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Abstract

We study the problem of collaborative clustering. This problem is concerned with a set of
items grouped into clusters that we wish to recover from ratings provided by users. The
latter are also clustered, and each user rates a random but typical small number of items.
The observed ratings are random variables whose distributions depend on the item and
user clusters only. Unlike for collaborative filtering problems where one needs to recover
both user and item clusters, here we only wish to classify items. The number of items rated
by a user can be so small that anyway, estimating user clusters may be hopeless. For the
collaborative clustering problem, we derive fundamental performance limits satisfied by any
algorithm. Specifically, we identify the number of ratings needed to guarantee the existence
of an algorithm recovering the clusters with a prescribed level of accuracy. We also propose
SplitSpec, an algorithm whose performance matches these fundamental performance limit
order-wise. In turn, SplitSpec is able to exploit, as much as this is possible, the users’
structure to improve the item cluster estimates.

Keywords: Collaborative clustering, sample complexity, spectral method

1. Introduction

Cluster analysis consists of dividing a set of items into a small number of meaningful and
useful groups based on the data that describe the items. In its classical form, the item
description comes in the form of a feature vector, and with such data, clustering can be
efficiently performed for instance using the celebrated k-means algorithm or its variants (if
properly initialized) (Bachem et al., 2016). In this paper, we investigate a clustering task
where items are described by labels or ratings independently provided by users. We assume
here that both items and users are clustered, in the sense that the rating statistics of an
item by a given user only depend on the item and user clusters. Our clustering task has
similarities with Collaborating Filtering (CF) (Ekstrand et al., 2011), a critical tool used
in recommender systems. However, CF aims at predicting the unobserved ratings, i.e., at
assessing whether a user would like or dislike an item. CF hence often reduces to a matrix
completion problem, which in turn requires to be able to estimate the clusters of both items
and users.
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In contrast here, we only wish to recover the item clusters. In particular, we may
consider scenarios where users provide ratings only a very small subset of items, making it
almost impossible to efficiently reconstruct user clusters. Nevertheless, our objective is to
exploit as much as we can the users’ structure to accurately estimate the item clusters. We
refer to this task as Collaborative Clustering. This term is not new, and has been used in
other contexts (Yue et al., 2014); but we believe that it faithfully captures the nature of
our problem.

For the collaborative clustering problem, we derive fundamental sample complexity lower
bounds, expressing the number of ratings that any algorithm (even optimal) would require
to cluster items with a given prescribed error rate. We also present SplitSpec, a clustering
algorithm that achieves this fundamental performance limit order-wise. SplitSpec hence ef-
ficiently exploits users’ structure, and performs well in regimes where typical CF algorithms
would fail (if the number of ratings per user is low) and where classical clustering algorithms
such k-means and its variants can hardly discover the items’ structure (if the ratings of an
item averaged over users do not depend on the cluster of this item).

1.1. Model and Objectives

Consider a set of n items V = [n] := {1, . . . , n} partitioned into a set of K disjoint clusters
V1, . . . ,VK , i.e.,

⋃K
i=1 Vi = V and Vi ∩Vj = ∅, for all i 6= j. Each item v ∈ V is assigned to a

cluster Vi with probability αi > 0 independently of other items. The number K of clusters
and the distribution α = (α1, ..., αK) of items into clusters are assumed not to depend on
the number of items n, so that each cluster has a size linearly growing with n in average.
Without loss of generality, we further assume that α1 ≤ α2 · · · ≤ αK . The objective is to
recover the clusters by collecting and analyzing the “ratings” of items provided by a set
U = [m] of users. The latter can be categorized into L types, where each type defines
the rating statistics for items in the various clusters. Any given user is of type ` with
probability β` > 0, chosen independently of other users. The distribution β = (β1, ..., βL)
does not depend on the number of items n, nor on the number of users m. The types of
the various users are assumed to be unknown.

Rating statistics. For any item-cluster i and user-type `, if we have access to the rating
Xuv of item v ∈ Vi by a type-` user, then Xuv = 1 (like) with probability p`i, and Xuv = 0
(dislike) with probability 1 − p`i. The parameter p = (p`i)`∈[L],i∈[K] defining the rating
statistics is unknown, and does not depend on n nor m. We make the following mild
assumption: (A1) there exists a constant η ≥ 1 such that for every i, j ∈ [K] and ` ∈ [L],
p`i
p`j
≤ η and 1−p`i

1−p`j ≤ η. (A1) just states some homogeneity in the average ratings of items

across clusters.

Available ratings. Each user provides ratings for at most w items. We consider two
scenarios:
(i) Random assignment: the w items assigned to a given user are chosen uniformly at ran-
dom, and independently of the items assigned to the other users. Each user u ∈ [m] is first
assigned a set Wu of w items chosen uniformly at random. Then user u rates each item
in Wu with probability q > 0, independently of other items. The set of items for which
user u provided ratings is denoted by Ru. The latter is of average cardinality wq. w and q
may depend on n and m. This model is simple, and yet captures some randomness in the
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number of items rated by the various users. We will often make the following assumption:
(A2) wq ≥ 1. (A2) holds as soon as each user provides at least one rating, which seems
very reasonable (we can remove from the dataset users who do not provide any rating). We
will however also discuss the case where wq < 1.
(ii) Adaptive assignment: users are here supposed to rate items sequentially, and we have
the ability to choose the w items to be rated by the current user depending on the rat-
ings provided by the previous users. However, the paper mainly focuses on the random
assignment scenario.

In summary, the model on the way ratings are generated and made available is param-
eterized by α, β, p, w and q. To simplify the notations, we denote by M = (α, β, p, w, q)
the model parameters.

Clustering algorithms and their performance. In the random assignment scenario,
a clustering algorithm π takes as input the available ratings and output a set of disjoint
clusters V̂1, . . . , V̂K . In the adaptive assignment scenario, the algorithm also decides on the
items to be rated by each user (depending on ratings provided by previous users). In both
cases, the performance of the algorithm π is assessed through the number επ(n,m) of items
that it misclassifies:

επ(n,m) = min
θ

K∑
k=1

∣∣∣V̂k \ Vθ(k)

∣∣∣
where the minimum is taken over all permutations θ of [K], and where for any set A, |A|
denotes the cardinality of A.

1.2. Main Results

In this paper, we derive fundamental performance limits satisfied by any clustering algorithm
under random and adaptive assignments (Theorems 1 and 2, respectively). More precisely,
we provide a lower bound on the sample complexity of our clustering problem. The sample
complexity is defined as the number of ratings (cumulated over users) required to get an
accurate cluster detection. We also present SplitSpec, a clustering algorithm that achieves
these limits order-wise (Theorem 3).

Sample complexity – Random assignment. To formalize our misclassification lower
bound, we need to introduce the notion of inter-cluster divergence Dij(M) for clusters
i 6= j. This divergence, precisely defined in Section 3.1, depends on the model parameters
M = (α, β, p, w, q) and characterizes the hardness of distinguishing items from two clusters
i and j solely based on the available ratings. Small value of Dij(M) indicates that items
from clusters i and j are difficult to distinguish. The next theorem establishes the direct
connection between the average number of misclassified items and the minimal inter-cluster
divergence defined as D(M) = mini 6=j Dij(M).

Theorem 1 Assume that M satisfies Assumption (A1), and consider the random assign-
ment scenario. Further assume that there exists a clustering algorithm π that misclassifies at
most s = o(n) items on average, i.e., lim supn→∞

E[επ(n,m)]
s ≤ 1. Then, when wq = o(

√
n),

lim inf
n→∞

mwqD(M)

n log(n/s)
≥ 1 .
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Furthermore, when wq = Ω(
√
n), mwq = Ω(n log n/s).

We make the following important remarks on the above theorem.
1. The theorem implies that to be able to misclassify s items only, one needs to get the
ratings from at least n log(n/s)/(wqD(M)) users, and hence a sample complexity greater
than n log(n/s)/D(M) (the average number ratings each user is providing is wq).
2. Another important consequence of the theorem is that the number of misclassified items
will grow linearly with the number of items, irrespective of the number of available ratings,
if and only if D(M) = 0 – in which case we say that there are indistinguishable clusters. The
condition for indistinguishability is simple and depends on whether the maximum number of
ratings per user w is equal to or larger than 1 (see Proposition 4): when w = 1, D(M) = 0
iff ∃i 6= j :

∑
` β`(p`i − p`j) = 0, and when w ≥ 2, D(M) = 0 iff ∃i 6= j : ∀`, p`i = p`j . In

other words, when the number of ratings per user is at most 1, then two clusters become
indistinguishable as soon as the average ratings of their items are the same. However when
w ≥ 2, for two clusters to be indistinguishable, their items need to have exactly the same
rating statistics across all user types. Theorem 1 then implies that as soon as w ≥ 2, we
can separate clusters unless they have the same rating statistics.
3. When wq ≥ 1 and D(M) > 0, i.e., when item clusters are distinguishable, it is easy
to check that D(M) is upper and lower bounded by a constant that does not depend
on the model parameters M (see Proposition 5). Hence, our lower bound on the sample
complexity is Cn log(n/s), where C is a constant that does not depend on n, m, and the
model parameters M.
4. As a final remark, observe that when D(M) > 0, the sample complexity exhibits the
same scaling in n, m, and s irrespective of the users’ structure. This scaling does not depend
on the number of user types. This comes as a surprise because it means that as long as
w ≥ 2, we cannot hope to improve the sample complexity (order-wise) by leveraging users’
structure. We will make this statement more precise in Section 3.

Sample complexity – Adaptive assignment. We derive a similar lower bound for
scenarios where the items to be rated can be sequentially selected. To this aim, we need
to introduce the notion of inter-cluster maximal divergence D̃ij(M), see Section 3.3 for a
formal definition. We also define D̃(M) = mini 6=j D̃ij(M).

Theorem 2 Assume thatM satisfies Assumption (A1), and consider the adaptive assign-
ment scenario. Further assume that there exists a sequential item selection and clustering al-
gorithm π that misclassifies at most s = o(n) items on average, i.e., lim supn→∞

E[επ(n,m)]
s ≤

1. Then, when wq = o(
√
n),

lim inf
n→∞

mwqD̃(M)

(α1/3)n log(n/s)
≥ 1 .

We will see that D̃ij(M)/α1 ≥ D̃ij(M) ≥ Dij(M), and hence being able to select the
items that each user rates in an adaptive manner naturally improves our sample complexity
lower bound. Note however that surprisingly, this improvement can be by a constant factor
only, where the lower bound retains the same scaling in n, w, and q as the lower bound in
the random assignment scenario.
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The SplitSpec algorithm and its efficiency. To estimate the item clusters from the
available ratings, we propose SplitSpec, a clustering algorithm that proceeds in two steps:
(i) in the Split step, it constructs from the available ratings an undirected random weighted
graph whose nodes are items. The ratings of each user u are used to add edges in the graph.
To do so, we randomly split the set Wu of user-u’s potential ratings into subgroups. Each
subgroup can then generate an edge in the graph. (ii) In its second step, the algorithm
applies a spectral decomposition of the weight matrix of the graph constructed in the Split
step, and uses the decomposition to estimate the item clusters.

The critical step of SplitSpec is the way the graph is constructed. Our construction
strikes a good trade-off between two objectives: the graph should capture the information
of the available ratings as faithfully as possible; and the entries of the resulting weight matrix
should be as stochastically independent as possible to allow us to analyze the performance
of the algorithm (leveraging results from random matrix theory). Ideally if all the ratings
of a given user were jointly used to construct the graph, we would need to consider graphs
with hyper-edges, where an hyper-edge would be added between all items positively rated
by the user. However with hyperedges, the weight matrix entries would not be independent,
which would make the spectral analysis cumbersome.

The following theorem provides a performance guarantee for SplitSpec when (A2) holds
(i.e., when wq ≥ 1). In Section 4, we also analyze its performance when wq < 1.

Theorem 3 Consider the collaborative model M with the random assignment of items.
Assume that w ≥ 2, wq = o(

√
n), (wq)2m = o(n2), D(M) > 0, and that (A1) and (A2)

hold. For any given s = o(n), there exists a constant C > 0 such that under the SplitSpec
algorithm, when mwq ≥ Cn log(n/s), the number of misclassified items is less than s with
high probability.

In view of the above theorem, SplitSpec exhibits an order-optimal sample complexity
for any s = o(n). Indeed, for any model satisfying (A1) and (A2), the number of ratings
required to get at most s misclassified items under SplitSpec has the same scaling in n, w,
and q as that of the sample complexity lower bound derived in Theorem 1.

The proof of Theorem 3 constitutes one of the main technical contributions of the paper.
It is much more involved than that of existing results on the spectral clustering, e.g. in the
Stochastic Block Model (refer to Section 2 for details). The difficulty arises because the
entries of the weight matrix of our graph are not strictly independent. SplitSpec is actually
designed so as to make this dependency weak enough to be analyzed while preserving most
of the information contained in the set of all available ratings.

2. Related Work

Our paper is concerned with recovering clusters from randomly generated data. This topic
has attracted a lot of attention recently.

The stochastic block model (SBM) (Holland et al., 1983) may be seen as the simplest
way to randomly generate (similarity) data: under this model, the n items are first grouped
into K disjoint clusters – the cluster of item i is denoted by σ(i) ∈ [K]; the observations are
gathered in a symmetric similarity random matrix A ∈ {0, 1}n×n with independent entries,
and such that for any i, j, Aij is a Bernoulli r.v. with mean pσ(i)σ(j). The objective is to
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recover the clusters solely based on the observation matrix A. The SBM has been heavily
studied over the last few years. A first interesting question about the SBM is the detectabil-
ity of the clusters. The latter are detectable if one can devise an algorithm performing
better than just randomly assigning items to clusters. The necessary and sufficient condi-
tion for detectability (a condition on p = (pk,k′)k,k′∈[K]) has been identified and established
in (Decelle et al., 2011; Mossel et al., 2015b; Massoulié, 2014). Researchers have then inves-
tigated conditions under which the clusters can be recovered with a vanishing proportion
of misclassified items (when n grows large) or even exactly, see (Yun and Proutiere, 2014;
Abbe et al., 2016; Mossel et al., 2015a).

