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Abstract
We study the approximate nearest neighbour method for cost-sensitive classification on low-dimensional
manifolds embedded within a high-dimensional feature space. We determine the minimax learning
rates for distributions on a smooth manifold, in a cost-sensitive setting. This generalises a classic
result of Audibert and Tsybakov. Building upon recent work of Chaudhuri and Dasgupta we prove
that these minimax rates are attained by the approximate nearest neighbour algorithm, where neigh-
bours are computed in a randomly projected low-dimensional space. In addition, we give a bound
on the number of dimensions required for the projection which depends solely upon the reach and
dimension of the manifold, combined with the regularity of the marginal.

1. Introduction

The nearest neighbour method is a simple and intuitive approach to classification with numerous
strong theoretical properties. A classical result of Stone (1977) gives convergence to the Bayes error.
More recently, Chaudhuri and Dasgupta (2014) demonstrated that the nearest neighbour method
adapts to the unknown level of noise, expressed as a margin condition. Indeed, under Tsybakov’s
margin condition, the risk converges at the minimax optimal rates for binary classification identified
by Audibert et al. (2007), which require that the marginal is absolutely continuous with respect to
the Lebesgue measure. In this work we move the analysis of minimax rates for classification closer
to practical settings encountered in machine learning applications.

High dimensional feature spaces occur in many machine learning applications from computer
vision through to genome analysis and natural language processing. Whilst the dimensionality of
the feature space may be high, the data itself is often constrained to a low-dimensional manifold.
This renders the assumption of an absolutely continuous marginal distribution inappropriate. As we
shall see, optimal classification rates are dependent upon the intrinsic complexity of the manifold.

High-dimensional feature spaces also give rise to computational challenges. Indeed, an exact
nearest neighbour search is often prohibitively expensive when the feature space is high dimensional
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(Indyk and Motwani (1998)). An efficient approach to dealing with these computational challenges
is random projections (Dirksen (2016)). Kabán (2015) demonstrated that the randomly projected
nearest neighbour method is capable of exploiting low intrinsic complexity within the data set in the
distribution-free setting. However, these distribution-free bounds are non-optimal when Tsybakov’s
margin condition holds. We provide optimal distribution-dependent bounds for the approximate
nearest neighbour method.

The seminal works of Audibert et al. (2007) and Chaudhuri and Dasgupta (2014) target the over-
all classification risk. In doing so they implicitly make the assumption of symmetric costs. However,
many real-world applications, from medical diagnosis through to fraud detection, have asymmet-
ric costs: Different mis-classification errors incur different costs (see Elkan (2001); Dmochowski
et al. (2010)). The nearest neighbour method can be straight-forwardly adapted to the cost-sensitive
setting in which asymmetric costs are taken into account (see Section 5). In this work we analyze
the nearest neighbour method in high-dimensional cost-sensitive settings, in keeping with our goal
of bringing the analysis of nearest neighbour methods closer to practical settings encountered in
machine learning applications.

Building upon previous work of Audibert et al. (2007); Chaudhuri and Dasgupta (2014); Kabán
(2015), we give optimal, distribution-dependent, and cost-sensitive bounds for the approximate
nearest neighbour method, when the data is concentrated on a low-dimensional manifold. Specifi-
cally, we provide the following.

• We determine the minimax learning rates for a natural family of distributions supported on
embedded manifolds, in a multi-class cost-sensitive setting (Section 4);

• We demonstrate that these rates are attained by an approximate nearest neighbour algorithm,
where neighbours are computed in a low-dimensional randomly projected space (Section 5);

• We give a bound upon on the number of dimensions required for the projection to attain
optimal learning rates which depends solely upon the reach and dimension of the manifold,
combined with the regularity of the marginal distribution (Section 5).

We begin by introducing some notation in Sections 2 and 3 before stating our main results in
Sections 4,5 and 6. Detailed proofs are provided in the Appendix: Sections A, B, C and D.

2. Background I: Classification with nearest neighbours

In this section we introduce our notation and give the relevant background on the nearest neighbour
method and distribution dependent bounds. This will lead us into a discussion on high dimensional
data and manifolds. We will bring these two strands together in Sections 4 and 5.

2.1. The classification problem

Suppose we have a distribution P over a Z = X × Y , where (X , ρ) is a metric space and Y =
{1, · · · , L} is a discrete space of labels. We let ∆(Y) ⊂ RL denote the (L− 1)-simplex consisting
of probability vectors over Y . The distribution P over Z is determined by a marginal distribution
µ on X , and a conditional probability specified by η : X → ∆(Y) where for each x ∈ X , y ∈ Y ,
η(x)y = P [Y = y|X = x]. We let E denote expectation over random pairs (X,Y ) ∼ P. We take a
fixed cost matrix Φ with entries φij ≥ 0 denoting the cost incurred by predicting class i when the
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true label is class j. Following Elkan (2001) we shall say that a cost-matrix Φ is reasonable when
φii < φji for all i, j with j 6= i. Often it is assumed that all mistakes are equally expensive and the
cost matrix Φ0,1 with all diagonal entries equal to 0 and all non-diagonal entries equal to 1 is used.
However, there are many application domains where the assumption of a symmetric cost matrix is
highly inaccurate (Dmochowski et al. (2010)). The class of reasonable cost matrices provides a
more general assumption applicable to a wide range of cost-sensitive scenarios. In particular, the
class of reasonable cost matrices generalises the class considered by Zhang (2004).

Given a cost matrix Φ, the risk R(f) of a classifier f : X → Y is defined by R(f) =
E
[
φf(X),Y

]
. The Bayes risk R∗ is defined by R∗ = inf {R(f) : f : X → Y is Borel}. Our goal

is to obtain a classifier f : X → Y with R(f) as close as possible to R∗. Whilst we do not have
direct access to the distribution P, we do have access to a random data set Dn = {Z1, · · · , Zn}
with Zi selected independently according to P. Equivalently, Dn ∼ Pn where Pn denotes the
product measure

∏n
i=1 P on Zn. We let En denote expectation over data sets Dn ∼ Pn and

let Fn denote the set of feature vectors in the training data ie. Fn = {X1, · · · , Xn} where
Dn = {(X1, Y1), · · · , (Xn, Yn)}.

2.2. Distribution dependent bounds for classification

One of the central goals of statistical learning theory is to establish optimal bounds on the risk of
a classifier, under natural assumptions on the distribution. The seminal work of Audibert et al.
(2007) established optimal bounds for a class of distributions supported on regular sets of positive
Lebesgue measure, satisfying a margin condition. To recall these results we require some notation.

Definition 2.1 (Regular sets and measures) Suppose we have a measure υ on the metric space
(X , ρ). A subset A ⊂ X is said to be a (c0, r0)-regular set with respect to the measure υ if for
all x ∈ A and all r ∈ (0, r0) we have υ (A ∩Br(x)) ≥ c0 · υ (Br(x)), where Br(x) denotes
the open metric ball of radius r, centred at x. A measure µ with support supp(µ) ⊂ X is said
to be (c0, r0, νmin, νmax)-regular measure with respect to υ if supp(µ) is a (c0, r0)-regular set with
respect to υ and µ is absolutely continuous with respect to υ with Radon-Nikodym derivative ν(x) =
dµ(x)/dυ(x), such that for all x ∈ supp(µ) we have νmin ≤ ν(x) ≤ νmax.

The assumption of a regular marginal ensures that with high probability there are a large number
of training points in the vicinity of the average test point.

