪ {(p, q, pq), (pq, 0j , p′), (pq, 10k, T (pq10k))} for the smallest k
such that T (pq10k) 6= µ;
Replace the µ-node of T|pq| with a tree of height 1 whose root, ⊥-child and >-child are

labeled with r, µ and pq, respectively;
for each (s, t, u) ∈ E such that |s| < |pq| < |st| do

let t′ = pre(t, |pq| − |s|);
if D∗(st

′r) = > then Let E := (E \ {(s, t, u)}) ∪ {(s, t′, pq)};
end

4.4. NodeSplit

The function NodeSplit takes p ∈ V \ {ε}, q ∈ {0, 1}0∗, r ∈ {0, 1}+ such that
• |pqr| = m,
• (p, q, p′) ∈ E for some non-terminal node p′,
• D∗(pqr) 6= D∗(p

′r).
That is, currently S connects p and p′ by q but the suffix r witnesses that pq 6≈D∗ p

′.
NodeSplit solves this problem by splitting the node p′ into p′ and pq. The new node pq will
be connected from p by an edge labeled by q, i.e., E is updated to (E\{(p, q, p′)})∪{(p, q, pq)}
(see Fig. 2(a)). To complete the modification, we need to

1. determine the nodes that the two outgoing edges of pq should point to,
2. reconnect incoming edges of p′ to pq if necessary.

For the first issue, we should find the smallest j0 and j1 such that T (pq00j0) 6= µ and
T (pq10j1) 6= µ. We then add two edges (pq, 00j0 , T (pq00j0)) and (pq, 10j1 , T (pq10j1)) to E.

8

An efficient query learning algorithm for zero-suppressed binary decision diagrams

(a)

∗
ᇱ

∗

|௣ᇱ| |௣ᇱ|

(b)

Figure 2: NodeSplit(p, q, r) updates (a) ZDDAS S and (b) classification tree T|pq|.

To achieve the second, we modify the classification tree T|p′| and then reexamine every
edge currently coming into p′, which may be redirected towards pq. The leaf of T|p′| labeled
by p′ is now replaced by a subtree of height 1, whose root, D∗(p

′r)-child and D∗(pqr)-child
are labeled with r, p′ and pq, respectively (see Fig. 2(b)). For each (s, t, p′) ∈ E, since st
was classified into p′ before updating T , it is enough to ask an MQ on str to obtain T|p′|(st).
If D∗(str) 6= D∗(p

′r), then we update E to be (E \ {(s, t, p′)}) ∪ {(s, t, pq)}.

Algorithm 4: NodeSplit

Input: p ∈ V \ {ε}, q ∈ {0, 1}0∗ and r ∈ {0, 1}m−|pq| such that (p, q, p′) ∈ E and
D∗(pqr) 6= D∗(p

′r) for some non-terminal node p′

Add pq to V ;
Let E := (E \ {(p, q, p′)}) ∪ {(p, q, pq), (pq, 00j0 , T (pq00j0)), (pq, 10j1 , T (pq10j1))} for the
smallest jb such that T (pqb0jb) 6= µ for b = 0, 1;
Replace the node labeled with p′ of T|p′| with a tree of height 1 whose root, D∗(p

′r)-child

and D∗(pqr)-child are labeled with r, p′ and pq, respectively;
for each (s, t, p′) ∈ E do

if D∗(str) = D∗(pqr) then Let E := (E \ {(s, t, p′)}) ∪ {(s, t, pq)};
end

5. Example Run

Suppose that our learning target is the ZDD D∗ in Fig. 3, where the universe is {x1, x2, x3}.
The learner asks the first MQ on 000. Since the answer is D∗(000) = ⊥, the initial ZDDAS
has a dummy node connected with the ⊥-terminal (Fig. 3(a)). Against the EQ on S̃1,
the teacher may return a counterexample 110 for which D∗(110) = > 6= S1(110) = ⊥. It
reveals that ε ∈ Reach(D∗) and thus ε is promoted to a non-dummy node. We need to
give a 1-edge to ε. Since T1(1) = T2(10) = µ and T3(100) = ⊥, we decide to connect ε
with ⊥-terminal with the 1-edge labeled with 100 (Fig. 3(b)). Note that at this time the
counterexample 110 is still misclassified by the learner’s hypothesis. Hence the teacher may
return the same counterexample again to the EQ on S̃2. Then EdgeSplit(ε, 1, 10) is called.
We create a node 1 and edges (1, 00,⊥), (1, 10,>), since T3(100) = ⊥ and T3(110) = >.
Here the suffix 10 witnesses 1 ∈ Reach(D∗). Accordingly we modify T1 so that it classifies
strings of length 1 using the witness 10 (Fig. 3(c)). When 111 is returned to the EQ on
S̃3, we call EdgeSplit(1, 1, 1). We create a node 11 and edges (11, 0,>), (11, 1,>), since

9

An efficient query learning algorithm for zero-suppressed binary decision diagrams