It is worth noting that by choosing w = 2 and q = 1 in our model, we get a variant of
the so-called labeled SBM with sampling. There, an item pair (i, j) is sampled by every
user and ratings for these items form a label added to (i, j). The SBM with sampling was
studied in (Yun and Proutiere, 2014) and its labeled extension was discussed in (Heimlicher
et al., 2012; Yun and Proutiere, 2016). In this paper, we design a spectral algorithm inspired
from the spectral method proposed in (Yun and Proutiere, 2016), known to be optimal for
the SBM and its extensions. But our paper goes well beyond (Yun and Proutiere, 2016):
when w > 3, our model clearly departs from the SBM and thus we cannot directly use
algorithms designed for the SBM. Instead we propose an algorithm that first creates a
random graph between items from the ratings and run a spectral method similar to that
used in (Coja-Oghlan, 2010; Yun and Proutiere, 2016) to extract item clusters.

Our model may be seen as a variant of the bipartite stochastic block model (biSBM)
discussed in (Feldman et al., 2015) and (Florescu and Perkins, 2016). The biSBM starts
with a set V of n items and a set U of m users. Both sets are clustered: V = ∪Ki=1Vi
and U = ∪L`=1U`. Edges are generated independently at random between Vi and U` with
probability p`i. Hence, the biSBM corresponds to our model with w = n and q = 1. Note
that in the biSBM, we can make the information sparse by letting p = (p`i)`,i depend on
n and m. (Feldman et al., 2015) and (Florescu and Perkins, 2016) studied the symmetric
biSBM where K = L = 2, |V1| = |V2|, |U1| = |U2|, p11 = p22 = δp, and p12 = p21 = (2− δ)p.
In (Feldman et al., 2015), the authors proposed a subsampled power iteration algorithm

extracting the exact clusters when p = Ω( log(n)
(δ−1)2

√
mn

). (Florescu and Perkins, 2016) studied

a sharp threshold for the detectability: p = Ω
(

1
(δ−1)2

√
mn

)
is necessary for detectability and

the proposed SBM reduction algorithm detects the item clusters under this condition. They
also proposed an algorithm referred to as the diagonal deletion SVD recovering clusters
almost exactly when p = Ω( log(n)√

mn
). However, the regime where 1√

mn
< p < log(n)√

mn
is

not treated in these papers. The present paper provides results in a much more general
setting, and in particular identifies a necessary and sufficient condition on m or p to get
less than s misclassified items. It should also be observed that we could use the SBM
reduction algorithm for the case wq = O(1) and the diagonal deletion SVD algorithm

when m = Ω(n log(n)2

(wq)2
). However, the SBM reduction algorithm becomes inefficient when

wq = ω(1) for it removes too much information and the diagonal deletion SVD algorithm

becomes inefficient when m = O(n log(n)2

(wq)2
) since the input matrix is too noisy. Our algorithm

resolves both issues and works well in all cases. Moreover, we show that our algorithm
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exhibits an optimal (order-wise) sample complexity to guarantee less than s misclassified
items (for any given s = o(n)).

Finally it is worth mentioning clustering problems under the rich information regime
(i.e., when w is large, proportional to n), although the present paper focuses on the sparse
information regime. In the rich regime, one can recover the clusters for both items and users,
applying algorithms typically found in the collaborative filtering literature. For example, in
the model considered in (Aditya et al., 2011; Barman and Dabeer, 2012), there is a simple
ground truth rating matrix such that all users in the same cluster give the same rating to all
items in the same cluster. The observations consist in a random matrix obtained from the
ground truth matrix by erasing entries with probability 1− ε and flipping them (i.e., 1 to 0
and 0 to 1) with probability p. This can be seen as a special case of our model when w = n,
q = ε, and p`k is p or 1 − p. For m = n, the authors of (Xu et al., 2014) provided a tight
condition on p and ε to recover the exact clusters for both users and items. To conclude,
it is worth noting that using matrix completion algorithms, e.g., (Davenport et al., 2014;
Candes and Recht, 2012; Keshavan et al., 2010), we can extract the exact average weight
matrix when wq = Ω(log(n)) and m ≥ n. From there, we can obtain the exact clusters for
both users and items. In this paper we can cluster items with much smaller wq, i.e., with
very sparse data.

3. Fundamental Performance Limits

In this section, we provide the precise definitions of the inter-cluster divergences used in
the lower bounds of the sample complexity derived in Theorems 1 and 2. We further give
some important properties of this divergence. Finally we outline the main steps of the proof
of Theorem 1 and provide an intuition underlying the proof of Theorem 2. The complete
proofs of Theorems 1 and 2 are relegated to the appendix.

3.1. Inter-cluster Divergence

The inter-cluster divergence Dij(M) between clusters i and j represents the hardness of
differentiating items from the two clusters. Its definition is motivated by the proof of
Theorem 1 outlined below.

For formally defining Dij(M), we need to introduce the following notations. For given
λ ≤ w, ` ∈ [L], vectors k = (k1, ..., kλ) ∈ [K]λ and x = (x1, ..., xλ) ∈ {0, 1}λ, we define the
function f` : [K]λ×{0, 1}λ → [0, 1] as the probability of a type ` user to provide the ratings
x on λ items whose respective clusters are given by k (i.e., kt is the cluster of item whose
rating is xt). Formally:

fλ,`(k;x) =

λ∏
t=1

pxt`kt(1− p`kt)
1−xt .

We further define fλ(k;x) as the weighted sum of fλ,`(k;x) with weight β, i.e., fλ(k;x) =∑L
`=1 β` · fλ,`(k;x). We denote by fλ(k) the corresponding probability distribution over

{0, 1}λ.
For i, j ∈ [K] and λ ≥ 2, let Pij(λ) be the set of functions yλ : [K]λ−1 × {0, 1}λ → [0, 1]

such that for each k ∈ [K]λ−1, yλ(k) is a probability distribution over {0, 1}λ obtained as a
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convex combination of fλ(k, i) and fλ(k, j). When λ = 1, Pij(λ) = {γfλ(i) + (1− γ)fλ(j) :
γ ∈ [0, 1]}.

Next we define the divergence ∆ij(λ) between clusters i and j when users provide exactly
λ ratings:

∆ij(λ) =


min
γ∈[0,1]

max
i′∈{i,j}

KL(γf1(i) + (1− γ)f1(j)‖f1(i′)) if λ = 1

min
yλ∈Pij(λ)

max
i′∈{i,j}

∑
k∈[K]λ−1

αk ·KL
(
yλ(k)

∥∥fλ(k, i′)
)

otherwise

where αk =
∏λ−1
t=1 αkt , and where KL(a‖b) denotes the KL divergence number from distri-

bution a to distribution b. Finally, we are ready to define the divergence between clusters
i and j:

Dij(M) =

w∑
λ=1

B(w, λ, q) ·∆ij(λ)

where B(w, λ, q) 1 :=
(
w−1
λ−1

)
· qλ−1(1 − q)w−λ. The divergence of the model is: D(M) =

mini 6=j Dij(M).
Next we establish the useful properties of the inter-cluster divergence mentioned in

Section 1.

Proposition 4 Consider q > 0. When w = 1, D(M) = 0 if and only if there exist
i 6= j ∈ [K] such that

∑
` β`(p`i − p`j) = 0. When w ≥ 2, D(M) = 0 if and only if

i 6= j ∈ [K] such that ∀`, p`i = p`j.

Proposition 5 Assume that D(M) > 0, (w − 1)q ≥ ε > 0, and that (A1) holds. Then
there exists a constant c(ε, p) > 0 depending on M only through ε and p such that:

c(ε, p) ≤ D(M) ≤ log(η) .

The proofs of the above propositions can be found in the appendix.

3.2. Proof of Theorem 1

The proof relies on an involved change-of-measure argument that leads to tight lower bounds
on the clustering recovery error. This tightness can only be achieved through this kind of
argument. We believe that the notion of inter-cluster divergence introduced above provides
the exact minimal achievable sample complexity (for given numbers of misclassified items).
We outline the proof here, and present a detailed argumentation in the appendix.

Change-of measure. In the following, we refer to Φ, defined by the parameters M, as
the true stochastic model under which all the observed ratings are generated, and denote
by PΦ = P (resp. EΦ[·] = E[·]) the corresponding probability measure (resp. expectation).
In our change-of-measure argument, we construct a second stochastic model Ψ (whose
corresponding probability measure and expectation are PΨ and EΨ[·], respectively). Using
a change of measures from PΦ to PΨ, we relate the expected number of misclassified items

1. We let B(1, 1, q) = 1 as a consequence of conventions 00 = 1 and
(
0
0

)
= 1.
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E[επ(n,m)] under any clustering algorithm π to the expected (w.r.t. PΨ) log-likelihood
ratio G of the observed ratings under PΦ and PΨ. Specifically, we show that, roughly,
log(n/E[επ(n,m)]) must be smaller than EΨ[G] for n large enough.

To construct Ψ, we first pick the clusters i∗ and j∗ with minimal divergence: (i∗, j∗) =
arg mini,j:i<j Dij(M). For each 1 ≤ λ ≤ w, pick y∗λ ∈ Pi∗j∗(λ) satisfying

∆i∗j∗(λ) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, i∗)) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, j∗))

where such a y∗λ must exist due to Lemma 10. Using i∗, j∗ and y∗λ, we couple the generation
of ratings {Xuv : u ∈ U , v ∈ V} under Φ and Ψ in the following way:

C1. The partition of items V1, ...,VK , the set of items assigned to each user {Wu ⊂ V :
u ∈ U}, and the set of items that each user gives ratings {Ru ⊂ Wu : u ∈ U} under Φ
are the same as those generated under Ψ.

C2. We select item v∗ in Vi∗ ∪Vj∗ uniformly at random. If Vi∗ ∪Vj∗ = ∅, we select item v∗

in V uniformly at random. The ratings by user u such that v∗ /∈ Ru generated under
Ψ are the same as those generated under Φ.

C3. Let λu = |Ru|. For each user u such that v∗ ∈ Ru, let wu := (wu,1, ..., wu,λu−1, wu,λu =
v∗) be the unique sequence of items in Ru such that wu,t < wu,t+1 for all t < λu − 1
and wu,λu = v∗. Regardless of user type, the sequence of ratings xu ∈ {0, 1}λu on the
sequence of items wu generated under Ψ are observed with probability y∗λ(σ(wu);xu),
where σ(wu) ∈ [K]λu is the sequence of clusters such that for all t ≤ λu, σ(wu,t) = k
if wu,t ∈ Vk.

Log-likelihood ratio and its connection to the number of misclassified items. We
introduce the log-likelihood ratio of the observed ratings {xuv : u ∈ U , v ∈ V} under Ψ and
Φ as:

G =
∑
u∈U

1[v∗∈Ru] log
y∗λu(σ(wu);xu)

fλu(σ(wu);xu)
=
∑
u∈U

w∑
λ=1

1[v∗∈Ru,λu=λ] log
y∗λ(σ(wu);xu)

fλ(σ(wu);xu)

where 1C is the indicator of event C and wu, σ(wu), and xu are defined in C3. Let π be
a clustering algorithm that outputs V̂1, ..., V̂K such that

∑K
k=1 V̂k = V and V̂i ∩ V̂j = ∅ for

all i 6= j. Without loss of generality, we assume
∣∣⋃K

k=1 V̂k \ Vk
∣∣ ≤ ∣∣⋃K

k=1 V̂θ(k) \ Vk
∣∣ for any

permutation θ of [K]. Let E be the set of misclassified items by π, i.e., E =
⋃K
k=1 V̂k \ Vk.

Then we have |E| = επ(n,m).
Next we establish a connection between the number of misclassified items and the dis-

tribution of G under Ψ. Formally, if the algorithm π satisfies E[επ(n,m)] ≤ s, then

log(n/s)− log(2/αi∗) ≤ EΨ [G] +

√
3

αi∗
EΨ[(G − EΨ[G])2] .

Analysis of the log-likelihood ration G. To complete the proof, we derive an upper
bound of the r.h.s. of the above inequality. Specifically, we prove that E[G] = mwp

n D(M) by

definition of i∗, j∗ and D(M). Furthermore, when wq = o(
√
n), then

√
EΨ[(G − EΨ[G])2] =

o(mwpn D(M)), which completes the proof.

9
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3.3. Proof of Theorem 2

For the proof of Theorem 2, we also use a change-of-measure argument. However, we connect
the sample complexity to an upper bound D̃ij(M) of the inter-cluster divergence Dij(M).
To investigate an item v’s cluster more efficiently, an adaptive assignment can exploit the
previously collected ratings. Hence, to obtain a lower bound of the sample complexity under
the adaptive assignment scenario, we use D̃ij(M) with the maximal KL divergence ∆̃ij(λ)
between clusters i and j instead of the average KL divergence ∆ij(λ), where the maximum
and average are taken over every configuration k ∈ [K]λ−1 of the assigned items’ clusters.
Formally,

D̃ij(M) :=
w∑
λ=1

B(w, λ, q) · ∆̃ij(λ) and,

∆̃ij(λ) :=

 max {KL(f1(i)‖f1(j)),KL(f1(j)‖f1(i))} if λ = 1

max
k∈[K]λ−1

max {KL(fλ(k, i)‖fλ(k, j)),KL(fλ(k, j)‖fλ(k, i))} otherwise .

We provide the formal proof of Theorem 2 in the appendix, where we establish a precise
connection between D̃(M) and the sample complexity using a change-of-measure argument.

We note that we have D(M) ≤ D̃(M) ≤ D̃(M)
(α1/3) due to the definition of D̃(M). This implies

that comparing to random assignments, adaptively selecting items to rate can reduce the
sample complexity by a constant factor, while the asymptotic order of the sample complexity
remains the same, i.e., mwq = Ω(n log(n/s)) regardless of the assignment scheme.