Definition 2.2 (Hölder conditional) The conditional η is said to be Hölder continuous with con-
stants (α,Cα) if for µ almost every x0, x1 ∈ X we have ‖η(x0)− η(x1)‖∞ ≤ Cα · ρ(x0, x1)α.

The assumption of a Hölder conditional ensures that the proximity between a test point and its
closest training points is reflected in a similar value for the conditional probability. Hence, higher
Hölder exponents correspond to faster learning rates. Audibert and Tsybakov also considered higher
order smoothness conditions and showed that in such settings even faster learning rates are attainable
(see (Audibert et al., 2007, Section 2 & Section 3, Theorem 3.3)). However, in this work we restrict
our attention to the Hölder condition given in Definition 2.2.

Definition 2.3 (Tsybakov’s Margin condition) Suppose that Y = {1, 2} and Φ = Φ0,1. We
shall say that P satisfies the margin condition with constants (Cβ, β) if for all ζ > 0 we have
µ
({
x ∈ X : 0 <

∣∣η(x)1 − 1
2

∣∣ ≤ ζ}) ≤ Cβ · ζβ .
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The margin condition bounds the probability that the labels of training points in the vicinity of
the test point will disagree with the mode of the conditional label distribution. We generalise the
condition to an arbitrary L×L cost matrix as follows. Given n ∈ ∆(Y) we let Y∗Φ (n) ⊂ Y denote
the set of labels with minimal associated cost. That is, Y∗Φ (n) = argminy∈Y

{
e(y)TΦ n

}
, where

e(y) ∈ {0, 1}L×1 denotes the ‘one-hot-encoding’, satisfying e(y)y = 1 and e(y)l = 0 for l 6= y.
Given n ∈ ∆(Y) we define

MΦ (n) = min
{

(e(y1)− e(y0))T Φ n : y0 ∈ Y∗Φ (n) , y1 ∈ Y\Y∗Φ (n)
}
.

Definition 2.4 (Margin condition) We shall say that P satisfies the margin condition with con-
stants (Cβ, β, ζmax) if for all ζ ∈ (0, ζmax) we have µ ({x ∈ X : MΦ (η(x)) ≤ ζ}) ≤ Cβ · ζβ .

The Definitions 2.1, 2.2, 2.4 characterise a natural family of distributions as follows.

Definition 2.5 (Measure classes) Fix positive constants α, β, r0, c0, νmin, νmax, ζmax, Cα, Cβ and
let Γ = 〈(c0, r0, νmin, νmax), (β,Cβ, ζmax) , (α,Cα)〉. We let PΦ (υ,Γ) denote the class of all prob-
ability measures P on Z = X × Y such that

• µ is a (c0, r0, νmin, νmax)-regular measure with respect to υ,

• η is Hölder continuous with constants (α,Cα),

• P satisfies the margin condition with constants (β,Cβ, ζmax).

Audibert et al. (2007) gave the following minimax result for classes of the form PΦ0,1 (Ld,Γ),
where Ld denotes the d-dimensional Lebesgue measure on Rd. The Euclidean metric ρ on Rd is
given by ρ(x0, x1) = ‖x0 − x1‖2, where ‖ · ‖2 denotes the Euclidean norm. To state the result we
must distinguish between the estimation procedure f̂ est

n ∈
(
YX
)Zn and the classifier f̂n ∈ YX . The

estimation procedure f̂ est
n : Zn → YX is a mapping which takes a data set Dn ∈ Zn and outputs a

classifier f̂n : X → Y , which implicitly depends upon the particular data set Dn.

Theorem 1 (Audibert et al. (2007)) Take d ∈ N, X = Rd, let ρ denote the Euclidean metric
and set Y = {1, 2}. There exists positive constants C0, R0, V−, V+ such that for all c0 ∈ (0, C0),
r0 ∈ (0, R0), νmin ∈ (0, V−), νmax ∈ (V+,∞), α ∈ (0, 1), β ∈ (0, d/α), Cα, Cβ > 0, ζmax > 0, if
we take Γ = 〈(c0, r0, νmin, νmax) , (β,Cβ, ζmax) , (α,Cα)〉, we have

inf
{

sup
{
EPn

[
R
(
f̂n

)]
−R∗ : P ∈ PΦ0,1 (Ld,Γ)

}
: f̂ est

n ∈
(
YX
)Zn}

= Θ

(
n−

α(1+β)
2α+d

)
,

with upper and lower constants determined solely by d and Γ.

Here we use standard complexity notation (Cormen, 2009, Chapter 3). In the proof of Theorem 1
Audibert et al. also identified a classifier based on kernel density estimation which attains the
minimax optimal convergence rates Audibert et al. (2007). This raises the interesting question of
which other classifiers attain these rates.
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2.3. The nearest neighbour classifier

The nearest neighbour classifier is constructed as follows. Given k ≤ n we let S◦k(x,Fn) ⊆
{1, · · · , n} denote a set of for k-nearest neighbour indices. That is, I = S◦k(x,Fn) minimises
max {ρ (x,Xi) : i ∈ I} over all sets I ⊆ {1, · · · , n} with #I = k. The k-nearest classifier is
defined by f̂k,n(x) = Mode ({Yi : i ∈ S◦k (x,Fn)}).

Despite its simplicity the nearest neighbour classifier has strong theoretical properties. Shalev-
Shwartz and Ben-David gave an elegant proof that the generalisation error of the 1-nearest neigh-
bour classifier converges to at most 2 · R∗ + O(n−1/(1+d)), for Lipchitz η, without any assump-
tions on the marginal µ (Shalev-Shwartz and Ben-David, 2014, Chapter 19). This approach can
be extended to all metric spaces of doubling dimension d (see Kontorovich and Weiss (2014)).
Chaudhuri and Dasgupta gave distribution dependent bounds for the nearest neighbour method on
general metric spaces (Chaudhuri and Dasgupta (2014)). Rather than relying directly upon the
Hölder continuity of the conditional, Chaudhuri and Dasgupta introduced the following smoothness
condition, which is especially suited to non-parametric classification. Given x ∈ X and r > 0 we
let Br(x) = {x̃ ∈ X : ρ (x, x̃) < r}, and Br(x) = {x̃ ∈ X : ρ (x, x̃) ≤ r}.

Definition 2.6 (Measure-smooth conditional) The conditional η is said to be measure-smooth
with constants (λ,Cλ) if for µ almost every x0, x1 ∈ X we have

‖η(x0)− η(x1)‖∞ ≤ Cλ · µ
(
Bρ(x0,x1)(x0)

)λ
.

Chaudhuri and Dasgupta (2014) proved that whenever the conditional is measure-smooth and
the Tsybakov margin condition holds, then for Φ = Φ0,1 and Y = {1, 2}, the risk of the nearest
neighbour method converges to the Bayes error at a rate O

(
n−λ(1+β)/(2λ+1)

)
. It follows that the

nearest neighbour classifier attains the optimal convergence rates for P ∈ PΦ0,1

(
Ld,Γ

)
given in

Theorem 1 (Chaudhuri and Dasgupta, 2014, Lemma 2).

3. Background II: High dimensional data

A wide variety of machine learning application domains from computer vision through to genome
analysis involve extremely high-dimensional feature spaces. Nonetheless, statistical regularities in
the data often mean that its intrinsic complexity is often much lower than the number of features.
A natural approach to modelling this low intrinsic complexity is to assume that the data lies on a
manifold (see Roweis and Saul (2000); Tenenbaum et al. (2000); Park et al. (2015)).