10

1𝜇
⊥ ⊤

1

11𝜇
⊥ ⊤

10

1𝜇
⊥ ⊤

𝜀

⊤⊥

⊥ ⊤

𝜀

⊤⊥

⊥ ⊤

ଵ
10

1

ଶ

ଷ

10

0

ଷ 1
0

ଵ
100

1

𝜀

1

ଶ

ଷ

10

0

11ଷ 1
0

10

0

ଵ
1

00
1

𝜀

1

ଶ

ଷ

10

11

ଵ
1000

1

𝜀

10

ଶ

00

𝜀

𝜇

𝜇

𝜇

𝜀

𝜇

𝜇

𝜇

𝐷∗ = {001, 101, 110, 111} 𝑆ହ෪ = {001, 101, 110, 111} 𝑆ସ෪ = {000, 001, 100, 101, 110, 111}

𝑆ଷ෪ = {110}𝑆ଵ෩ = ∅

𝑟 = 110
counterexample

𝑟 = 110

𝑟 = 111

𝑟 = 100

𝑆ଵ 𝑆ଶ 𝑆ଷ

𝑆ସ𝑆ହ𝐷∗

𝑇ଵ

𝑇ଶ

𝑇ଷ

𝑇ଵ

𝑇ଶ

𝑇ଷ

𝑇ଵ

𝑇ଶ

𝑇ଵ

𝑇ଶ

𝑇଴

𝑇ଵ

𝑇ଶ

𝑇ଷ

𝑇଴ 𝑇଴

𝑆ଶ෪ = ∅

(a) (c)(b)

(e) (d)target

0

1110

1

𝜇

ଵ

000

𝜀 ଵ

000

𝜀

100

𝜀
𝜀

⊤⊥

⊥ ⊤

10

1𝜇
⊥ ⊤

⊥ ⊤

⊥ ⊤

Figure 3: A running example. Access strings are underlined. Classification trees T0 and T3
are omitted in (d) and (e), because they do not change from the previous steps.

T3(110) = T3(111) = >. Here the suffix 1 witnesses 11 ∈ Reach(D∗). Accordingly we
modify T2 using 11. We reexamine edges that “skip” nodes labeled x3 so far; namely, the
0-edges of the nodes ε and 1. According to the classification results T2(00) = T2(10) =
11, the learner reconnects those 0-edges towards the new node 11. We have obtained S4
(Fig. 3(d)). The teacher may return 100 to the EQ on S̃4. The suffix 0 witnesses 10 6≈D∗ 11
by D∗(100) = ⊥ 6= D∗(110) = >. We call NodeSplit(1, 0, 0) and create a node 10 with
edges (10, 0,⊥) and (10, 1,>). The edges pointing to 11 should be reexamined using the
key suffix 0. Those are (ε, 00, 11), (1, 0, 11), (1, 1, 11). Since D∗(000) = D∗(100) = ⊥ and
D∗(110) = >, the first two will be redirected to 10 (Fig. 3(e)). Then the teacher will answer
Yes towards the EQ on S̃5.

6. Correctness and Efficiency

This section gives a formal proof for the correctness and the efficiency of our algorithm. By
Lemma 2, it is enough to show the following lemma for the correctness.

Lemma 3 S and T always satisfy the conditions shown in Section 3.3.

Proof For the initial ZDDAS S and classification forest T , all the conditions are satisfied,
since V̂ = ∅ and each Ti is just a µ-leaf for all i < m. Suppose that we update Sold and
T old to Snew and T new, respectively, where Sold and T old satisfy the conditions in concern.

10

An efficient query learning algorithm for zero-suppressed binary decision diagrams

Suppose that a dummy node ε is promoted by getting a counterexample r ∈ 1{0, 1}m−1.
C1. (1) For ε ∈ V new, we have ε ∈ Reach(D∗), which is witnessed by D∗(r) = >.

(2) The only q such that ε ≈D∗ q is ε itself.
C2. (1) The label of the unique node of T0 is changed to ε, so we have T new

0 (ε) = ε.
(2) We know that ε ∈ Reach(D∗).

C3. The 1-edge of ε is determined so that it satisfies C3.
Suppose that EdgeSplit(p, q, r) is called, where p ∈ V old, q ∈ {0, 1}0∗, r ∈ 1{0, 1}∗,

D∗(pqr) = >, (p, q0j , p′) ∈ Eold for some j > 0 and p′ ∈ V old.
C1. (1) For pq ∈ V new, we have pq ∈ Reach(D∗), which is witnessed by D∗(pqr) = >.

(2) Let s ∈ V̂ old
|pq| . Then by T old

|pq|(s) = s (C2(1)) and T old
|pq|(pq) = µ (C3), their lowest

common ancestor in T old
|pq| is an internal node, which is the case for T new

|pq| . Let r′ be

the label of that node. Then we have D∗(sr
′) 6= D∗(pqr

′), which shows pq 6≈D∗ s.
C2. (1) Since T old

|pq|(pq) = µ, the modification on T|pq| causes T new
|pq| (pq) = pq.

(2) For s ∈ {0, 1}<m \ Reach(D∗), we have D∗(sr) = ⊥ and T old
|pq|(s) = µ. Hence

T new
|pq| (s) = µ.