4. The SplitSpec Algorithm

This section presents SplitSpec, a spectral clustering algorithm that recovers the clusters
from the available ratings. The algorithm consists of two steps. In the first and main
step, SplitSpec constructs a weighted graph whose vertices are items, and whose edges and
corresponding weights are constructed from the ratings. The second step applies the spectral
method to the obtained weighted graph to recover the clusters.

4.1. Graph Construction (the Split step)

A simple way to generate edges would be to draw an edge between items v and v′ if there
exists a user u that rated v and v′ positively, and all other items in Ru negatively. The edges
obtained that way would be independent and the corresponding graph would be the same as
in a classical stochastic block model (Yun and Proutiere, 2014). However, this construction
would not exploit all the information available from the ratings, especially when wq = ω(1).

To circumvent this difficulty, for each user u, we randomly split Wu into several disjoint
groups so that a constant fraction of information can be kept. We consider each group
separately, and a group will generate an edge between two items if and only if these items
are the only two positively rated items within the group. Now the groups are built so that
with positive probability, each of them generates an edge. More precisely, the objective is
that the cardinality of groups is selected so that the probability of having only two positively

10
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Algorithm 1 The Split step – Generating the weight matrix A

Input: Observation matrix X ∈ NN×N .

Rating intensity: q̃ ←
∑n
v=1

∑m
u=1Xuv

mw
Group size: γ ← w ∧ b2/q̃c
Number of groups: h← bw/γc
Initialization: A← 0 ∈ RN×N
for u = 1 to m do
B1, . . . , Bh ← random subsets of Wu such that |Bk| = γ for all k and Bk ∩Bj = ∅ for
all k 6= j
(randomly assigning items in Wu to groups)
for k = 1 to h do
Avv′ ← Avv′ + 1 when

∑
v∈Bk Xuv = 2, {v, v′} ⊂ Bk, and Xuv = Xuv′ = 1

end for
end for
Output: A.

rated items in a group is bounded away from zero. To meet this objective, if q̃ denotes the
probability of an item to be positively rated, then we can choose groups of cardinality2b2/q̃c.
Note that q̃ can be accurately estimated by 1

mw (
∑

u

∑
vXuv) where Xuv is a binary variable

equal to 1 iff user u rated item v positively. Hence we first estimate q̃ and then randomly
divide Wu into h = bwγ c groups of equal size γ = w ∧ b2/q̃c3 (if γ does not divide w, Wu

is not fully covered by the groups). If wq̃ ≥ 2, then one can check that Θ(wq̃) edges are
generated from the groups associated to Wu. If wq̃ < 2, Wu consists of a single group, and
an edge is generated with probability Θ(w2q̃2).

Now in the weighted graph constructed through the above procedure, each time an edge
between items v and v′ is generated, the weight of (v, v′) is incremented by 1. We denote by
A ∈ Rn×n the weight matrix of the graph. The construction of A is performed as described
in Algorithm 1.

4.2. Spectral Partition (the Spec step)

The second step of the SplitSpec algorithm consists in using a spectral partition algorithm
similar to that used in (Yun and Proutiere, 2016). The partition is applied to the matrix A
to recover the clusters, and its pseudo-code is presented in Algorithm 2. It should be noted
that we cannot directly use the theoretical results derived in (Yun and Proutiere, 2016)
since the edges generated in Algorithm 1 are not independent. Indeed, at most γ edges can
be generated by a user and the edges generated by the same user cannot share any item,
and hence are not independent. This is the main technical difficulty for the analysis: we
will show that when wq = o(

√
n), we can overcome the statistical dependence in the entries

of A.
The Spec step consists of three parts.

2. Indeed, if Z1, . . . , Zγ are i.i.d. Bernoulli r.v. with P[Zi = 1] = q̃ and γ = b2/q̃c, then P[
∑γ
i=1 Zi = 2] =

Θ(1).
3. We use standard notation ∧ to denote min so that x ∧ y = min{x, y}.

11
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Algorithm 2 The Spec step – Spectral Partition

Input: Weighted matrix A ∈ RN×N and cluster number K.

Estimated average degree: p̃←
∑
v,v′ Avv′

n(n−1)

1. Trimming process. Construct AΓ = (Avv′)v,v′∈Γ, where Γ is the set of items
obtained after removing bn exp(−np̃)c items having the largest

∑
v′∈V Avv′ .

2. Spectral decomposition. Run Algorithm 3 with input AΓ, p̃, and output
(Sk)k=1,...,K .
3. Successive improvement.

p̂(i, j)←
∑
v∈Si

∑
v′∈Sj

Avv′

|Si|m for all 1 ≤ i, j ≤ K
S(0)
k ← Sk for all 1 ≤ k ≤ K

for t = 1 to log n do

S(t)
k ← ∅ for all 1 ≤ k ≤ K

for v ∈ V do
k∗ = arg max1≤k≤K̂

{
m log(1−

∑K
i=1 p̂(k, i)) +

∑K
i=1

∑
w∈S(t−1)

i

Avw log p̂(k,i)

1−
∑K
i=1 p̂(k,i)

}
(tie broken uniformly at random)

S(t)
k∗ ← S

(t)
k∗ ∪ {v}

end for
end for
V̂k ← S

(logn)
k for all 1 ≤ k ≤ K

Output: (V̂k)k=1,...,K .

1. Trimming process. In the first part, we trim the entries of A so that the remaining
matrix enjoys some regularity property. More precisely, the trimming step removes
the n exp(−H) items v having the largest sum of positive entries (i.e.

∑n
v′=1Avv′)

where H = 1
n

∑n
v=1

∑n
v′=1Avv′ . The remaining items do not have too many positive

entries. Let AΓ be the output of the trimming step.

2. Spectral decomposition. In the second part, we provide initial estimates of the
clusters by applying Algorithm 3, presented in the appendix, to the trimmed matrix
AΓ. Note that E[AΓ] is of rank K and has a block structure, with blocks corresponding
to the true clusters. Hence the spectral analysis of its noisy version AΓ can provide
good estimates of the clusters. The trimming step ensures that the spectral norm
of the noise matrix AΓ − E[AΓ] is small and that the rank K approximation of AΓ

accurately approximates E[AΓ]. Algorithm 3 and its analysis are classical (Coja-
Oghlan, 2010), (Yun and Proutiere, 2016), and in turn, we will show that the number
of misclassified items after this algorithm is O(n/H). In regimes of interest, we will
further establish that n/H = o(n), so that already after the second part of the Spec
step, we have very good estimates of the clusters. This statement is made precise in
Theorem 6 below.

3. Successive improvements. Using the already accurate estimates of the clusters, we
can estimate p̂(i, j) the probability that a user generates an edge between an item of
cluster Vi and items in cluster Vj . From p̂ = (p̂(i, j))i,j∈[K], if correctly estimated, we

12
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can compute for an item v the log-likelihood of the observations given that v belongs
to a given cluster Vk: m log(1−

∑K
i=1 p̂(k, i)) +

∑K
i=1

∑
v′∈Vi Avv′ log p̂(k,i)

1−
∑K
i=1 p̂(k,i)

. In

the successive improvements, we just assign item v to the cluster maximizing this
likelihood. The analysis of these improvements is summarized in Theorem 7.

As mentioned above, the spectral decomposition yields cluster estimates S1, . . . ,SK
satisfying: with high probability,

min
θ

K∑
k=1

|Sθ(k) \ Vk| = O
( n
H

)
, (1)

where the minimum is taken w.r.t. permutation θ of [K]. The analysis of the scaling of
H can be done as follows. In Algorithm 1, for each user, we create h disjoint groups of
cardinalities γ. Each group randomly generates at most an edge with probability Θ

(
γ2q2

)
(since the probability that the user rates two items out of the γ items in the group scales as
γ2q2). Hence, the algorithm generates Θ

(
mhγ2q2

)
edges. Since γ = w ∧ b2/q̃c, h = bw/γc,

and q̃ exhibits the same scaling as q, we have hγ2q2 = Θ(wq(1 ∧ wq)) and thus

H = Θ

(
mwq(1 ∧ wq)

n

)
. (2)

The following theorem formalizes and combines (1) and (2). Its proof is presented in the
appendix.

Theorem 6 Assume that D(M) > 0, h = o(
√
n) and h2m = o(n2) or equivalently wq =

o(
√
n) and (wq)2m = o(n2). After the spectral decomposition in Algorithm 2, with high

probability, we have

min
θ

∣∣∣∣∣
K⋃
k=1

Sθ(k) \ Vk

∣∣∣∣∣ = O

(
n2

mwq(1 ∧ wq)

)
.

Using the improvement steps after the spectral decomposition allows us to refine the
cluster estimates. The next theorem quantifies the number of ratings one should observe
so that the SplitSpec algorithm misclassifies s items at most. Note that this number has
the same scaling in n,w, q, and s as our sample complexity lower bound. Thus, SplitSpec is
order-optimal.

Theorem 7 When D(M) > 0, h = o(
√
n) and h2m = o(n2) or equivalently wq = o(

√
n)

and (wq)2m = o(n2), there exists a constant C > 0 such that when

mwq ≥ Cn log(n/s)

(1 ∧ wq)
,

with high probability, the number of misclassified items under SplitSpec is less than s = o(n).
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Figure 1: The average error rate of various algorithms clustering 1, 000 items from rat-
ings from the collaborative clustering model M = (α, β, p, w, q) with α = (0.5, 0.5),
β = (0.5, 0.5), p = (0.8, 0.2; 0.2, 0.8), q = 0.5 or 1; (a)-(b) w = 10 and varying m; (c)-
(d) m = 10, 000 and varying w.

5. Numerical Experiments

Next we briefly present experimental results supporting our analytical findings and illus-
trating the performance of SplitSpec on synthetic datasets.

Algorithms. We compare three algorithms: K-means, SplitSpec, and HypSpec. For the
first algorithm, we represent each item by the proportion of positive ratings this item has
received, and we simply run k-means algorithm (Lloyd, 1982) on this one-dimensional data
(we use random initialization). For the last algorithm, HypSpec, we first generate a weight
matrix Ã such that Ãvv′ is the number of users who give +1’s on both of items v and v′.
Then, we run Algorithm 2 with input Ã.

When a user positively rates a subset S of items, to keep that information fully, we
would need to add the item graph an hyper-edge consisting of this set S. This is what is
done in HypSpec by constructing Ã. In the construction of A in SplitSpec, we discard part of
the hyper-edge information, but the spectral analysis A becomes possible because its entries
are by construction almost independent. On the contrary, the entries of Ã exhibit a strong
dependency, and it is very unlikely that the performance of HypSpec can be analyzed.

Data. We consider 1, 000 items having two clusters with equal sizes (α1 = α2 = 0.5).
We randomly generates ratings from two types of users (β1 = β2 = 0.5). Type-1 user
rating statistics are given by (p11, p12) = (0.8, 0.2), and those of type-2 users by (p21, p22) =
(0.2, 0.8). Note that the average (over users) rating of an item does not depend on the
cluster of this item. Hence, K-means cannot separate the two clusters, since it does not
exploit users’ structure.

Results. Figure 1 presents our results. In Figures 1a-1b, we fix w and q and vary the
number of users, whereas in Figures 1c-1d, the number of users is fixed and w varies. Each
error rate reported in the curves are averaged of 200 realizations of the random ratings.
As expected K-means does not do better than just randomly assigning items to clusters.
Naturally the error rates of HypSpec and SplitSpec decrease with the number of ratings mwq.
Note that HypSpec outperforms SplitSpec, but as explained above, HypSpec is challenging
to analyze and hence has no theoretical performance guarantees.
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6. Conclusion

In this paper, we have studied the collaborative clustering problem whose objective is to
recover a hidden cluster structure among items from random ratings provided by heteroge-
neous users. We have first derived fundamental performance limits for this problem: the
number of ratings required to guarantee the existence of an algorithm estimating the clusters
with a prescribed level of accuracy depends on the notion of inter-cluster divergence. We
have then proposed SplitSpec, an algorithm that achieves these fundamental performance
limits order-wise. We believe that our lower bound on the sample complexity is tight, and
will explore extensions of our algorithms and its analysis to establish this tightness formally.
SplitSpec was actually designed so that its spectral step can be analyzed using techniques
from random matrix theory, but this required that the algorithm does not leverage all the
information provided by the users’ ratings. To enhance the performance of SplitSpec, we
need to modify the algorithm so as it can fully exploit this information. This is a promising
research direction as illustrated in our numerical experiments, where we tested HypSpec, an
algorithm that fully exploits users’ ratings, but that appears really hard to analyze.
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Appendix A. Proof of Proposition 4

We start with w = 1. Note that
∑L

`=1 β`p`i =
∑L

`=1 β`p`j if and only if ∆ij(1) = 0 since
the KL divergence of two Bernoulli distributions is 0 only if their parameters are identical.
Note that when w = 1, Dij(M) = ∆ij(1). Hence, it follows that when w = 1, D(M) =

mini 6=j ∆ij(1) = 0 if and only if there exist i 6= j ∈ [K] such that
∑L

`=1 β`p`i =
∑L

`=1 β`p`j .
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We now focus on w ≥ 2. When there exist i′ 6= j′ ∈ [K] such that p`i′ = p`j′ for
all ` ∈ [L], then ∆i′j′(λ) = 0 for all λ ≤ w which implies Di′j′(M) = 0 and D(M) =
mini 6=j Dij(M) = 0 since D(M) is non-negative. Conversely, we will show that if D(M) =
0, then there exist i′ 6= j′ ∈ [K] such that p`i′ = p`j′ for all ` ∈ [L]. To this end, we use two
useful lemmas on ∆ij(λ) in the followings:

Lemma 8 For given i 6= j ∈ [K] and λ ≥ 1, we have

∆ij(λ+ 1) ≥ ∆ij(λ) .

Lemma 9 For any given i 6= j ∈ [K] and λ ≥ 2, we have

∆ij(λ) ≥ α1

(
L∑
`=1

β`(p`i − p`j)2

)2

.