3.1. Manifolds

We shall consider a compact C∞-smooth sub-manifold of M ⊂ Rd of dimension γ (see Lee
(1997)). The manifold is endowed with two natural metrics. Given a pair of points x0, x1 ∈ M,
distances may be computed either with respect to the Euclidean metric ρ(x0, x1) = ‖x0 − x1‖2
(sinceM⊂ Rd), or with respect to the geodesic distance induced by the manifold,

ρg(x0, x1) := inf

{∫ 1

0
‖c′(t)‖2 : c : [0, 1]→M is piecewise C1 with c(0) = x0 & c(1) = x1

}
.
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We shall make use of the concept of reach τ introduced by Federer (1959) and investigated by
Niyogi et al. (2008). The reach τ of a manifoldM is defined by

τ := sup

{
r > 0 : ∀z ∈ Rd inf

q∈M
{‖z − q‖2} < r =⇒ ∃! p ∈M, ‖z − p‖2 = inf

q∈M
{‖z − q‖2}

}
.

Note that Niyogi et al. (2008) refers the condition number 1/τ , which is the reciprocal of the reach
τ . We let dVM denote the Riemannian volume element and VM the Riemannian volume.

3.2. Minimax rates for nearest neighbours on manifolds

The study of minimax rates for data lying on a low-dimensional manifold has received substantial at-
tention in the regression setting. In particular Kpotufe (2011) determined the minimax optimal rates
for regression on metric spaces of a given intrinsic dimension and showed that k-nearest neighbour
regression attains these rates. Regression with nearest neighbours has also been studied in the semi-
supervised domain (Goldberg et al. (2009); Moscovich et al. (2017)). By combining Theorem 4
from Chaudhuri and Dasgupta (2014) with (Eftekhari and Wakin, 2015, Lemma 12) one obtains
an upper bound on the risk for the binary k-nearest neighbour classifier on a manifold. However,
Chaudhuri and Dasgupta (2014) do not present minimax lower bounds for classification on non-
Euclidean spaces. Proving lower bounds on non-Euclidean spaces for classification is complicated
by the necessity of constructing distributions which simultaneously satisfy the margin condition and
have a marginal with a regular support.

3.3. Approximate nearest neighbours and random projections

High dimensional data is computationally problematic for the nearest neighbour method. The naive
nearest neighbour search depends linearly on the number of dimensions. More sophisticated solu-
tions which are logarithmic in the number of examples lead to either a time or space complexity
which is exponential in the number of features (Andoni and Indyk (2006)). Thus, nearest neighbour
classification based on an exact nearest neighbour search is computationally prohibitive for high
dimensional data sets with many examples. A popular and computationally tractable alternative is
to use approximate nearest neighbours (Indyk and Motwani (1998)).

Given θ ≥ 1, a family of mappings S = {Sk}k∈N is said to generate θ approximate nearest
neighbours if for each x ∈ X , n ∈ N and k ≤ n, Sk(x,Fn) is a subset of {1, · · · , n} with cardinal-
ity k such that max {ρ(x,Xi) : i ∈ Sk(x,Fn)} ≤ θ ·max {ρ (x,Xi) : i ∈ S◦k(x,Fn)}. The associ-
ated approximate nearest neighbour classifier is given by f̂Sk,n(x) = Mode ({Yi : i ∈ Sk (x,Fn)}).

A highly efficient approach to generating approximate nearest neighbours is to apply a subgaus-
sian random projection (see Dirksen (2016)). Given a random variable u, the subgaussian norm
is given by ‖u‖ψ2 := inf

{
ψ > 0 : Eu

[
exp

(
‖u‖22/ψ2

)]
≤ 2
}

. Whenever ‖u‖ψ2 < ∞ the random
vector u is said to be subgaussian. More generally, a d-dimensional random vector v is said to be
subgaussian if ‖v‖ψ2 := sup

{
‖vTw‖ψ2 : w ∈ Rd ‖w‖2 ≤ 1

}
<∞. A random vector v is said to

be isotropic if for all w ∈ Rd we have Ev
[(
vTw

)2]
= ‖w‖22. By a subgaussian random projection

ϕ : Rd → Rh we shall mean a random mapping constructed by taking h independent and iden-
tically distributed subgaussian and isotropic random vectors v1, · · · ,vh, taking a random matrix
V := [v1, · · · ,vh]T and letting ϕ(x) =

√
(1/h) · V x. The subgaussian norm is extended to sub-

gaussian random projections ϕ by defining ‖ϕ‖ψ2 := ‖v1‖ψ2 .
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Example: An interesting family of a subgaussian random projections is the set of ‘data-base
friendly’ projections introduced by Achlioptas (2003). The entries of the matrix are chosen i.i.d
from the set {−

√
3, 0,+

√
3}, with respective probabilities 1/6, 2/3, 1/6. The high (expected) level

of sparsity gives rise to projections which are efficient both to store and to apply.

Given a subgaussian random projection ϕ, we define an associated family of mappings S(ϕ) =
{Sϕk }k∈N by letting Sϕk (x,Fn) denote the set of k nearest neighbours of ϕ(x) in the randomly pro-
jected feature space Rh, i.e. Sϕk (x,Fn) = S◦k (ϕ(x), ϕ (Fn)) whereϕ (Fn) = {ϕ(X1), · · · , ϕ(Xn)}.
When S(ϕ) generates approximate nearest neighbours we let f̂ϕk,n denote f̂S(ϕ)

k,n . The celebrated
Johnson-Lindenstrauss theorem states that, given a finite data set A ⊂ Rd, for h = Ω(log(#A)),
with high probability, a subgaussian random projection ϕ : Rd → Rh will be bi-Lipchitz on A
(Johnson and Lindenstrauss (1984); Matoušek (2008)). Moreover, the bi-Lipchitz property implies
that the associated family of mappings S(ϕ) generates approximate nearest neighbours (see Lemma
D.4), a fact that was utilised by Indyk and Motwani (1998). Klartag and Mendelson (2005) showed
that it is sufficient to take h = Ω

(
γ2

tal (A)
)

where γtal (A) quantifies the metric-complexity ofA (see
Section G for details). Recently, Dirksen (2016) has built upon the work Klartag and Mendelsen to
give a unified theory of dimensionality reduction, which will be critical for our main results. The
results of Klartag and Mendelson (2005) and Dirksen (2016) are highly significant from a statistical
learning theory perspective, since for many natural examples, such as when X ⊂ Rd lies within a
smooth manifold, the metric complexity γtal (X ) may be bounded independently of the cardinality
of X . In such cases we may bound the required number of projection dimensions h independently
of the number of examples n. Indeed, Kabán (2015) applied the results of Klartag and Mendelson
(2005) to obtain improved bounds on the generalisation error of the approximate nearest neighbour
classifier f̂ϕk,n when X ⊂ Rd and the metric complexity γtal (X ) � d. Kabán (2015) showed that
given a sub-Gaussian random projection ϕ : Rd → Rh with h = Ω

(
γ2

tal (X )
)
, with high prob-

ability the generalisation error of the approximate 1-nearest neighbour classifier f̂ϕ1,n is bounded
above by 2 · R∗ + O(n−1/(1+h)). Kabán (2015) also gives the same bound for the exact nearest
neighbour classifier, dependent upon γ2

tal (X ). Hence, convergence rates for both the approximate
nearest neighbour classifier and the exact nearest neighbour classifier may be improved under the
assumption of low-metric complexity in the distribution free setting.