C3. We create new edges for the new node pq as C3 instructs. We reexamine existing
edges in accordance with C3.

Suppose that NodeSplit(p, q, r) is called, where p ∈ V old \ {ε}, q ∈ {0, 1}0∗, r ∈ {0, 1}+,
(p, q, p′) ∈ Eold for some p′ ∈ V old and D∗(pqr) 6= D∗(p

′r).
C1. (1) For pq ∈ V new, we have T old(pq) = p′ (C3), which means pq ∈ Reach(D∗).

(2) Let s ∈ V̂ old
|pq| . If s = p′, we have pq 6≈D∗ s by D∗(pqr) 6= D∗(p

′r). For s 6= p′, by

T old
|pq|(s) = s (C2(1)) and T old

|pq|(pq) = p′ (C3), their lowest common ancestor in T old
|pq| is

an internal node and it is the same for T new
|pq| . Let r′ be the label of that node. Then

we have D∗(sr
′) 6= D∗(pqr

′), which shows pq 6≈D∗ s.
C2. (1) Since T old

|pq|(pq) = p′, the modification on T|pq| causes T new
|pq| (pq) = pq and T new

|pq| (p′) =

p′. Classification of the other nodes s /∈ {pq, p′} are not affected.
(2) T old

|pq|(s) = µ implies T new
|pq| (s) = µ for any s ∈ {0, 1}|pq|.

C3. We create new edges for the new node pq as C3 instructs. We reexamine existing
edges in accordance with C3.

Theorem 4 For an arbitrary reduced ZDD D∗, our algorithm learns ZDDs with n EQs
and at most n(4n+ blogmc) MQs with a MAT, where m is the cardinality of the universe
and n is the number of internal nodes of D∗.

Proof Algorithm creates one non-dummy node for each EQ (including promotion of the
dummy to a non-dummy). By Lemma 2, the number of EQs required is exactly n.

Let us count the number of MQs. Suppose that a counterexample is given. If it promotes
a dummy node to non-dummy, we determine the end of the 1-edge of the root by making
at most n MQs to get the smallest k such that T (10k) 6= µ. Otherwise, we make an MQ to
decide which of the procedures EdgeSplit (Case 1) and NodeSplit (Case 2) should be called.

(Case 1) EdgeSplit involves MQs for two kinds of tasks. To determine the nodes where
the 1-edge of the new node should point requires at most n MQs. To redirect an existing
edge requires one MQ. There can be at most 2(n − 1) edges to examine, so 2(n − 1) MQs
in total. Hence, an execution of EdgeSplit makes at most (3n− 2) MQs.

11

An efficient query learning algorithm for zero-suppressed binary decision diagrams

(Case 2) To find the right argument of NodeSplit by binary search, we require dlogme
MQs. NodeSplit has two kinds of tasks that require MQs. To determine the nodes where
the two edges of the new node should point requires at most 2n MQs. To reconnect an
existing edge requires one MQ. There can be at most 2(n−1) edges to examine, so 2(n−1)
MQs in total. Hence, an execution of NodeSplit makes at most (4n+ dlogme − 2) MQs.

All in all, the learner asks at most n(4n+ blogmc) MQs.

7. Concluding Remarks

We have proposed an efficient MAT learning algorithm for ZDDs based on the algorithm for
BDDs by Nakamura (2005). Nakamura’s algorithm requires n EQs and at most 2n(dlogme+
3n) MQs. The difference of the numbers of required MQs comes from the difference of the
reduction rules of ZDDs and BDDs. While a ZDD suppresses a node v whose 1-child is the
⊥-terminal from a decision diagram, a BDD suppresses a node v whose 0-child and 1-child
are the same. Accordingly the condition on a string p ∈ {0, 1}<m to be in Reach(C∗) for
a BDD C∗ is to admit q ∈ {0, 1}m−|p|−1 such that C∗(p0q) 6= C∗(p1q). Thus, we need two
MQs on p0q and p1q to be sure that p ∈ Reach(C∗). Recall that for a ZDD D∗, one fact
D∗(p1r) = > is enough to see p ∈ Reach(D∗). This makes the required numbers of MQs to
classify strings using the classification forest different.

References

D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87–106, 1987.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

M. Kearns and U. Vazirani. An introduction to computational learning theory. The MIT
Press, 1994.

D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009.

S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
Proceedings of the 30th Design Automation Conference, pages 272–277. ACM, 1993.

A. Nakamura. An efficient query learning algorithm for ordered binary decision diagrams.
Information and Computation, 201:178–198, 2005.

R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103(2):299–347, 1993.

12

	Introduction
	Preliminaries
	Zero-suppressed binary decision diagram
	Query learning

	Data Structures for Learning ZDDs
	ZDD with Access Strings
	Classification Trees
	Invariant Properties

	Algorithm
	Initial Hypothesis
	Updating Hypothesis
	EdgeSplit
	NodeSplit

	Example Run
	Correctness and Efficiency
	Concluding Remarks