We provide proofs of Lemmas 8 and 9 in Appendices A.1 and A.2, respectively. From
Lemma 8, it follows that

D(M) ≥ min
i 6=j∈[K]

(1− (1− q)w−1) ·∆ij(2) (3)

since
∑w

λ=1B(w, λ, q) = 1 and B(w, 1, q) = (1 − q)w−1. Thus, Lemma 9 with (3) implies
that D(M) = 0 only if there exist i′ 6= j′ ∈ [K] such that ∆i′j′(2) = 0, where ∆i′j′(2) = 0
only if p`i′ = p`j′ for all ` ∈ [L]. This completes the proof of Proposition 4.

A.1. Proof of Lemma 8

Pick yλ+1 ∈ Pij(λ+ 1). By the definition of Pij(λ+ 1), for each k ∈ [K]λ, we can find a
constant γ(k) ∈ [0, 1] such that

yλ+1(k) = γ(k)fλ+1(k, i) + (1 + γ(k))fλ+1(k, j) .

Then we construct yλ : [K]λ−1×{0, 1}λ → [0, 1] by marginalizing out k′ ∈ [K] and x′ ∈ {0, 1}
from yλ+1(k′,k;x′,x) for each k ∈ [K]λ−1 and x ∈ {0, 1}λ. Formally,

yλ(k;x) :=
∑
k′∈[K]

αk′
∑

x′∈{0,1}

yλ+1(k′,k;x′,x)

=
∑
k′∈[K]

αk′
∑

x′∈{0,1}

γ(k′,k)fλ+1(k′,k, i;x′,x) + (1 + γ(k′,k))fλ+1(k′,k, j;x′,x)

=
∑
k′∈[K]

αk′
(
γ(k′,k)fλ(k, i;x) + (1 + γ(k′,k))fλ(k, j;x)

)
,

where for the last inequality, we use the fact that for each `, fλ+1,`(k
′,k, i;x′,x) = (p`,k′)

x′(1−
p`,k′)

1−x′fλ,`(k, i;x). We further have

yλ(k;x) =

 ∑
k′∈[K]

αk′γ(k′,k)

 · fλ(k, i;x) +

 ∑
k′∈[K]

αk′(1− γ(k′,k))

 · fλ(k, j;x) ,
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which implies that for each k ∈ [K]λ−1, yλ(k) is a convex combination of fλ(k, i) and
fλ(k, j), i.e., yλ ∈ Pij(λ, p). Using the log-sum inequality or the convexity of KL divergence,
it is not hard to check that for k ∈ [K]λ−1,

∑
k′∈[K]

αk′KL
(
yλ+1(k′,k)

∥∥fλ+1(k′,k, i)
)
≥ KL

 ∑
k′∈[K]

αk′yλ+1(k′,k)

∥∥∥∥∥∥
∑
k′∈[K]

αk′fλ+1(k′,k, i)


≥ KL(yλ(k)‖fλ(k, i)) ,

where for the first inequality, we use the convexity of KL divergence, and for the last
inequality, we use the construction of yλ, the log-sum inequality and the fact that for each
x ∈ {0, 1}λ fλ+1(k′,k, i;x) =

∑
k′∈[K] αk′

∑
x′∈{0,1} fλ+1(k′,k, i;x′,x). This completes the

proof of Lemma 8.

A.2. Proof of Lemma 9

Due to Lemma 8, it is enough to show the lemma with λ = 2. Pick y ∈ Pij(2) such that

∆ij(2) =
∑
k∈[K]

αk ·KL(y(k)‖fλ(k, i)) =
∑
k∈[K]

αk ·KL(y(k)‖fλ(k, j)), (4)

where such a y must exist due to Lemma 10. Then,

∆ij(2) =
1

2

∑
k∈[K]

αk · (KL(y(k)‖f2(k, i)) + KL(y(k)‖f2(k, j)))

= −
∑
k∈[K]

αk ·
∑

x,x′∈{0,1}

y(k;x, x′) log

(√
f2(k, i;x, x′)f2(k, j;x, x′)

y(k;x, x′)

)

≥
∑
k∈[K]

αk ·
∑

x,x′∈{0,1}

y(k;x, x′)−
√
f2(k, i;x, x′)f2(k, j;x, x′)

=
1

2

∑
k∈[K]

αk ·
∑

x,x′∈{0,1}

(√
f2(k, i;x, x′)−

√
f2(k, j;x, x′)

)2

≥ 1

8

∑
k∈[K]

αk ·

 ∑
x,x′∈{0,1}

∣∣f2(k, i;x, x′)− f2(k, j;x, x′)
∣∣2

where for the last inequality, we use Le Cams inequality. Noting that α1 ≤ ... ≤ αK , we
further have

∆ij(2)

≥ 1

8

∑
k∈[K]

αk ·
( ∑
x,x′∈{0,1}

∣∣f2(k, i;x, x′)− f2(k, j;x, x′)
∣∣ )2

≥ 1

8
α1 ·

( ∑
x,x′∈{0,1}

∣∣f2(i, i;x, x′)− f2(i, j;x, x′)
∣∣ )2

+
1

8
α1 ·

( ∑
x,x′∈{0,1}

∣∣f2(j, i;x, x′)− f2(j, j;x, x′)
∣∣ )2
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≥ 1

16
α1 ·

( ∑
x,x′∈{0,1}

∣∣f2(i, i;x, x′)− f2(i, j;x, x′)
∣∣+
∣∣f2(j, i;x, x′)− f2(j, j;x, x′)

∣∣ )2

(5)

where for the last inequality, we use the fact that x2 + y2 ≥ (x+y)2

2 . From the definition of
f2, it follows that

1

2

∑
x,x′∈{0,1}

∣∣f2(i, i;x, x′)− f2(i, j;x, x′)
∣∣+
∣∣f2(j, i;x, x′)− f2(j, j;x, x′)

∣∣
≥
∣∣∣∣ ∑
`∈[L]

β`p`i(p`i − p`j)
∣∣∣∣+

∣∣∣∣ ∑
`∈[L]

β`p`j(p`j − p`i)
∣∣∣∣

+

∣∣∣∣ ∑
`∈[L]

β`(1− p`i)
(
(1− p`i)− (1− p`j)

)∣∣∣∣+

∣∣∣∣ ∑
`∈[L]

β`(1− p`j)
(
(1− p`j)− (1− p`i)

)∣∣∣∣
≥
∣∣∣∣ ∑
`∈[L]

β`(p`i − p`j)2

∣∣∣∣+

∣∣∣∣ ∑
`∈[L]

β`
(
(1− p`i)− (1− p`j)

)2∣∣∣∣
≥ 2

∣∣∣∣ ∑
`∈[L]

β`(p`i − p`j)2

∣∣∣∣
which completes the proof of Lemma 9 with (5).

Appendix B. Proof of Proposition 5

Using (A1), it is straightforward to check that for i, j ∈ [K], γ ∈ [0, 1], k ∈ [K]λ−1, and
x ∈ {0, 1}λ,

γfλ(k, i;x) + (1− γ)fλ(k, j;x)

fλ(k, i;x)
≤ γfλ(k, i;x) + η · (1− γ)fλ(k, i;x)

fλ(k, i;x)
≤ η (6)

which implies ∆ij(λ) ≤ log η and thus D(M) ≤ log η since
∑w

λ=1B(w, λ, q) = 1.
We now obtain the lower bound of D(M). From Proposition 4, there exists ε′ > 0 such

that for some i 6= j ∈ [K] and ` ∈ [L], (p`i − p`j)2 ≥ ε′ since we assume D(M) > 0 and
(w − 1)q ≥ ε > 0, i.e., w ≥ 2. Noting

∑w
λ=1B(w, λ, q) = 1 and B(w, 1, q) = (1− q)w−1, we

have

D(M) ≥ (1− (1− q)w−1) ·∆ij(λ) ≥ q(w − 1)

1 + q(w − 1)
·∆ij(λ)

≥ ε

1 + ε
·∆ij(λ)

≥ ε

1 + ε
· α1

(
β`(p`i − p`j)2

)2
where for the last inequality, we use Lemma 9. Since (p`i − p`j)2 ≥ ε′ > 0, this completes
the proof of Proposition 5.
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Appendix C. Proof of Theorem 1

We will use a similar change-of-measure argument used for Theorem 1 in (Yun and Proutiere,
2016). In the following, we refer to Φ as the true stochastic model of ratings with the random
assignment. We first construct a slightly perturbed model Ψ coupled with Φ.
Construction of Ψ. We couple the generation of ratings under Φ and Ψ as follows. Let
(i∗, j∗) := arg mini<j∈[K]Dij(M). For each 1 ≤ λ ≤ w, pick y∗λ ∈ Pi∗j∗(λ) satisfying

∆i∗j∗(λ) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, i∗)) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, j∗)) (7)

where such a y∗λ must exist due to the following lemma whose proof is provided in Ap-
pendix C.1.

Lemma 10 For any given i 6= j ∈ [K] and λ, there exists y∗λ ∈ Pij(λ) such that

∆ij(λ) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, i)) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, j)) .

Using i∗, j∗ and y∗λ, we couple the generation of ratings {Xuv : u ∈ U , v ∈ V} under Φ
and Ψ in what follows.

C1. The partition of items V1, ...,VK , the set of items assigned to each user {Wu ⊂ V :
u ∈ U}, and the set of items that each user gives ratings {Ru ⊂ Wu : u ∈ U} under Φ
are the same as those generated under Ψ.

C2. We select item v∗ in Vi∗ ∪Vj∗ uniformly at random. If Vi∗ ∪Vj∗ = ∅, we select item v∗

in V uniformly at random. The ratings by user u such that v∗ /∈ Ru generated under
Ψ are the same as those generated under Φ.

C3. Let λu := |Ru|. For each user u such that v∗ ∈ Ru, let wu := (wu,1, ..., wu,λu−1, wu,λu =
v∗) be the unique sequence of items in Ru such that wu,t < wu,t+1 for all t < λu − 1
and wu,λu = v∗. Regardless of user type, the sequence of ratings xu ∈ {0, 1}λu on the
sequence of items wu generated under Ψ are observed with probability y∗λ(σ(wu);xu),
where σ(wu) ∈ [K]λu is the sequence of clusters such that for all t ≤ λu, σ(wu,t) = k
if wu,t ∈ Vk.

Log-likelihood ratio and its connection to the number of misclassified items. For
observed ratings {xuv : u ∈ U , v ∈ V}, we introduce the ratio of the log-likelihood of the
observation under Ψ to that under Φ in the following:

G :=
∑
u∈U

1[v∗∈Ru] log
y∗λu(σ(wu);xu)

fλu(σ(wu);xu)
=
∑
u∈U

w∑
λ=1

1[v∗∈Ru,λu=λ] log
y∗λ(σ(wu);xu)

fλ(σ(wu);xu)
, (8)

where 1C is the indicator of event C and wu, σ(wu), and xu are described in C3.
Let π be a clustering algorithm that outputs V̂1, ..., V̂K such that

∑K
k=1 V̂k = V and

V̂i∩V̂j = ∅ for all i 6= j. Without loss of generality, we assume
∣∣⋃K

k=1 V̂k\Vk
∣∣ ≤ ∣∣⋃K

k=1 V̂θ(k)\
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Vk
∣∣ for any permutation θ of [K]. Let E be the set of misclassified items by π, i.e., E =⋃K
k=1 V̂k \ Vk. Then we have |E| = επ(n,m).

Let PΨ and EΨ (resp. PΦ and EΦ) denote the conditional probability measure and the
conditional expectation given v∗ ∈ Vi∗ ∪ Vj∗ 6= ∅ in the perturbed model Ψ (resp. original
model Φ), respectively, where we also use P and E for the probability measure and the
expectation the original model Φ without the condition. We establish a connection between
E[επ(n,m)] and the distribution of G under PΨ. For any function g(n), it is straightforward
to check that

PΨ{G ≤ g(n)} = PΨ{G ≤ g(n), v∗ ∈ E}+ PΨ{G ≤ g(n), v∗ /∈ E}
≤ PΨ{G ≤ g(n), v∗ ∈ E}︸ ︷︷ ︸

(a)

+PΨ{v∗ /∈ E}︸ ︷︷ ︸
(b)

. (9)

We first obtain an upper bound on (a) in (9). Using the log-likelihood ratio G, it is not
hard to check

PΨ{G ≤ g(n), v∗ ∈ E} =

∫
{G≤g(n),v∗∈E}

dPΨ

=

∫
{G≤g(n),v∗∈E}

exp(G) dPΦ

≤ exp(g(n)) · PΦ{G ≤ g(n), v∗ ∈ E}
≤ exp(g(n)) · PΦ{v∗ ∈ E}

≤ exp(g(n)) · E[επ(n,m)]

(1− (1− (αi∗ + αj∗))n)n
, (10)

where for the last inequality, we use the fact that under the original model Φ, we cannot
distinguish between v∗ and any other in the same cluster which v∗ belongs to. Indeed,
recalling that v∗ is selected in Vi∗ ∪Vj∗ uniformly at random if Vi∗ ∪Vj∗ 6= ∅, it follows that

PΦ{v∗ ∈ E} =
P{v∗ ∈ E , v∗ ∈ Vi∗ ∪ Vj∗}
P{v∗ ∈ Vi∗ ∪ Vj∗ 6= ∅}

=
P{v ∈ E , v ∈ Vi∗ ∪ Vj∗}

P{Vi∗ ∪ Vj∗ 6= ∅}

≤ P{v ∈ E}
P{Vi∗ ∪ Vj∗ 6= ∅}

=
E[επ(n,m)]

(1− (1− (αi∗ + αj∗))n)n
.

where v is selected in V uniformly at random.
We now obtain an upper bound on (b) in (9). Since under the perturbed model Ψ, the

observed ratings do not depend on whether v∗ belongs to cluster i∗ or j∗ if v∗ ∈ Vi∗ ∪ Vj∗ ,
we have PΨ{v∗ ∈ Vπi∗ | v∗ ∈ Vi∗} = PΨ{v∗ ∈ Vπi∗ | v∗ ∈ Vj∗} and

PΨ{v∗ ∈ Vπj∗ | v∗ ∈ Vi∗} = PΨ{v∗ ∈ Vπj∗ | v∗ ∈ Vj∗} .