3.4. Motivating questions

This raises the following questions. If we combine an assumption of low-intrinsic complexity with
regularity assumptions analogous to those in Theorem 1, then what are the best possible rates? How
do these rates depend upon geometric properties of the manifold? Are these rates the same for all
reasonable cost matrices? Which algorithms attain these bounds?
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4. Minimax rates for cost-sensitive learning on manifolds

In this section we shall give minimax learning rates for cost-sensitive learning on manifolds. Recall
that a cost-matrix Φ is said to be reasonable when φii < φji for all i, j with j 6= i (see Section
2.1). As in Section 2.2 we distinguish between the estimation procedure f̂ est

n : Zn → YX and the
classifier f̂n : X → Y , which implicitly depends on the data set Dn. A key feature of our bound is
that the constants are uniform over all manifoldsM of a given reach τ and intrinsic dimension γ.

Theorem 2 Take d ∈ N and let ρ be the Euclidean metric on Rd. Suppose that Φ is a rea-
sonable cost matrix and M ⊆ Rd is a compact smooth submanifold with dimension γ, reach τ
and Riemannian volume VM. There exists a positive constant ZΦ, determined by Φ, and posi-
tive constants C0, R0, V−, V+ determined by γ, τ , such that for all c0 ∈ (0, C0), r0 ∈ (0, R0),
νmin ∈ (0, V−), νmax ∈ (V+,∞), ζmax ∈ (0, ZΦ), α ∈ (0, 1), β ∈ (0, γ/α), Cα, Cβ > 0, if we
take Γ = 〈(c0, r0, νmin, νmax) , (β,Cβ, ζmax) , (α,Cα)〉 we have

inf
{

sup
{
EPn

[
R
(
f̂n

)]
−R∗ : P ∈ PΦ (VM,Γ)

}
: f̂ est

n ∈
(
YX
)Zn}

= Θ

(
n
−α(1+β)

2α+γ

)
,

with upper and lower constants determined solely by Φ, γ, τ and Γ.

The proof of Theorem 2 consists of a a lower bound and an upper bound. The proof strategy
for the lower bound is based on the proof of (Audibert et al., 2007, Theorem 3.5) where the result
is proved in the special setting of binary classification with the zero-one loss Φ0,1 and a Lebesgue
absolutely continuous marginal distribution µ. In the proof of (Audibert et al., 2007, Theorem
3.5) the authors exploit the following fact: Suppose that you are given one of a pair of Bernoulli
measures with probability p = 1/2 + ∆ or p = 1/2 − ∆ for some ∆ ∈ (0, 1/2). If you know
which of the two measures you have (p = 1/2 + ∆ or p = 1/2 − ∆) then you may make binary
predictions in such a way as to get an error rate of 1/2−∆. However, without knowledge of which
Bernoulli measure you have, your average expected error rate must be 1/2, by symmetry. Hence,
the average level of regret due to not knowing which of the two measures you have is ∆/2. With this
in mind, the structure of Euclidean space is then utilised to show that the set [0, 1]d may be broken
up into 2qd small well-separated cubes of size 2−qd−1. Thus, one can construct a set of measures
P with a marginal µ supported on those cubes, and conditional equal to p± = 1/2 ± ∆, with the
choice of ± made independently for each small cube. The number of cubes means that a large
number of training examples is required for an estimator to know the true value of the conditional
on many of the small cubes. Hence, on average, an estimator based on Dn must have regret at
least ∆/2, on a large proportion of the cubes. This implies a lower bound on the generalisation
error minus the Bayes error. In the proof of the lower bound for our Theorem 2 we have two
important differences requiring modifications to the proof. Firstly, we are working in a multi-class
cost sensitive scenario. Secondly, we are working on an embedded Riemannian manifold, rather
than Euclidean space. To deal with the fact that our problem is multi-class and cost-sensitive we
make use of Elkan’s reasonableness assumption (Elkan (2001)) to show that there exists families
of measures on the simplex ∆(Y) such that whatever class one predicts, the average expected cost
one incurs, averaged over all the measures, is well separated from the expected cost one would
have incurred if one knew which measure in ∆(Y) one had (see Lemmas A.1 and A.2). The key
difficulty in the non-Euclidean setting is the construction of distributions which are both (c0, r0)
and satisfy the margin condition. Our construction consists a collection of well-separated closed
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geodesic balls (see Lemmas A.3 and A.5). To show that the support of the marginal is (c0, r0)-
regular we exploit two key properties which follow from the assumption of bounded reach. Firstly,
by results of Eftekhari and Wakin (2015) and Chazal (2013) the volume of small geodesic balls
in manifolds of bounded reach is approximately rγ (see Lemma A.6). Secondly, we have a lower
bound on the volume of the intersection of two sufficiently close geodesic balls (see Lemma A.7).
We combine these properties to construct families of measures for which the average difference
between expected risk and Bayes risk is bounded from below for all estimators. The full proof of
the lower bound is given in Section A. The upper bound follows from Theorem 3 in Section 5 where
we exhibit an efficient algorithm which attains the optimal rate.

5. The approximate nearest neighbour method on manifolds

In this section we shall see that the minimax rates identified in Section 4 are attained by the ap-
proximate nearest neighbour method. Given a data set Dn ∼ Pn, an approximate nearest neighbour
generating process S = {Sk}k∈N and a query point x ∈ X , the algorithm proceeds as follows:

1. Compute a set of approximate k-nearest neighbours Sk(x,Fn),

2. Estimate η(x) with η̂Sn,k(x) = 1
k

∑
i∈Sk(x,Fn) e (Yi),

3. Predict fSn,k(x) ∈ argminy∈Y
{
e (y)T Φ η̂Sn,k(x)

}
.

The following result implies that the approximate nearest neighbour method is minimax optimal.
To state the result we introduce the quantities of Asym(Φ) and Λ(Φ) which depend upon the cost-
matrix Φ. Given a cost matrix Φ we let Asym(Φ) denote the asymmetry of Φ, given by Asym(Φ) :=
max{|φi0j − φi1j | : i0 6= j, i1 6= j}. Note that with Φ0−1 equal to the cost matrix corresponding to
the zero-one loss we have Asym(Φ0−1) = 0. In addition, we define

Λ(Φ) := (L− 2) · Asym(Φ) + 2‖Φ‖∞.

9
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The constant Λ(Φ) controls the degree of dependence of the cost differentials between classes, upon
the marginal: The greater Λ(Φ) is, the greater the potential for errors in estimating η to translate
into incorrect assignments of relative cost.

Theorem 3 Take d ∈ N and let ρ denote the Euclidean metric on Rd. Let Φ be a cost matrix and
M ⊆ Rd a compact smooth submanifold with dimension γ and reach τ . Take positive constants
k0, r0, c0, νmin, νmax, ζmax, α, β, Cα, Cβ and let Γ = 〈(c0, r0, νmin, νmax) , (β,Cβ, ζmax) , (α,Cα)〉.
Suppose that S generates θ-approximate nearest neighbours for some θ ≥ 1. There exists a con-
stant C > 0, depending upon k0, γ, τ , Γ such that for all P ∈ PΦ (VM,Γ) and n ∈ N the following
holds:

(1) Given ξ ∈ (0, 1) and kn = k0 ·n
2α

2α+γ · (1 + log(1/ξ))γ/(2α+γ) with probability at least 1− ξ
over Dn ∼ Pn we have

P
[
fSn,k(X) /∈ Y∗Φ (η(X))

]
≤ ξ + C ·

(
θα · Λ(Φ) ·

√
log(L)

)β
·
(

1 + log(1/ξ)

n

)βα/(2α+γ)

.