Hence, recalling that v∗ is selected in Vi∗ ∪ Vj∗ uniformly at random if Vi∗ ∪ Vj∗ 6= ∅, it
follows that

PΨ{v∗ /∈ E}
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= PΨ{v∗ ∈ V̂i∗ , v∗ ∈ Vi∗}+ PΨ{v∗ ∈ V̂j∗ , v∗ ∈ Vj∗}
= PΨ{v∗ ∈ Vi∗} · PΨ{v∗ ∈ V̂i∗ | v∗ ∈ Vi∗}+ PΨ{v∗ ∈ Vj∗} · PΨ{v∗ ∈ V̂j∗ | v∗ ∈ Vj∗}

=
αi∗

αi∗ + αj∗
PΨ{v∗ ∈ V̂i∗ | v∗ ∈ Vi∗}+

αj∗

αi∗ + αj∗
PΨ{v∗ ∈ V̂j∗ | v∗ ∈ Vj∗}

=
αi∗

αi∗ + αj∗
PΨ{v∗ ∈ V̂i∗ | v∗ ∈ Vi∗}+

αj∗

αi∗ + αj∗
PΨ{v∗ ∈ V̂j∗ | v∗ ∈ Vi∗}

≤ αj∗

αi∗ + αj∗
, (11)

where for the last inequality, we use the choice of i∗, j∗ such that i∗ < j∗, i.e., αi∗ ≤ αj∗ ,
and the fact that PΨ{v∗ ∈ V̂i∗ | v∗ ∈ Vi∗} + PΨ{v∗ ∈ V̂j∗ | v∗ ∈ Vi∗} = PΨ{v∗ ∈ V̂i∗ ∪ V̂j∗ |
v∗ ∈ Vi∗} ≤ 1.

Combining (9), (10) and (11), it follows that

PΨ{G ≤ g(n)} ≤ exp (g(n))
E[επ(n,m)]

(1− (1− (αi∗ + αj∗))n)n
+

αj∗

αi∗ + αj∗

≤ exp (g(n))
E[επ(n,m)]

(αi∗ + αj∗)n
+

αj∗

αi∗ + αj∗
.

Plugging in g(n) = log (n/E[επ(n,m)])− log(2/αi∗), we have

PΨ{G ≤ log(n/E[επ(n,m)])− log(2/αi∗)} ≤ 1− αi∗

2
< 1− αi∗

3
. (12)

In addition, from Chebyshev’s inequality,

PΨ

{
G ≤ EΨ [G] +

√
3

αi
EΨ[(G − EΨ[G])2]

}
≥ 1− αi∗

3
. (13)

From (12) and (13), it follows that

log(n/E[επ(n,m)])− log(2/αi∗) ≤ EΨ [G] +

√
3

αi
EΨ[(G − EΨ[G])2]

which implies that if the algorithm π satisfies E[επ(n,m)] ≤ s, then

log(n/s)− log(2/αi∗) ≤ EΨ [G] +

√
3

αi
EΨ[(G − EΨ[G])2] . (14)

The log-likelihood ratio G. To complete the proof, we now obtain the quantities of
G in (14). Using the conditional independence of each term of the summation in (8) given
the partition of items, it is not hard to check that for an arbitrary user u ∈ U ,

EΨ[G] = m ·
w∑
λ=1

P{v∗ ∈ Ru, λu = λ} ·∆i∗j∗(λ) (15)

= m · wq
n
·
w∑
λ=1

(
w − 1

λ− 1

)
qλ−1(1− q)w−λ ·∆i∗j∗(λ)
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=
mwq

n
·
w∑
λ=1

B(w, λ, q) ·∆i∗j∗(λ) , (16)

where we provide the detailed steps for (15) in Appendix C.2. We also obtain an upper
bound of the second term of (14) from Lemma 11 whose proof is provided in Appendix C.3.

Lemma 11 Suppose p satisfies (A1). Then,

EΨ[(G − EΨ[G])2]

≤ mwq

n
log η ·

w∑
λ=1

B(w, λ, q)

(
∆i∗j∗(λ) +

√
∆i∗j∗(λ)

)
+m2 log η ·

(wq
n

)2
·min

{
1,

((w − 1)q)2

n− 1

}
·
(

∆i∗j∗(w) +
√

∆i∗j∗(w)

)
. (17)

Hence, applying (16) and (17) in (14), we have

log(n/s)− log(2/αi∗)

≤ EΨ [G] +

√
3

αi
EΨ[(G − EΨ[G])2]

≤ mwq

n

w∑
λ=1

B(w, λ, q) ·∆i∗j∗(λ) (18a)

+

√
mwq

n
·

(
3

αi∗
log η ·

w∑
λ=1

B(w, λ, q)

(
∆i∗j∗(λ) +

√
∆i∗j∗(λ)

))1/2

(18b)

+
mwq

n

(
3

αi∗
log η ·min

{
1,

((w − 1)q)2

n− 1

}
·
(

∆i∗j∗(w) +
√

∆i∗j∗(w)

))1/2

, (18c)

where for the last inequality, we also use the fact that
√
a+ b ≤

√
a+
√
b. Since s = o(n),

the r.h.s. of (18) is increasing with respect to n. Hence, when w = 1 and q > 0, there exists
constant ε > 0 such that ∆i∗j∗(1) > ε due to Lemmas 8 and 9. This shows Theorem 1 when
w = 1 since (18c) = 0 and (18b)/(18a) = o(1).

Similarly, when w ≥ 2, the fact that s = o(n) implies that there exists constant ε > 0
such that ε ≤ ∆i∗j∗(λ, p) ≤ log η for all λ ≥ 2. We note that

w∑
λ=2

B(w, λ, q) = (1− (1− q)w−1) ≥ (w − 1)q

1 + (w − 1)q
.

Hence, for wq = o(
√
n), we have

(18a) = Ω

(
mwq

n

(
wq

1 + wq
+ ∆i∗j∗(1)

))
and (18c) = O

(
mwq

n
· wq√

n

)
,

which implies lim infn→∞
mwqD(M)
n log(n/s) ≥ 1. In addition, when wq = Ω(

√
n), we have (18c) =

O
(mwq

n

)
and ((18a)+(18b))/(18c) = O(1) which implies log(n/s) = O

(mwq
n

)
. Hence, when

wq = Ω(
√
n), we have mwq = Ω (n log(n/s)) which completes the proof of Theorem 1.
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C.1. Proof of Lemma 10

We prove by contradiction that such a y∗λ exists. Suppose that y∗λ ∈ Pij(λ) satisfies

∆ij(λ) =
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, i)) >
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, j)) .

Then there exists k′ ∈ [K]λ−1 such that KL
(
y∗λ(k′)

∥∥fλ(k′, i)
)
> KL

(
y∗λ(k′)

∥∥fλ(k′, j)
)
. Since

the KL divergence cannot be less than 0, this implies y∗λ(k′) 6= fλ(k′, i). Thus, noting conti-
nuity of the KL divergence, for some 0 < ε′ <

(
KL
(
y∗λ(k′)

∥∥fλ(k′, i)
)
−KL

(
y∗λ(k′)

∥∥fλ(k′, j)
))
/2,

we can construct y′λ ∈ Pij(λ) such that y′λ(k) = y∗λ(k) for all k 6= k′,

KL
(
y∗λ(k′)

∥∥fλ(k′, i)
)
− ε′ < KL

(
y′λ(k′)

∥∥fλ(k′, i)
)
< KL

(
y∗λ(k′)

∥∥fλ(k′, i)
)
, and

KL
(
y′λ(k′)

∥∥fλ(k′, j)
)
< KL

(
y∗λ(k′)

∥∥fλ(k′, j)
)

+ ε′.

This construction of y′λ implies that

∆ij(λ) >
∑

k∈[K]λ−1

αk ·KL
(
y′λ(k)

∥∥fλ(k, i)
)
>

∑
k∈[K]λ−1

αk ·KL
(
y′λ(k)

∥∥fλ(k, j)
)

which contradicts the definition of ∆ij(λ) and complete the proof of Lemma 10 by contra-
diction.

C.2. Proof of (15)

Using the conditional independence of each term of G given σ̃ ∈ [K]V such that σ̃(v∗) = i∗,
we have

EΨ[G | σ(v∗) = i∗, σ = σ̃] = EΨ

[∑
u∈U

w∑
λ=1

1[v∗∈Ru,λu=λ] log
y∗λ(σ̃(wu);xu)

fλ(σ̃(wu);xu)

]

=
w∑
λ=1

∑
u∈U

EΨ

[
1[v∗∈Ru,λu=λ] log

y∗λ(σ̃(wu);xu)

fλ(σ̃(wu);xu)

]
. (19)

Using the above, we can write the conditional expectation of G given only σ(v∗) = i∗ as

EΨ[G | σ(v∗) = i∗]

= m ·
w∑
λ=1

EΨ

[
1[v∗∈Ru,λu=λ] log

y∗λ(σ(wu);xu)

fλ(σ(wu);xu)

∣∣∣∣ σ(v∗) = i∗
]

= m ·
w∑
λ=1

PΨ{v∗ ∈ Ru, λu = λ} · EΨ

[
log

y∗λ(σ(wu);xu)

fλ(σ(wu);xu)

∣∣∣∣ σ(v∗) = i∗, v∗ ∈ Ru, λu = λ

]

= m ·
w∑
λ=1

P{v∗ ∈ Ru, λu = λ} ·
∑

k∈[K]λ−1

αk ·KL(y∗λ(k)‖fλ(k, i∗))

= m ·
w∑
λ=1

P{v∗ ∈ Ru, λu = λ} ·∆i∗j∗(λ) ,
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where user u ∈ U is arbitrary, and for the last equality, we use (7). Similarly to this, we
can also obtain

EΨ[G | σ(v∗) = j∗] = m ·
w∑
λ=1

P{v∗ ∈ Ru, λu = λ} ·∆i∗j∗(λ) ,

which completes the proof of (15).

C.3. Proof of Lemma 11

Let Gu := 1[v∗∈Ru] log
y∗λu (σ′(wu);xu)

fλu (σ′(wu);xu) so that G =
∑

u∈U Gu. We start with the following:

EΨ[G2 | σ(v∗) = i∗] = EΨ

(∑
u∈U
Gu

)2
∣∣∣∣∣∣ σ(v∗) = i∗

 = EΨ

[∑
u∈U

∑
u′∈U
GuGu′

∣∣∣∣∣ σ(v∗) = i∗

]

= EΨ

[∑
u∈U
G2
u

∣∣∣∣∣ σ(v∗) = i∗

]
+ EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗

 .

(20)

Recalling (6) implied from (A1), it follows that for all λ ≥ 1,

max
k∈{0,1}λ−1,x∈{0,1}λ

∣∣∣∣log
y∗λ(k;x)

fλ(k;x)

∣∣∣∣ ≤ log η .

Hence, using Pinskers inequalities, it follows that

E
[
log2 y∗λ(k;x)

fλ(k, i∗;x)

]
≤ log η · E

[∣∣∣∣log
y∗λ(k;x)

fλ(k, i∗;x)

∣∣∣∣]
≤ log η ·

(
E
[
log

y∗λ(k;x)

fλ(k, i∗;x)

]
+

√
E
[
log

y∗λ(k;x)

fλ(k, i∗;x)

])
, (21)

where the expectation is taken with respect to x ∈ {0, 1}λ drawn from distribution y∗λ(k).
Thus, using the similar decomposition in (19) from the conditional independence given
σ = σ′ with (21), we have

EΨ

[∑
u∈U
G2
u

∣∣∣∣∣ σ(v∗) = i∗

]
≤ m log η ·

w∑
λ=1

P{v∗ ∈ Ru, λu = λ} ·
(

∆i∗j∗(λ) +
√

∆i∗j∗(λ)

)

≤ mwq

n
log η ·

w∑
λ=1

B(w, λ, q) ·
(

∆i∗j∗(λ) +
√

∆i∗j∗(λ)

)
(22)

We now bound above the last term in (20). We first decompose it by separating the
event when v∗ is rated by both of two different users u, u′ into two disjoint cases : (i) only
v∗ is rated by both users, i.e., |Ru∩Ru′ | = 1, and (ii) both users rate v∗ but there are other
items rated by them in common, i.e.,|Ru ∩Ru′ | ≥ 2. Formally,

EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗


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= EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

1[|Ru∩Ru′ |=1]GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗


+ EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

1[|Ru∩Ru′ |≥2]GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗


≤

(∑
u∈U

EΨ [Gu | σ(v∗) = i∗]

)2

+ EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

1[|Ru∩Ru′ |≥2]GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗


= (EΨ [G])2 + EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

1[|Ru∩Ru′ |≥2]GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗

 , (23)

where for the last inequality, we use the fact that Gu and Gu′ are correlated only on the
cluster which v∗ belongs to. Noting Ru is selected independently of Ru′ and using (A1)
and using (21), it is not hard to check that there exists a constant C > 0 such that

EΨ

∑
u∈U

∑
u′∈U :u′ 6=u

1[|Ru∩Ru′ |≥2]GuGu′

∣∣∣∣∣∣ σ(v∗) = i∗


≤ m2 log η ·

(wq
n

)2
·min

{
1,

((w − 1)q)2

n− 1

}
·max
λ≥2

(
∆i∗j∗(λ) +

√
∆i∗j∗(λ)

)
≤ m2 log η ·

(wq
n

)2
·min

{
1,

((w − 1)q)2

n− 1

}
·
(

∆i∗j∗(w) +
√

∆i∗j∗(w)

)
, (24)

where for the first inequality, we use the fact that P{|Ru ∩ Ru′ | ≥ 2 | v∗ ∈ Ru ∩ Ru′} ≤
min

{
1,
( (w−1)q

n−1

)2
(n− 1)

}
and for the last inequality, we use Lemma 8.

Combining (22), (23), and (24), we have

EΨ[G2 | σ(v∗) = i∗]− (EΨ[G])2

≤ mwq

n
log η ·

w∑
λ=1

B(w, λ, q) ·
(

∆i∗j∗(λ) +
√

∆i∗j∗(λ)

)
+m2 log η ·

(wq
n

)2
·min

{
1,

((w − 1)q)2

n− 1

}
·
(

∆i∗j∗(w) +
√

∆i∗j∗(w)

)
,

which completes the proof of Lemma 11 since we can also obtain the same upper bound for
EΨ[G2 | σ(v∗) = j∗] and EΨ[(G − EΨ[G])2] = EΨ[G2]− (EΨ[G])2.

Appendix D. Proof of Theorem 2

We will use another change-of-measure argument similar to the one in the proof of Theorem
3 in (Yun and Proutiere, 2014). In the following, we refer to Φ as the true stochastic model
of ratings with the random assignment. We first construct a slightly perturbed model Ψ′

coupled with Φ.
Construction of Ψ′. We couple the generation of ratings under Φ and Ψ′ as follows. Let
(i∗, j∗) := arg mini<j∈[K] D̃ij(M).
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C1. We generate the hidden partition of items V1, ...,VK under Φ. Then we select two
items vi∗ and vj∗ uniformly at random from Vi∗ and Vj∗ , respectively, if neither Vi∗
nor Vj∗ are empty, and we select vi∗ and vj∗ uniformly at random in V otherwise. The
perturbed model Ψ′ has the partition of items V ′1, . . . ,V ′K such that

• V ′i = Vi for all i ∈ [K] \ {i∗, j∗},
• V ′i∗ = {vj∗} ∪ Vi∗ \ {vi∗} and V ′j∗ = {vi∗} ∪ Vj∗ \ {vj∗}.

This is a swap of two items vi∗ and vj∗ . We denote by σ(v) ∈ [K] the cluster of v
under Φ, i.e., σ(v) = k if v ∈ Vk. Let σ′(v) ∈ [K] be the cluster of v under Ψ′, i.e.,
σ′(v) = k if v ∈ V ′k.

C2. For each user u ∈ U = [m], the set of w items assigned to user u Wu and the set
of items user u rate Ru are the same under both models Φ and Ψ′, where Wu is
selected arbitrarily (or adaptively). The ratings by user u generated under Ψ′ such
that Ru ∩ {vi∗ , vj∗} = ∅ are the same as those generated under Φ.

C3. Let λu := |Ru|. For each user u with Ru ∩ {vi∗ , vj∗} 6= ∅, let wu be a unique
sequence of items in Ru. Regardless of user type, the sequence of ratings xu ∈
{0, 1}λu on the sequence of items wu generated under Ψ′ are observed with probability
fλu(σ′(wu);xu), where σ′(wu) ∈ [K]λu is the sequence of clusters under Ψ′ such that
for all t ≤ λu, σ′(wu,t) = k if wu,t ∈ V ′k.

Log-likelihood ratio and its connection to the number of misclassified items. For
observed ratings {xuv : u ∈ U , v ∈ V}, we introduce the ratio of the log-likelihood of the
observation under Ψ′ to that under Φ in the following:

G′ :=
m∑
u=1

1[Ru∩{vi∗ ,vj∗} 6=∅] · log
fλu(σ′(wu);xu)

fλu(σ(wu);xu)
(25)

where σ(wu) ∈ [K]λu is the sequence of clusters under Φ such that for all t ≤ λu, σ(wu,t) = k
if wu,t ∈ Vk.

Let V̂1, ..., V̂K be the output of the clustering algorithm π. Without loss of generality,
we assume

∣∣⋃K
k=1 V̂k \ Vk

∣∣ ≤ ∣∣⋃K
k=1 V̂θ(k) \ Vk

∣∣ for any permutation θ of [K]. Let E :=⋃K
k=1 V̂k \Vk. Then we have |E| = επ(n,m). Let PΨ′ and EΨ′ (resp. PΦ and EΦ) denote the

conditional probability measure and the conditional expectation given vi∗ ∈ Vi∗ 6= ∅ and
vj∗ ∈ Vj∗ 6= ∅ in the perturbed model Ψ′ (resp. the original model Φ), respectively, where
we also use P and E for the probability measure and the expectation the original model Φ
without the condition.

Let dv be the total number of users assigned to item v, i.e., dv := |{u ∈ U : v ∈ Wu}|.
Using the distribution of dvi∗ + dvj∗ , we will establish a connection of E[επ(n,m)] to the
distribution of G′ under PΨ′ . For any function g(n) and ζ ≥ 0, we have

PΦ

{
dvi∗ + dvj∗ ≤ ζ

}
= PΨ′

{
dvi∗ + dvj∗ ≤ ζ

}
= PΨ′

{
G′ < g(n), dvi∗ + dvj∗ ≤ ζ, vi∗ ∈ E

}
(26a)

27



Collaborative Clustering

+ PΨ′

{
G′ < g(n), dvi∗ + dvj∗ ≤ ζ, vi∗ /∈ E

}
(26b)

+ PΨ′

{
G′ ≥ g(n), dvi∗ + dvj∗ ≤ ζ

}
(26c)

where for the first equality, we use the fact that vi∗ and vj∗ are statistically symmetric
under the models Φ or Ψ′.

In what follows, we will calculate upper bounds for the terms on the r.h.s. of (26), where
we plug in g(n) and ζ with some functions of E[επ(n,m)]. For the term in (26a), similarly
to (10), we have

PΨ′

{
G′ < g(n), dvi∗ + dvj∗ ≤ ζ, vi∗ ∈ E

}
=

∫
{G′<g(n),dvi∗+dvj∗≤ζ,vi∗∈E}

dPΨ′

=

∫
{G′<g(n),dvi∗+dvj∗≤ζ,vi∗∈E}

exp(G′)dPΦ

≤ exp(g(n))PΦ

{
G′ < g(n), dvi∗ + dvj∗ ≤ ζ, vi∗ ∈ E

}
≤ exp(g(n))PΦ {vi∗ ∈ E}

≤ exp(g(n))
P {v ∈ E}

P {Vi∗ 6= ∅,Vj∗ 6= ∅}

= exp(g(n)) · E[επ(n,m)]

(1− (1− (αi∗ + αj∗))n)n
. (27)

Noting the swap of arbitrary two items vi∗ and vj∗ in Vi∗ and Vj∗ , i.e., PΨ′

{
vi∗ /∈ V̂i∗

}
=

PΦ

{
v /∈ V̂j∗ , v ∈ Vj∗

}
we obtain an upper bound for (26b) in the following

PΨ′

{
G′ < g(n), dvi∗ + dvj∗ ≤ ζ, vi∗ /∈ E

}
≤ PΨ′ {vi∗ /∈ E} = PΨ′

{
vi∗ /∈ V̂i∗

}
= PΦ

{
v /∈ Vπj∗ , v ∈ Vj∗

}
≤ PΦ {v /∈ E} =

P {v ∈ E}
P {Vi∗ 6= ∅,Vj∗ 6= ∅}

=
E [επ(n,m)]

(1− (1− (αi∗ + αj∗))n)n
. (28)

We present the following lemma which provides an upper bound of (26c) using Kol-
mogorov’s inequality. The rigorous proof is provided in Appendix D.1.

Lemma 12 For ζ ≥ 0, we have

PΨ′

{
G′ ≥ 5

2
qζD̃(M)

}
≤ 8 log η

ζq · (D̃(M))2
·
w∑
λ=1

B(w, λ, q)

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)

Combining (27), (28), and Lemma 12 with g(n) = 5/2 · qζD̃(M), it follows that

PΨ′

{
dvi∗ + dvj∗ ≤ ζ

}
≤
(

exp(5/2 · qζD̃(M)) + 1
) E[επ(n,m)]

(1− (1− (αi∗ + αj∗))n)n

28



Collaborative Clustering

+
8 log η

ζq · (D̃(M))2
·
w∑
λ=1

B(w, λ, q)

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)
.

Plugging in ζ =
log
(

n
E[επ(n,m)]

)
3qD̃(M)

and using the union bound, we further obtain

P
{
dvi∗ + dvj∗ ≤

log (n/s)

3qD̃(M)

}

≤ PΦ

dvi∗ + dvj∗ ≤
log
(

n
E[επ(n,m)]

)
3qD̃(M)

 (1− (1− (αi∗ + αj∗))
n) + (1− (αi∗ + αj∗))

n

≤

((
n

E[επ(n,m)]

)5/6

+ 1

)
E[επ(n,m)]

n
+

1

1 + (αi∗ + αj∗)n

+ 24 log η ·

∑w
λ=1B(w, λ, q)

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)
D̃(M)

· log

(
E[επ(n,m)]

n

)
(29)

where the r.h.s. converges to 0 as n→∞ since E[επ(n,m)]
n ≤ s

n = o(1). This implies that

E[dvi∗ + dvj∗ ] ≥
log (n/s)

3qD̃(M)
.

Since each user is assigned w items and the choice of vi∗ and vj∗ is uniformly at random,
we also have

mw =
K∑
i=1

E

∑
v∈Vi

dv

 ≥ E

 ∑
v∈Vi∗∪Vj∗

dv


= αi∗n · E

[
dvi∗

]
+ αj∗n · E

[
dvj∗

]
≥ α1n · E

[
dvi∗ + dvj∗

]
.

Consequently, a necessary condition for E[επ(n,m)] ≤ s is

lim inf
n→∞

mwqD̃(M)

(α1/3)n log(n/s)
≥ 1 .

D.1. Proof of Lemma 12

Let uτ denote the τ -th user assigned vi∗ or vj∗ , i.e., Wuτ ∩ {vi∗ , vj∗} 6= ∅ and uτ < uτ+1.
Let G′(t) denote the sum of the first t nonzero terms in G′ in (25). Formally,

G′(t) :=
t∑

τ=1

1[Ruτ∩{vi∗ ,vj∗}6=∅] · log
fλuτ (σ′(wuτ );xuτ )

fλuτ (σ(wuτ );xuτ )
.
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From the construction of G′(t), we have PΨ′ {G′ ≥ g(n)} ≤ PΨ′ {max1≤t≤ζ G′(t) ≥ g(n)} .
Thus, we will focus on G′(t) =

∑t
τ=1

∑w
λ=1 hτ,λ, where we define for 1 ≤ τ ≤ t and 1 ≤ λ ≤

w,

hτ,λ :=1[Ruτ∩{vi∗ ,vj∗} 6=∅,λuτ=λ] · log
fλ(σ′(wuτ );xuτ )

fλ(σ(wuτ );xuτ )
.

Pick arbitrary σ̃, σ̃′ ∈ [K]V such that σ̃(vi∗) = σ̃′(vj∗) = i∗, σ̃(vj∗) = σ̃′(vi∗) = j∗, and
σ̃(v) = σ̃′(v) for all v ∈ V \ {vi∗ , vj∗},. Let PΨ′|σ̃,σ̃′ and EΨ′|σ̃,σ̃′ denote the conditional
measure and expectation given σ = σ̃ and σ′ = σ̃′ under PΨ′ . We will bound above
PΨ′|σ̃,σ̃′ {max1≤t≤ζ G′(t) ≥ g(n)}. To begin with, for every τ and λ, we obtain

EΨ′|σ̃,σ̃′
[
h2
τ,λ

]
− (EΨ′|σ̃,σ̃′ [hτ,λ])2 ≤ EΨ′|σ̃,σ̃′

[
h2
τ,λ

]
= q(2− q)B(w, λ, q) · EΨ′

[
log2 fλ(σ̃′(wuτ );xuτ )

fλ(σ̃(wuτ );xuτ )

]
≤ q(2− q)B(w, λ, q) log η

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)
(30)

where for the last inequality, we use (21) and the fact that ∆̃i∗j∗(λ) bounds above the KL
divergence between fλ(k, i) and fλ(k, j) for every k ∈ [K]λ−1. Since for given τ , only one
of hτ,λ’s can be non-zero, the upper bound in (30) implies

EΨ′|σ̃,σ̃′

( w∑
λ=1

hτ,λ − EΨ′|σ̃,σ̃′

[
w∑
λ=1

hτ,λ

])2


≤ EΨ′|σ̃,σ̃′

( w∑
λ=1

hτ,λ

)2
 =

w∑
λ=1

EΨ′|σ̃,σ̃′
[
h2
τ,λ

]
≤ q(2− q) log η

w∑
λ=1

B(w, λ, q)

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)
, (31)

which is bounded by a constant since ∆̃i∗j∗(λ) ≤ log η <∞. Note that
(∑w

λ=1 hτ,λ
)
τ=1,..,t

are conditionally independent to each other given σ = σ̃ and σ′ = σ̃′. Thus, from Kol-
mogorov’s inequality, it follows that for γ > 0,

PΨ′|σ̃,σ̃′

{
max
1≤t≤ζ

|G′(t)− EΨ′|σ̃,σ̃′
[
G′(t)

]
| ≥ γ

}

≤
EΨ′|σ̃,σ̃′

[(
G′(ζ)− EΨ′|σ̃,σ̃′ [G]′ (ζ)

)2]
γ2

=
1

γ2
·

ζ∑
τ=1

EΨ′|σ̃,σ̃′

( w∑
λ=1

hτ,λ − EΨ′|σ̃,σ̃′

[
w∑
λ=1

hτ,λ

])2
 . (32)

Since for all t ≤ ζ, EΨ′|σ̃,σ̃′ [G′(t)] ≤ ζ ·q(2−q)D̃(M), combining (31) and (32) and plugging

in γ = ζq(1/2 + q)D̃(M), we have

PΨ′|σ̃,σ̃′

{
max
1≤t≤ζ

G′(t) ≥ ζ · 5

2
qD̃(M)

}
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≤
log η(2− q) ·

∑w
λ=1B(w, λ, q)

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)
ζq · ((1/2 + q)D̃(M))2

≤
8 log η ·

∑w
λ=1B(w, λ, q)

(
∆̃i∗j∗(λ) +

√
∆̃i∗j∗(λ)

)
ζq · (D̃(M))2

, (33)

which completes the proof of Lemma 12 since from the construction of G′(t), we have
PΨ′ {G′ ≥ g(n)} ≤ PΨ′ {max1≤t≤ζ G′(t) ≥ g(n)} .