(2) Given kn = k0 · n
2α

2α+γ we have

En
[
R
(
fSn,kn

)]
−R∗ ≤ C · (θα · Λ(Φ))1+β · L · n−

α(1+β)
2α+γ .

Moreover, there exists an absolute constant K > 0 such that whenever θ > 1, given any subgaus-
sian random projection ϕ : Rd → Rh with

h ≥ K · ‖ϕ‖4ψ2
·
(
θ2 + 1

θ2 − 1

)2

·max
{
γ log+(γ/(r0 · τ))− log+ (c0 · νmin) + γ, log δ−1

}
,

with probability at least 1 − δ, S(ϕ) generates θ-approximate nearest neighbours, so both (1) and
(2) hold with fϕn,k in place of fSn,k.

We emphasize that the rates are uniform over all manifoldsM of a given reach τ and intrinsic
dimension γ (for fixed k0, Γ). Note that the first part of Theorem 3 includes the special case in which
θ = 1 and S generates exact nearest neighbours. Approximate nearest neighbours and random
projections are required purely for reducing computational complexity, and not for generalization
performance. Note also that Theorem 3 holds for all non-negative cost matrices Φ (not necessarily
reasonable).

A full proof of Theorem 3 is given in Section D. The first part of Theorem 3 follows straightfor-
wardly from a more general result for metric spaces, which we present in Section 6. The second part
of Theorem 3 follows from the first part combined with the following result on random projections.
A full proof is given in Section D.

Theorem 4 There exists an absolute constant K such that the following holds. Given a compact
smooth submanifold M ⊆ Rd with dimension γ and reach τ , suppose that A ⊂ M is (c0, r0)
regular with respect to the Riemannian volume VM. Suppose that ϕ : Rd → Rh is a subgaussian
random projection. Take ε, δ ∈ (0, 1) and suppose that

h ≥ K · ‖ϕ‖4ψ2
· ε−2 ·max

{
γ log+(γ/(r0 · τ)) + log+ (VM(A)/c0) + γ, log δ−1

}
.

Then with probability at least 1− δ, for all pairs x0, x1 ∈ A we have

(1− ε) · ‖x0 − x1‖22 ≤ ‖ϕ(x0)− ϕ(x1)‖22 ≤ (1 + ε) · ‖x0 − x1‖22.

10
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Theorem 4 is a generalisation of (Dirksen, 2016, Theorem 7.9), where the result is given in the
special case where A = M. The proof is very similar, but is given in Section G for completeness.
Theorem 4 is necessary for dealing with situations where we are able to bound the volume of the
support of the marginal via the regularity condition (Defintion 2.1), but we have no bound on the
volume of the ambient manifoldM.

6. The approximate nearest neighbour method on metric spaces

In this section we give a counterpart to Theorem 3 for arbitrary metric spaces. We first introduce
the concept of measure-approximate nearest neighbours. Given ω ≥ 1, a family of mappings
S = {Sk}k∈N is said to generate ω measure-approximate nearest neighbours if, for each x ∈ X ,
n ∈ N and k ≤ n, Sk(x,Fn) is a subset of {1, · · · , n} with cardinality k such that taking r0 =
max {ρ (x,Xi) : i ∈ S◦k(x,Fn)} and r1 = max {ρ(x,Xi) : i ∈ Sk(x,Fn)} implies µ (Br1(x)) ≤
ω · µ (Br0(x)).

Theorem 5 Suppose that P satisfies the margin condition with constants (β,Cβ, ζmax) and that
the conditional η is measure-smooth, with constants (λ,Cλ). Suppose that S generates ω measure-
approximate nearest neighbours with respect to the measure µ and take some k0 > 0. There exists
a constant C > 0, depending upon k0, β, λ, Cβ , Cλ such that for all n ∈ N the following holds:

(1) Given ξ ∈ (0, 1) and kn = k0 · n
2λ

2λ+1 · (1 + log(1/ξ))1/(2λ+1) with probability at least 1− ξ
over Dn ∼ Pn we have

P
[
fSn,k(X) /∈ Y∗Φ (η(X))

]
≤ ξ + C ·

(
ωλ · Λ(Φ) ·

√
log(L)

)β
·
(

1 + log(1/ξ)

n

)βλ/(2λ+1)

.

(2) Given kn = k0 · n
2λ

2λ+1 we have

En
[
R
(
fSn,kn

)]
−R∗ ≤ C ·

(
ωλ · Λ(Φ)

)1+β
· L · n−

λ(1+β)
2λ+1 .

Theorem 5 is an analogue of Theorem 4 in Chaudhuri and Dasgupta (2014), extended to the
multi-class, cost-sensitive setting with measure approximate nearest neighbours. A sketch of the
proof is as follows:
(1) By the concentration of measure phenomenon, given a data set Dn of size n we expect the k
nearest neighbours of x to lie in metric ball with probability roughly k/n, when k is large. It fol-
lows that a set of k ω-measure-approximate nearest neighbours will with high probability lie in ball
of probability roughly ω · k/n. By the measure smooth property (Definition 2.6) the conditional
probability η at those k ω-measure approximate nearest neighbours will be of the order (ω · k/n)λ

from η(x) or less, with high probability. By the margin condition, with high probability, the margin
at x, MΦ(x), is large. Moreover, if x has large margin then the conditional of the k ω-measure
approximate nearest neighbours would have to be far from η(x) to lead to sub-optimal classifica-
tions, which is unlikely for small (ω · k/n)λ. A more precise statement of this argument gives the
conclusion that the predictions are optimal with high probability.
(2) The argument for (2) is more involved. We begin with the straightforward observation that the
difference between expected risk of the approximate nearest neighbour classifier and the Bayes risk

11
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is equal to the average differential between the cost incurred by the approximate nearest neighbour
classifier and the cost incurred by the Bayes optimal classifier. Let’s denote this differential by
d(x,Dn). The idea is to slice the difference between expected risk and Bayes risk up into regions
based upon the value of d(x,Dn). For each j we consider the event d(x,Dn) ∈

(
2j−1 · ε, 2j · ε

]
.

We note the following: a) By definition d(x,Dn) < 2j · ε on the j-th slice, b) We have 0 <
MΦ(η(x)) ≤ d(x,Dn) ≤ 2j · ε, so we can upper bound the margin on the slice, c) The fact
that d(x,Dn) > 2j−1 · ε implies that conditional of the approximate nearest neighbours is far
from that of the test point. Both b) and c) are low probability events, so we can upper bound
the probability of that d(x,Dn) ∈

(
2j−1 · ε, 2j · ε

]
, and by a) we can upper bound the differential

d(x,Dn), conditioned on the slice. Summing over the different slices gives an upper bound on
the average value of d(x,Dn). By our initial observation, this translates into an upper bound on the
difference between expected risk of the approximate nearest neighbour classifier and the Bayes risk.
The full proof of Theorem 5 is given in Sections B and C.