Appendix E. Spectral Decomposition Algorithm

Algorithm 3 Spectral decomposition

Input: AΓ, p̃
Â← K-rank approximation of AΓ

for t = 1 to log n do
Qt,v ← {w ∈ V : ‖Âw − Âv‖2 ≤ t p̃

100}
Tt,0 ← ∅
for k = 1 to K do
v∗k ← arg maxv |Qt,v \

⋃k−1
i=1 Tt,i|

Tt,k ← Qt,v∗k \
⋃k−1
i=1 Tt,i and ξt,k ←

∑
v∈Tt,k Âv/|Tt,k|.

end for
for v ∈ V \ (

⋃K
k=1 Tt,k) do

k∗ ← arg mink ‖Âv − ξt,k‖
Tt,k∗ ← Tt,k∗ ∪ {v}

end for
rt ←

∑K
k=1

∑
v∈Tt,k ‖Âv − ξt,k‖

2

end for
t∗ ← arg mint rt.
Sk ← Tt∗,k for all k
Output: (Sk)k=1,...,K .

Appendix F. Preliminary to Spectral Analysis (Appendices G and H)

In this section, we will provide useful notations and properties for Theorems 6 and 7 (in
Appendices G and H, resp.). In particular, we analyze the output A of Algorithm 1, where
the analysis is analog to the one in (Yun and Proutiere, 2014, 2016). However, our analysis
has to handle additional challenges mainly from dependency among entries of A. In our
model, a user’s ratings can be counted in several entries of A. Thus, the entries of A are
dependent in a sense that the w items assigned to the user must be different to each other.
To overcome this challenge, we approximate the original generation of A using two slightly
perturbed generations of A, denoted by Ψ1 and Ψ2, where the entries of A are independent
to each other. We will describe Ψ1 and Ψ2 further.
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Notation. We first introduce the notations used in the following sections including Ap-
pendices G and H. For the sake of simplicity, we omit the conditions assumed in Theo-
rems 6 and 7, i.e., D(M) > 0, h = o(

√
n) and h2m = o(n2) (or equivalently wq = o(

√
n)

and (wq)2m = o(n2)), from the statements of upcoming lemmas. In addition, we further fix
the configuration σ of clusters V1, ...,VK such that

⋃
k∈[K] Vk = V, |Vk| = αkn for all k, and

if σ(v) = k, then v ∈ Vk. Indeed, using the Chernoff bound, it is easy to check that for all
k ∈ [K], ||Vk| − αkn| = o(n) with high probability since αk is constant. Hence, we denote
by P and E the (conditional) probability measure and expectation, respectively, associated
with the original generation (Algorithm 1) given the fixed configuration σ.

Let M := E[A] and MΓ := E[AΓ], where Γ is the subset of items after trimming. We
denote by Av and Mv (resp. AΓ,v and MΓ,v) the item v’s column of A and M (resp. AΓ

and MΓ), respectively. Define pmax := max(v,v′)∈V×VMvv′ . We now define the perturbed
generations of A under Ψ1 and Ψ2, where each entry in A is generated independently:

Generation of A by Ψ1. There are m users each of which has h attempts to add weights
to A. Starting with A = 0, at each attempt of each user, we add one to Avv′ with probability
Mvv′
mh for all v, v′ ∈ V.

Generation of A by Ψ2. There are m users each of which has h attempts to add weights
to A. Starting with A = 0, at each attempt of each user, we add one to Avv′ with probability
Mvv′
mh

(
1 + h√

n

)
for all v, v′ ∈ V.

Let P1 and E1 (resp. P2 and E2) denote the probability and expectation, respectively,
under Ψ1 (resp. Ψ2). We establish the following connections of the perturbed P1 and P2 to
the original P.

Lemma 13 For every A ⊂ Zn×n,

P{A ∈ A} ≤ exp

(
O

(
h2m

n

))
P1{A ∈ A} .

Lemma 14 For any given cvv′ ≥ 0 for all v, v′ ∈ V and C ≥ 0,

P

{∑
v∈V

∑
v′∈V

cvv′Avv′ ≥ C

}
≤ P2

{∑
v∈V

∑
v′∈V

cvv′Avv′ ≥ C

}
.

The proofs of Lemmas 13 and 14 are provided in Appendices F.1 and F.2.

F.1. Proof of Lemma 13

Let A(u) denote the weight matrix of a set of edges generated by user u in Algorithm 1,
where each user attempts h times to add weights. Then,

A =
m∑
u=1

A(u) .
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The number of entries that user u is able to add at the t-th attempt is (n−2t)(n−2t−1)/2
in Algorithm 1. However, this number under Ψ1 is always n(n− 1)/2. Using this, it is not
hard to check that for all feasible a ∈ Zn×n,

P {A(t) = a}≤
(

1−O
(
h

n

))−h
P1 {A(t) = a} (34)

≤ exp

(
O

(
h2

n

))
P1 {A(t) = a} , (35)

where we use the assumption on h = o(
√
n) for the last inequality. Therefore,

P {A ∈ A} =
∑

a1,...,am:
∑m
u=1 au∈A

m∏
t=1

P {A(t) = au}

≤ exp

(
O

(
mh2

n

)) ∑
a1,...,am:

∑m
u=1 au∈A

m∏
t=1

P1 {A(t) = au}

≤ exp

(
O

(
mh2

n

))
P1 {A ∈ A} ,

which completes the proof of Lemma 13.

F.2. Proof of Lemma 14

Let A(u, t) be the weight matrix added by the t-th partition of the u-th user. Recalling the
same logic used for (34), we also have

P {A(u, t)|A(u, t− 1), . . . , A(u, 1)} ≤
(

1 +
h√
n

)
P1 {A(u, t)|A(u, t− 1), . . . , A(u, 1)}

= P2 {A(u, t)|A(u, t− 1), . . . , A(u, 1)} , (36)

where for the last equality, we use the fact that the probability of incrementing an entry of

A at each attempt under Ψ2 is
(

1 + h√
n

)
-times higher than that under Ψ1. Using (36) and

noting that every entry of A is non-negative, it is straightforward to show the stochastic
dominance of the weighted summation of A under Ψ2 over that under the original model,
i.e.,

P

{∑
v∈V

∑
v′∈V

cvv′Avv′ ≥ C

}
≤ P2

{∑
v∈V

∑
v′∈V

cvv′Avv′ ≥ C

}
,

which completes the proof of Lemma 14.

Appendix G. Proof of Theorem 6

In Algorithm 2, we first run Algorithm 1 to obtain weight matrix A, where we estimate
the similarity between two items v, v′ at Avv′ . Then, we obtain Â, which is the K-rank
approximation of the trimmed AΓ, and run Algorithm 3 extracting the hidden clusters
based on the distance between columns of Â. Hence, we will use some properties of the
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column distance to conclude Theorem 6. (We refer to Appendix F for the definitions of
notations used in the followings.)

We first study the column distance in the average matrix MΓ. When two items x, y
belong to the same cluster, it is clear that MΓ,x = MΓ,y, and when they belong to different
clusters, the column distance ‖MΓ,x−MΓ,y‖22 might be large. More formally, we obtain the
following lemma, whose proof is provided in Appendix G.1.

Lemma 15 For all x, y ∈ Γ such that σ(x) 6= σ(y),

‖MΓ,x −MΓ,y‖22 = Ω

(
n

(
wq(1 ∧ wq)m

n2

)2
)
. (37)

Furthermore, if item v ∈ Γ is misclassified, then we should have:

‖Âv −MΓ,v‖22 = Ω

(
n

(
wq(1 ∧ wq)m

n2

)2
)
. (38)

To complete the proof of Theorem 6, we will obtain an upper bound on the total column
distance between Â and MΓ. Note that the ranks of both Â and MΓ are K. Hence, the rank
of Â−MΓ is less than 2K. Using the property of Frobenius norm: if the rank of matrix A
is K, ‖A‖2F ≤ K‖A‖22, it follows that∑

v∈Γ

‖Âv −MΓ,v‖22 = ‖Â−MΓ‖2F

≤ 2K‖Â−MΓ‖22
≤ 2K‖Â−AΓ‖22 + 2K‖AΓ −MΓ‖22
≤ 4K‖AΓ −MΓ‖22 , (39)

where we use the property of Frobenius norm for the first inequality; the triangle inequality
for the second one; and the definition of Â, i.e., ‖Â−AΓ‖2 = minM ′:rank(M ′)≤K ‖M ′−AΓ‖2 ≤
‖MΓ −AΓ‖2 for the last one.

We now obtain an upper bound on the last term in (39) in the following lemma, whose
proof is provided in Appendix G.2.

Lemma 16 With high probability,

‖AΓ −MΓ‖2 = O

(√
wmq(1 ∧ wq)

n

)
.

From Lemma 16 and (39), we obtain an upper bound on the total column distance between
Â and MΓ, i.e., with high probability,

‖Â−MΓ‖2F =
∑
v∈Γ

‖Âv −MΓ,v‖22 = O

(
n2

wq(1 ∧ wp)m

)
. (40)
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Finally, combining (38) and (40), we bound the number of misclassified items by Algorithm 3
as follows:

K∑
k=1

|Vk \ Sk| = O

 n2

wq(1∧wp)m

n
(
wq(1∧wq)m

n2

)2


= O

(
n2

wq(1 ∧ wp)m

)
,

which completes the proof of Theorem 6.

G.1. Proof of Lemma 15

We will focus on the proof of (37) since from (37), it is not hard to derive (38) through the
same logic used for Theorem 6 in (Yun and Proutiere, 2016). To begin with, we first bound
the loss of weights after the trimming in the following lemma, whose proof is provided in
Appendix G.3.

Lemma 17 For any trimmed set Γ,

P

 ∑
v′∈V\Γ

∑
v∈V

Avv′ ≥ n

 ≤ exp(−n) .

Hence, it is enough to bound the column distance in M instead of MΓ. We will show

‖Mx −My‖22 ≥ Cn
(
wq(1 ∧ wq)m

n2

)2

. (41)

We denote by ρij the expected weight between an item pair v, v′ such that v ∈ Vi and
v′ ∈ Vj , i.e., ρij = Mvv′ . Then,

ρij = mh

(
n− 2

γ − 2

)(
n

γ

)−1

q2
L∑
`=1

β`p`ip`jQ`(1 + o(1))

= mh
γ(γ − 1)

n(n− 1)
q2

L∑
`=1

β`p`ip`jQ`(1 + o(1)) , (42)

where Q` is the probability that randomly selected γ − 2 items do not have any positive
rating by type-` user. Note that Q` is a constant for all ` since we set γ so that the expected
number of positive ratings of each group becomes less than 2. From (42), it follows that

‖Mx −My‖22 =

K∑
k=1

∑
v∈Vk

(Mxv −Myv)
2

≥
∑
v∈Vi

(Mxv −Myv)
2 +

∑
v∈Vj

(Mxv −Myv)
2

≥ (|Vi| ∧ |Vj |)
(
(ρii − ρij)2 + (ρij − ρjj)2

)
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≥ (|Vi| ∧ |Vj |)
4

(ρii − 2ρij − ρjj)2

=
(|Vi| ∧ |Vj |)

4
h2 γ

2(γ − 1)2

n2(n− 1)2
m2q4

(
L∑
`=1

β`(p`i − p`j)2Q`(1 + o(1))

)2

.

Thus, there exists a constant C1 > 0 such that

‖Mx −My‖22 ≥ C1n

(
wmγq2

n2

)2

,

which completes the proof of Lemma 15 since from the definition of γ, there exists a constant
C2 > 0 such that

γq ≥ C2(1 ∧ wq) .

G.2. Proof of Lemma 16

We can prove this lemma using the strategy in (Feige and Ofek, 2005). To this end, we will
prove that for all x, y ∈ Rn such that ‖x‖2 = ‖y‖2 = 1,

∣∣∣x>(A−M)y
∣∣∣ = O

(√
wmq(1 ∧ wq)

n

)
. (43)

Let Γ := V \ Γ. For any given x, y ∈ Rn such that ‖x‖2 = ‖y‖2 = 1, define

L =

{
(v, v′) ∈ V × V : |xvyv′ | ≤

√
pmax

n

}
and L =

{
(v, v′) ∈ V × V : |xvyv′ | >

√
pmax

n

}
.

Then, using the definitions of L and L and the triangle inequality, we bound
∣∣x>(A−M)y

∣∣
as follows:

∣∣∣x>(A−M)y
∣∣∣ ≤ 2

∣∣∣∣∣∣
∑

(v,v′)∈(Γ×V)∩L

x>v Avv′yv′

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(v,v′)∈L

xvAvv′yv′ − x>My

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(v,v′)∈L

xvAvv′yv′

∣∣∣∣∣∣
≤ 2

√
pmax

n

∣∣∣∣∣∣
∑

(v,v′)∈(Γ×V)∩L

Avv′

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(v,v′)∈L

xvAvv′yv′ − x>My

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(v,v′)∈L

xvAvv′yv′

∣∣∣∣∣∣ .
To prove (43), we will show that for x, y ∈ Rn such that ‖x‖2 = ‖y‖2 = 1,√

pmax

n

∑
(v,v′)∈(Γ×V)∩L

Avv′ = O (
√
npmax) , (44)

∑
(v,v′)∈V

xvAvv′yv′ − x>My = O (
√
npmax) , (45)

∑
(v,v′)∈L

xvAvv′yv′ = O (
√
npmax) . (46)
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We note that (44) is a direct consequences of Lemma 17. Using Lemma 13 of (Yun and
Proutiere, 2014), it is straightforward to check (46) under P2. Hence, due to Lemma 14
connecting P and P2, we also have (46) under the original generation of A. Therefore, we
focus on the proof of (45) to complete the proof of Lemma 16.

For given x, y ∈ RV such that ‖x‖2 = ‖y‖2 = 1, with λ = 1
2

√
n

pmax
, we have

P1

 ∑
(v,v′)∈L

xvAvv′yv′ − x>My ≥ C√npmax

 ≤ E1

[
exp

(
λ
∑

(v,v′)∈L xvAvv′yv′ − λx>My
)]

exp
(
λC
√
npmax

)
=

(
1 +

∑
(v,v′)∈L

Mvv′
mh (exp (λxvyv′)− 1)

)mh
exp

(
λC
√
npmax + λx>My

)
≤

(
1 +

∑
(v,v′)∈L

M−vv′
mh

(
λxvyv′ + 2(λxvyv′)

2
))mh

exp
(
λC
√
npmax + λx>My

)
(47)

≤
exp

(∑
(v,v′)∈LMvv′

(
λxvyv′ + 2(λxvyv′)

2
))

exp
(
λC
√
npmax + λx>My

) ,

(48)

where we use ex ≤ x+ 2x2 for |x| ≤ 1/2 and 1 + x ≤ ex for (47) and (48), respectively.

We now bound the last term. Note that
∑

(v,v′)∈L |xvyv′ | ≤
√

n
pmax

since
∑

v∈V
∑

v′∈V x
2
vy

2
v′ =

1 and |xvyv′ | >
√
pmax/n for all (v, v′) ∈ L, . Thus, we have

exp

 ∑
(v,v′)∈L

λMvv′xvyv′ − λx>My

 = exp

− ∑
(v,v)∈L

λMvv′xvyv′


≤ exp

(
λpmax

√
n

pmax

)
= exp

(n
2

)
. (49)

In addition, recalling
∑

v∈V
∑

v′∈V x
2
vy

2
v′ = 1, it also follows that

exp

 ∑
(v,v′)∈L

Mvv′2(λxvyv′)
2

 ≤ exp
(n

2

)
. (50)

Combining (49) and (50) to (48), we have

P1

 ∑
(v,v′)∈L

xvAvv′yv′ − x>My ≥ C√npmax

 ≤ exp

(
n− C

2
n

)
.
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Using Lemma 13, we further replace P1 with P as follows:

P

 ∑
(v,v′)∈L

xvAvv′yv′ − x>My ≥ C√npmax


≤ exp

(
O

(
h2m

n

))
P1

 ∑
(v,v′)∈L

xvAvv′yv′ − x>My ≥ C√npmax


≤ exp

(
n+O

(
h2m

n

)
− C

2
n

)
. (51)

Although x, y ∈ Rn are in a continuous space, we can use the union bound with a
discrete space Tε defined as

Tε :=

{
x ∈

(
ε√
n
Z
)n

: ‖x‖2 ≤ 1

}
where 0 < ε < 1 .

Let T = {x ∈ Rn : ‖x‖2 ≤ 1}. From Claim 2.4 and Claim 2.9 of (Feige and Ofek, 2005), it
follows that there is a constant cε such that |Tε| ≤ ecεn and

max
x,y∈T

x>Ay ≤ 1

(1− ε)2
max
x,y∈Tε

x>Ay .

Therefore, using the union bound and (51), we have that with probability at least 1 −
exp

(
cεn+ n+ 5h

2m
n −

C
2 n
)

,

max
x,y∈T

∑
(v,v′)∈L

xvAvv′yv′ − x>My ≤ 4 max
x,y∈Tε

∑
(v,v′)∈L

xvAvv′yv′ − x>My = O (
√
npmax) ,

which implies (45) by selecting sufficiently large constant C. This completes the proof of
Lemma 16.

G.3. Proof of Lemma 17

For any given set Γ ⊂ V such that |Γ| = bn exp (−np̃)c, from Lemma 14,

P

∑
v∈Γ

∑
v′∈V

Avv′ ≥ n

 ≤ P2

∑
v∈Γ

∑
v′∈V

Avv′ ≥ n


≤ max

λ>0

E2

[
exp

(
λ
∑

v∈Γ

∑
v′∈V Avv′

)]
−λn

≤ max
λ>0

exp
(
2nbn exp (−np̃)cpmax(eλ − 1)

)
exp(λn)

≤ exp
(
2nbn exp (−np̃)cpmax(e5 − 1)− 5n

)
≤ exp (−4n) , (52)
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where the last inequality stems from the fact that npmax exp (−np̃) = o(1) when npmax =
ω(1). Noting that there are 2n subsets of V and using the union bound and (52), it follows
that

P

 ∑
v∈V\Γ

∑
v′∈V

Avv′ ≥ n

 ≤ exp(−n) ,

which completes the proof of Lemma 17.

Appendix H. Proof of Theorem 7

We will first define a subset H of V satisfying a set of criteria and show that all items in
H are accurately classified after log n iterations of the improvement step. Then, we can
complete the proof of Theorem 7 by obtaining an upper bound of |V \ H| since the total
number of misclassified items is less than |V \ H|.

For A,B ⊂ V, let e(A,B) denote the summation of weights on every edge between A
and B, i.e., e(A,B) :=

∑
v∈A

∑
v′∈B Avv′ . Define H as the largest set of item v satisfying

(H1)-(H3) in the followings:

(H1) e(v,V) ≤ 10npmax.

(H2) If v ∈ Vi, then

K∑
k=0

e({v},Vk) log
p̂(i, k)

p̂(j, k)
≥ npmax

log(npmax)
for all i 6= j ,

where with a slight abuse of notation, we denote e({v},V0) := m −
∑K

k=1 e({v},Vk)
and p̂(i, 0) := 1−

∑K
k=1 p̂(i, k).

(H3) e({v},V \ H) ≤ 2 log2(npmax).

Now, we will show that all items in H are classified correctly after log n iterations. Let

E(t)
ij := (S(t)

i ∩ Vj) ∩ H and E(t) :=
⋃
i,j:i 6=j E

(t)
ij . At every improvement iteration, we move

each item to cluster k∗ having the highest (estimated) log-likelihood defined in Algorithm 2.
Thus, for all t,

0 ≤
∑
i,j:i 6=j

∑
v∈E(t)ij

K∑
k=0

e({v}, S(t−1)
k ) log

p̂(i, k)

p̂(j, k)

(a)
=
∑
i,j:i 6=j

∑
v∈E(t)ij

K∑
k=0

e({v},Vk) log
p̂(i, k)

p̂(j, k)
+O

(
e(E(t), E(t−1)) + e(E(t),V \ H)

)
(b)

≤ − npmax

log(npmax)
|E(t)|+O

(
e(E(t), E(t−1)) + e(E(t),V \ H)

)
(c)
= − npmax

log(npmax)
|E(t)|+O

(√
|E(t)||E(t−1)|npmax + |E(t)| log2(npmax)

)
. (53)

39



Collaborative Clustering

where (a) stems from the fact that p̂(j,i)
p̂(k,i) = O(1) for all i, j, k ∈ [K]; (b) is obtained from (H2)

and v ∈ E(t+1); and (c) holds because of (H3) and Lemma 16. For the sake of simplicity, we
omit the detail steps in the above inequalities since they are analog to those used for the
proof of Theorem 2 in (Yun and Proutiere, 2016).

From (53), it follows that

|E(t)|
|E(t−1)|

= O

(
log(npmax)2

npmax

)
,

which implies that after log n iterations, |E(logn)| has to be 0, i.e., items in H are correctly
classified.

We now obtain an upper bound on the size of V \H in the following lemma whose proof
is provided in Appendix H.1.

Lemma 18 There exists a constant C > 0 such that when

m ≥ Cn log(n/s)

wq(1 ∧ wq)
,

we have |V \ H| ≤ s with high probability.

This lemma implies that there exists a constant C > 0 such that when m ≥ Cn log(n/s)
wq(1∧wq) ,

K∑
k=1

∣∣∣Vk \ V̂k∣∣∣ ≤ |V \ H| ≤ s
with high probability. This completes the proof of Theorem 7.

H.1. Proof of Lemma 18

We will first find the number of items that do not satisfy (H1) or (H2). Then, we will
bound the number of items that do not satisfy (H3) with a given number of items that do
not satisfy (H1) or (H2). From the two step proof, we can complete the proof of Lemma 18.

From Lemma 20 and the Markov inequality, it follows that with high probability, the
number of items not satisfying (H1) is less than n exp(−C1npmax) for a constant C1 > 0.
We now bound the number of items that satisfy (H1) but not (H2). To do so, we first study
properties of such items. For a given item v ∈ Vi, each user’s ratings can add at most one to

only one entry of Av, where the probability to add one to Av′v such that v′ ∈ Vj is
|Vj |
m ρij .

Using this with Lemma 13 in (Yun and Proutiere, 2016) and Lemma 19, it is not hard to
check that if item v satisfies (H1),

P

{
K∑
i=0

e({v},Vi) log
e({v},Vi)/m

p̂(j, i)
≥ cnpmax

}
≤ exp

(
−1

2
cnpmax

)
for all c > 0 . (54)

From Lemma 2.4 in (Tsybakov, 2009), we note that∑
x

(
√
p(x)−

√
q(x))2 ≤

∑
x

p(x) log
p(x)

q(x)
, (55)
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where
∑

x p(x) =
∑

x q(x) = 1 and p(x), q(x) ≥ 0 for all x. Observing
∑K

i=0 e({v},Vi)/m =
1 and using (55), it follows that for v ∈ Vi,

K∑
i=0

e({v},Vi) log
e({v},Vi)/m

p̂(j, i)
+

K∑
i=0

e({v},Vi) log
e({v},Vi)/m

p̂(k, i)

≥m
K∑
i=0

(√
e({v},Vi)

m
−
√
p̂(j, i)

)2

+m

K∑
i=0

(√
e({v},Vi)

m
−
√
p̂(k, i)

)2

=Ω(npmax) , (56)

where for the last inequality, we use the following lemma whose proof is provided in Ap-
pendix H.2.

Lemma 19 With high probability,∣∣∣∣p̂(i, j)− |Vj |m ρij

∣∣∣∣ = O

(
log(npmax)2

√
npmax

|Vj |
m

ρij

)
.

Thus, when v ∈ Vi does not satisfy (H2),

K∑
i=0

e({v},Vi) log
e({v},Vi)/m

p̂(j, i)
= Ω(npmax) . (57)

From (54), (57), and the Markov inequality, it follows that the number of items that do not
satisfy (H2) is less than n exp(−C2npmax) with a constant C2 > 0 with high probability.

We have shown that the number of items that do not satisfy (H1) or (H2) is less than
n (exp(−C1npmax) + exp(−C2npmax)) with high probability. Using this with Lemma 16 in
(Yun and Proutiere, 2016) and Lemma 14, we can show

|V \ H| ≤ 3n (exp(−C1npmax) + exp(−C2npmax)) ,

which completes the proof of Lemma 18.

H.2. Proof of Lemma 19

After the spectral partition step, we have O(1/p) misclassified items. Thus,∣∣∣∣E[p̂(i, j)]− |Vj |
m

ρij

∣∣∣∣ = O

(
1

npmax

|Vj |
m

ρij

)
. (58)

Using this with the Chernoff bound, it is straightforward to check that there exists a constant
C > 0 such that

P1

{
|p̂(i, j)− E[p̂(i, j)]| ≥ C log(npmax)2

√
npmax

|Vj |
m

ρij

}
≤ exp

(
−2n log(npmax)2

)
,

which implies

P
{
|p̂(i, j)− E[p̂(i, j)]| ≥ C log(npmax)2

√
npmax

|Vj |
m

ρij

}
≤ exp

(
−n log(npmax)2

)
, (59)
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where we replace P1 to P using Lemma 13. Since there are at most Kn possible configura-
tions of clusters, we can complete the proof of Lemma 19 using the union bound, (59), and
the following lemma whose proof is provided in Appendix H.3.

Lemma 20 There exists a constant C > 0 such that

P

{
max
v′∈Γ

∑
v∈V

Avv′ ≥ Cnp̃

}
≤ exp(−np̃) .

H.3. Proof of Lemma 20

Pick an arbitrary v′ ∈ V. We first bound the tail probability of
∑

v∈V Avv′ . Using Lemma 14,
we can replace P with P2. Thus, we have

P

{∑
v∈V

Avv′ ≥ Cnp̃

}
≤ P2

{∑
v∈V

Avv′ ≥ Cnp̃

}
(a)

≤ max
λ>0

E2 [exp (λ
∑n

i=1Avi)]

exp(λCnp̃)

(b)

≤ max
λ>0

exp
(
2npmax(eλ − 1)

)
exp(λCnp̃)

,

where we use the Markov inequality; and 1+x ≤ ex and the definition of Ψ2 for (a) and (b),
respectively. Using the Chernoff bound and the definition of pmax, it is not hard to check
that there exists a constant c1 > 0 such that with high probability,

pmax ≤ c1p̃ .

Hence, we further have

P

{∑
v∈V

Avv′ ≥ Cnp̃

}
≤max

λ>0

exp
(
2npmax(eλ − 1)

)
exp(λCnp̃)

≤ exp (−np̃ (C − 2c1(e− 1))) . (60)

From (60) with sufficiently large C ≥ 2 + 2c1(e− 1), it follows that

E

[∣∣∣∣∣
{
v′ ∈ V :

∑
v∈V

Avv′ ≥ Cnp̃

}∣∣∣∣∣
]
≤ n exp (−2np̃) ,

which implies

P

{∣∣∣∣∣
{
v′ ∈ V :

∑
v∈V

Avv′ ≥ Cnp̃

}∣∣∣∣∣ ≥ n exp (−np̃)

}
≤ exp (−np̃) ,

where we use the Markov inequality. This completes the proof of Lemma 20.
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