7. Discussion

In this work we determined the minimax learning rates for a natural family of distributions supported
on embedded manifolds, in a cost-sensitive setting. We proved that these rates are attained by an
approximate nearest neighbour algorithm, where neighbours are computed in a low-dimensional
randomly projected space. We also gave a bound upon on the number of dimensions required for the
projection to attain optimal learning rates. Our work raises many questions for future investigation,
both theoretical and empirical. Firstly, whilst we have demonstrated that Theorem 3 is optimal in the
number of examples, up to a constant term, the bound depends linearly on the number of classes L,
even in the cost-symmetric case. Whilst this is superior to the quadratic dependence of Crammer and
Singer (2002), the distribution-free bounds of Kontorovich and Weiss (2014) give O(

√
log(L)/n)

dependence on the number of classes. It would be interesting to see if the approach of Kontorovich
and Weiss (2014) may be adapted to give a better dependency upon n, in the presence of the margin
condition. Secondly, as discussed in Section 2 Audibert and Tsybakov also considered higher order
smoothness conditions and showed that in the presence of such conditions even faster learning rates
are attainable in the Lebesgue absolutely continuous setting (see (Audibert et al., 2007, Section 2
& Section 3, Theorem 3.3)). In future work we intend to prove analogous results for manifolds,
extending Theorem 2 to the setting of higher order smoothness conditions. From a more geometric
perspective it would be interesting to see what bounds are possible if we relax the assumption that
the data is concentrated on a manifold, and instead assume that the data lies near the manifold.
The minimax optimality of the randomly projected nearest neighbour method in the cost-sensitive
settings strongly suggests the method as a simple baseline for cost-sensitive problems. Hence, it
would interesting to conduct an empirical investigation to determine how well the method compares
on real-world data sets with other approaches to cost-sensitive classification Dmochowski et al.
(2010); Nikolaou et al. (2016).

12



MINIMAX RATES FOR COST-SENSITIVE LEARNING ON MANIFOLDS

References
Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal

of computer and System Sciences, 66(4):671–687, 2003.
Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in

high dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 459–468. IEEE, 2006.

Jean-Yves Audibert, Alexandre B Tsybakov, et al. Fast learning rates for plug-in classifiers. The Annals of
statistics, 35(2):608–633, 2007.
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Appendix A. Lower bound for cost-sensitive learning on manifolds

In order to prove Theorem 2 we first prove the following lower bound.

Proposition A.1 Suppose that Φ is a cost matrix satisfying Elkan’s reasonableness assumption and
M ⊆ Rd is a compact smooth submanifold with dimension γ and reach τ . Let τ̃ = min{τ, 1} and
let vγ denote the volume of the γ-dimensional Euclidean unit ball. There exists a positive constant
ZΦ, determined by Φ, such that for all c0 ∈

(
0, 2−14γ

)
, r0 ∈ (0, τ̃ /16), νmin ∈

(
0, (2/τ̃)γ · v−1

γ

)
,

νmax ∈
(
(214/τ̃)γ · v−1

γ ,∞
)
, ζmax ∈ (0, ZΦ), α ∈ (0, 1), β ∈ (0, γ/α), Cα, Cβ > 0, if we take

Γ = 〈(c0, r0, νmin, νmax) , (β,Cβ, ζmax) , (α,Cα)〉 then there exists a constant C determined solely
by Φ, γ, τ and Γ such that for all estimators f̂ : Zn → YX and n ∈ N we have

sup
{
EPn

[
R
(
f̂n

)]
−R∗ : P ∈ PΦ (VM,Γ)

}
≥ C · n−

α(1+β)
2α+γ .

To clarify the proof of Proposition A.1 requires several lemmas so for clarity we begin with an
outline. First, some notation: Given a class label y ∈ Y and a probability vector n ∈ ∆(Y) we
shall define

DΦ(y,n) = e(y)TΦ n−min
l∈Y

{
e(l)TΦ n

}
.

Hence, DΦ(y,n) is a form of regret which quantifies how far a prediction y is from the optimal,
according to a distribution n over Y . The proof proceeds as follows:

Lemma A.1: We make use of Elkan’s reasonableness assumption to construct a pair of measures
in the simplex ∆(Y) such that 1) Both measures have large margin, and 2) For any predicted class
label, the regret DΦ(y,n) for at least one of the measures must be large.

Lemma A.2: This lemma is based on Assoud’s lemma (Tsybakov, 2009, Chapter 2) and is closely
related to the original construction within Audibert et al. (2007). We construct a family of measures
Pσ on Z = X × Y such that we can lower bound the average differential between the expected
risk and the Bayes risk. This lower bound is carried out by showing that with large probability µ
on x ∈ X , the corresponding conditionals ησ(x) for measures Pσ correspond to those constructed
in Lemma A.1. Hence, by Lemma A.1 the average regret DΦ (y, ησ(x)) for any prediction y ∈ Y
is large. In addition it is shown that the different distributions Pσ within the family are sufficiently
similar that they cannot be effectively distinguished by any estimator f̂n based on the data set Dn.

Lemma A.3: We apply Lemma A.1 to give suitable conditions under which the family of measures
constructed in Lemma A.3 satisfies the margin condition.

Lemma A.4: We give suitable conditions under which the family of measures constructed in
Lemma A.3 satisfies the Hölder condition.

Lemma A.7: We use the geodesic structure of the manifold to show that when the centre of two
metric balls are sufficiently close then the volume of their intersection is large.
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Lemma A.5: We apply Lemma A.7 to construct (c0, r0)-regular sets S(r) consisting of many small
metric balls of radius r.

Lemma A.9: We give upper and lower bounds on the volume of the sets S(r). This implies upper
and lower bounds on the density of the normalised probability measure on S(r).

Lemma A.8: We give a lower bound on the number of small balls in the supporting set S(r).

Finally, Lemmas A.1-A.8 are combined. Using Lemma A.2, a family of measures is constructed
with a lower bound on the difference between the risk of any estimator and the Bayes risk, averaged
over all the measures. We then use Lemma A.3 to show that each of the measures in the family sat-
isfies the margin condition and use Lemma A.4 to show that each measure has a sufficiently Holder
conditional. Similarly, we use Lemmas A.5 and A.9 to show that the measure is (c0, r0, νmin, νmax)
regular. Finally, Lemma A.8 is combined with other properties of the construction to show that the
lower bound in Lemma A.2 implies the lower bound in Proposition A.1.

Given p ∈ [0, 1] we let n(p) denote the probability vector n(p) = (1− p) · e(1) + p · e(2).

Lemma A.1 Let Φ be a cost matrix with L ≥ 2, satisfying Elkan’s reasonableness assumption.
There exists a constants κΦ ∈ (0, 1), tΦ ∈ (0,min{κΦ, 1− κΦ}) and cΦ > 0, depending solely
upon Φ, such that for all σ ∈ {−1,+1}, δ ∈ (0, tΦ) and all y ∈ Y we have∑

σ∈{−1,+1}

DΦ (y,n (κΦ + σ · δ)) ≥ min
σ∈{−1,+1}

{MΦ (n (κΦ + σ · δ))} ≥ cΦ · δ.

Proof We begin by defining βΦ = min {φy1 − φ11 : y ∈ Y\{1}},

κΦ = min

{
(φy1 − φ11)

(φy1 − φ11) + (φ12 − φy2)
: y ∈ Y\{1}, φy2 < φ12

}
,

and cΦ = βΦ/(2κΦ). By Elkan’s reasonableness assumption we have φy1 − φ11 > 0 for all
y ∈ Y\{1}, so βΦ > 0 and φ22 < φ12 so κΦ is well-defined and κΦ ∈ (0, 1). We note that
κΦ = min

{
sup

{
p ∈ (0, 1) : e(y)TΦ n(p) > e(1)TΦ n(p)

}
: y ∈ Y\{1}

}
. Thus, for all p < κΦ

we have Y∗Φ (n(p)) = {1} and for all p > κΦ we have 1 /∈ Y∗Φ (n(p)). Hence, for all δ ∈ (0, κ) we
have

Y∗Φ (n (κΦ + δ)) ∩ Y∗Φ (n (κΦ − δ)) = ∅.

Thus, ∑
σ∈{−1,+1}

DΦ (y,n (κΦ + σ · δ)) ≥ min
σ∈{−1,+1}

{MΦ (n (κΦ + σ · δ))} .

Hence, it suffices to find some tΦ ∈ (0,min{κΦ, 1− κΦ}) and cΦ > 0 such that for all δ ∈ (0, tΦ)
we have

min
σ∈{−1,+1}

{MΦ (n (κΦ + σ · δ))} ≥ cΦ · δ,
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We begin by showing that whenever δ < κΦ andy ∈ Y\{1} we have DΦ (y,n (κΦ − δ)) ≥
(βΦ/κΦ) · δ.

Given y ∈ Y\{1}we have e(y)TΦ n(0)−e(1)TΦ n(0) ≥ βΦ and e(y)TΦ n(κΦ)−e(1)TΦ n(κΦ) ≥
0. Hence, by mean value theorem together with the linearity of

p 7→
(
e(y)TΦ n(p)− e(1)TΦ n(p)

)
− βΦ

κΦ
· (κΦ − p) ,

we have

DΦ (y,n (p)) ≥
(
e(y)TΦ n(p)− e(1)TΦ n(p)

)
≥ βΦ

κΦ
· (κΦ − p) .

Hence, DΦ (y,n (κΦ − δ)) ≥ (βΦ/κΦ) · δ for all δ ∈ (0, κΦ). Since this holds for all y ∈ Y\{1}
we have MΦ (n (κΦ − δ)) ≥ (βΦ/κΦ) · δ for all δ ∈ (0, κΦ).

Now define sets J∗,K∗, L∗ ⊂ Y by

J∗ = {j ∈ Y : (1− κΦ) · (φj1 − φ11) + κΦ · (φj2 − φ12) = 0} ,
K∗ = {j ∈ K∗ : φj2 − φj1 is minimal} ,
L∗ = {j ∈ J∗\K∗ : φj2 − φj1 is minimal} .

By the construction of κΦ, we haveK∗ 6= ∅ and 1 ∈ J∗\K∗, so L∗ 6= ∅. Since Y∗Φ (n(p)) = {1} for
all p < κΦ, and for each y ∈ Y , e(y)TΦn(p) is linear in p we have J∗ = Y∗Φ (n(κΦ)). Moreover,
for each y ∈ Y we have

∂
(
e(y)TΦn(p)

)
∂p

= φj2 − φj1.

Thus, there exists tΦ ∈ (0,min{κΦ, 1− κΦ}) such that for all δ ∈ (0, tΦ) we haveY∗Φ (n(κΦ + δ)) =
K∗ and if we take l ∈ L∗ then for all y ∈ Y\Y∗Φ (n(κΦ + δ)) we have e(l)TΦn(κΦ + δ) ≤
e(y)TΦn(κΦ+δ). Choose k∗ ∈ K and l∗ ∈ L. Then, given δ ∈ (0, tΦ), for all y0 ∈ Y∗Φ (n(κΦ + δ)) =
K∗ and y1 ∈ Y\Y∗Φ (n(κΦ + δ)), we have(

e(y1)− e(y0)T
)

Φ n(κΦ + δ) ≥ e(l∗)TΦ n(κΦ + δ)− e(k∗)TΦ n(κΦ + δ)

= ((φl∗2 − φl∗1)− (φk∗2 − φk∗1)) · δ.

Thus, if we take cΦ = min
{
βΦ
κΦ
, ((φl∗2 − φl∗1)− (φk∗2 − φk∗1))

}
> 0 then for all δ ∈ (0, tΦ),

min
σ∈{−1,+1}

{MΦ (n (κΦ + σ · δ))} ≥ cΦ · δ.

Lemma A.2 Let κΦ ∈ (0, 1), tΦ ∈ (0,min{κΦ, 1− κΦ}) and cΦ > 0 be as in the statement of
Lemma A.1. Fix a distribution µ on X . Take m ∈ N, together with positive constants u ≥ v > 0.
Suppose that we have two collections {Aj}mj=1, {Bj}mj=1 each consisting of m disjoint subsets of
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X such that for each j ∈ {1, · · · ,m} we have Bj ⊂ Aj and v ≤ µ(Bj) ≤ µ(Aj) ≤ u. Suppose
further that for each j ∈ {1, · · · ,m} there exists a function gj : X → [0, 1] with gj(x) = 0 for all
x /∈ Aj and gj(x) = 1 for all x ∈ Bj . Take δ ∈ (0, tΦ) and for each σ ∈ {−1, 0,+1}m we define
ησ : X → RL×1 by

ησ(x) = n

κΦ + δ ·
m∑
j=1

σj · gj(x)

 ,

We let Pσ denote the distribution on Z = X × Y with marginal µ and conditional ησ. Let P be a
set of distributions on Z with {Pσ : σ ∈ {−1,+1}m} ⊆ P . Given any estimator f̂ : ZN → YX
we have

sup
P∈P

{
EPn

[
RP(f̂n)

]
−RP(f∗P)

}
≥ (2cΦmv) · δ ·

(
1− 2δ ·

√
nu

tΦ

)
.

Proof We have supP∈P

{
EPn

[
RP(f̂n)

]
−RP(f∗P)

}
= sup

P∈P

{
EPn

[
EP

[
φf̂n(X),Y − φf∗P (X),Y

]]}
≥ 1

2m

∑
σ∈{−1,+1}m

EPnσ

[
EPσ

[
φf̂n(X),Y − φf∗Pσ (X),Y

]]
=

1

2m

∑
σ∈{−1,+1}m

EPnσ

[∫ (
e
(
f̂n(x)

)
− e

(
f∗Pσ

(x)
))T

Φ ησ(x)dµ(x)

]

=
1

2m

∑
σ∈{−1,+1}m

EPnσ

[∫
DΦ

(
f̂n(x), ησ(x)

)
dµ(x)

]

Note thatDΦ (y,n) ≥ 0 for all y ∈ Y and probability vectorsn. Moreover, ησ(x) = n (κΦ + σj · δ)
for all x ∈ Bj . Hence, we have

supP∈P

{
EPn

[
RP(f̂n)

]
−RP(f∗P)

}

≥ 1

2m

∑
σ∈{−1,+1}m

EPnσ

 m∑
j=1

∫
Bj

DΦ

(
f̂n(x), ησ(x)

)
dµ(x)


≥

m∑
j=1

 1

2m

∑
σ∈{−1,+1}m

EPnσ

[∫
Bj

DΦ

(
f̂n(x), κΦ + σj · δ

)
dµ(x)

] .

Given j ∈ {1, · · · ,m}, σ = (σi)
m−1
i=1 ∈ {−1,+1}m−1 and r ∈ {−1, 0,+1} define (σ‖jr) by

(σ‖jr)i =


σi if i ∈ {1, · · · , j − 1}
r if i = j

σi−1 if i ∈ {j + 1, · · · ,m}.

18
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From the above we have

sup
P∈P

{
EPn

[
RP(f̂n)

]
−RP(f∗P)

}

≥
m∑
j=1

 1

2m

∑
σ∈{−1,+1}m−1

 ∑
r∈{−1,+1}

EPn
(σ‖jr)

[∫
Bj

DΦ

(
f̂n(x), κΦ + r · δ

)
dµ(x)

]
≥

m∑
j=1

∫
Bj

(1

2

)m−1 ∑
σ∈{−1,+1}m−1

1

2

∑
r∈{−1,+1}

EPn
(σ‖jr)

[
DΦ

(
f̂n(x), κΦ + r · δ

)] dµ(x).

Hence, it suffices to fix j ∈ {1, · · · ,m}, x ∈ Bj , σ ∈ {−1,+1}m−1 and show that

1

2

∑
r∈{−1,+1}

EPn
(σ‖jr)

[
DΦ

(
f̂n(x), κΦ + r · δ

)]
≥ (2cΦ) · δ ·

(
1− 2δ ·

√
nu

tΦ

)
.

For each r ∈ {−1, 0,+1} we let πσ,j,r denote the Radon-Nikodym derivative of P(σ‖jr) with
respect to P(σ‖j0). Similarly, we let πnσ,j,r denote the Radon-Nikodym derivative of Pn(σ‖jr) with
respect to Pn(σ‖j0). From the definition of P(σ‖jr) we have

πσ,j,r ((x, y)) =


1 if x /∈ Aj or y /∈ {1, 2},
1− r · δ · gj(x)/(1− κΦ) if x ∈ Aj and y = 1,

1 + r · δ · gj(x)/κΦ if x ∈ Aj and y = 2.

(1)

We have

1

2

∑
r∈{−1,+1}

EPn
(σ‖jr)

[
DΦ

(
f̂n(x), κΦ + r · δ

)]

=
1

2

∑
r∈{−1,+1}

EPn
(σ‖j0)

[
DΦ

(
f̂n(x), κΦ + r · δ

)
πnσ,j,r

]

≥ EPn
(σ‖j0)

1

2

∑
r∈{−1,+1}

DΦ

(
f̂n(x), κΦ + r · δ

) · min
r∈{−1,+1}

{
πnσ,j,r

}
≥ 2cΦ · δ · EPn

(σ‖j0)

[
min

r∈{−1,+1}

{
πnσ,j,r

}]
.

The final inequality follows from Lemma A.1. Hence, to complete the proof of the lemma it remains
to show that

EPn
(σ‖j0)

[
min

r∈{−1,+1}

{
πnσ,j,r

}]
≥ 1− 2δ ·

√
nu

tΦ
.
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Equivalently, we must show that

EPn
(σ‖j0)

[∣∣πnσ,j,+1 − πnσ,j,−1

∣∣] ≤ 2δ ·
√
nu

tΦ
, (2)

where we have used the fact that

EPn
(σ‖j0)

[
πnσ,j,+1

]
= EPn

(σ‖j0)

[
πnσ,j,−1

]
= 1.

For each ω = (ωi)
n
i=1 ∈ {0, 1}n we let

Sω := {Dn = (Zi)
n
i=1 : Xi ∈ Aj if and only if ωi = 1} .

Thus, we have EPn
(σ‖j0)

[∣∣∣πnσ,j,+1 − πnσ,j,−1

∣∣∣]
=

∑
ω∈{0,1}n

Pn(σ‖j0) [Dn ∈ Sω] · EPn
(σ‖j0)

[∣∣πnσ,j,+1 − πnσ,j,−1

∣∣ |Sω]
We now bound EPn

(σ‖j0)

[∣∣∣πnσ,j,+1 − πnσ,j,−1

∣∣∣ |Sω] for each ω ∈ {0, 1}n. We first deal with the

simple case where
∑

i=1 ωi = 1. Recall that tΦ < (min{κΦ, 1− κΦ})−1, so applying (1) gives

EPn
(σ‖j0)

[∣∣πnσ,j,+1 − πnσ,j,−1

∣∣ |Sω] = EP(σ‖j0)
[|πσ,j,+1 − πσ,j,−1| |X ∈ Aj ]

≤ 2

tΦ
· δ ≤ 2δ ·

√∑n
i=1 ωi
tΦ

.

We now bound EPn
(σ‖j0)

[∣∣∣πnσ,j,+1 − πnσ,j,−1

∣∣∣ |Sω] for ω ∈ {0, 1}n with
∑

i=1 ωi ≥ 2.

Note that for each r ∈ {−1, 0,+1} we have

Pn(σ‖jr) [Dn ∈ Sω] =
n∏
i=1

µ (Aj)
ωi · (1− µ (Aj))

1−ωi .

Hence,

EPn
(σ‖j0)

[
πnσ,j,+1|Sω

]
= EPn

(σ‖j0)

[
πnσ,j,−1|Sω

]
= 1.

Thus, by the Cauchy Schwartz inequality we have EPn
(σ‖j0)

[∣∣∣πnσ,j,+1 − πnσ,j,−1

∣∣∣ |Sω]
= EPn

(σ‖j0)

[(√
πnσ,j,+1 −

√
πnσ,j,−1

)(√
πnσ,j,+1 +

√
πnσ,j,−1

)
|Sω
]

≤

√
EPn

(σ‖j0)

[(√
πnσ,j,+1 −

√
πnσ,j,−1

)2
|Sω
]
·

√
EPn

(σ‖j0)

[(√
πnσ,j,+1 +

√
πnσ,j,−1

)2
|Sω
]

=

√
2

(
1− EPn

(σ‖j0)

[√
πnσ,j,+1 · πnσ,j,−1|Sω

])
·

√
2

(
1 + EPn

(σ‖j0)

[√
πnσ,j,+1 ·

√
πnσ,j,−1|Sω

])
= 2
√

2 ·
√

1− EPn
(σ‖j0)

[√
πnσ,j,+1 · πnσ,j,−1|Sω

]
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To bound this term we first note that for each r ∈ {−1, 0,+1}, Pn(σ‖jr) is a product measure. Hence,

EPn
(σ‖j0)

[√
πnσ,j,+1 · πnσ,j,−1|Sω

]
=

(
EP(σ‖j0)

[√
πσ,j,+1 · πσ,j,−1|X ∈ Aj

])∑n
i=1 ωi

·
(
EP(σ‖j0)

[√
πσ,j,+1 · πσ,j,−1|X /∈ Aj

])n−∑n
i=1 ωi

By construction, for all x /∈ Aj we have η(σ‖j+1)(x) = η(σ‖j+1)(x) = η(σ‖j+1)(x), so πσ,j,+1(x) =
πσ,j,−1(x) = πσ,j,0(x). Hence,

EP(σ‖j0)

[√
πσ,j,+1 · πσ,j,−1|X /∈ Aj

]
= EP(σ‖j0)

[πσ,j,0|X /∈ Aj ] = 1.

Consequently, we have

EPn
(σ‖j0)

[√
πnσ,j,+1 · πnσ,j,−1|Sω

]
=

(
EP(σ‖j0)

[√
πσ,j,+1 · πσ,j,−1|X ∈ Aj

])∑n
i=1 ωi

Moreover, by (1) we see that for all (x, y) ∈ X × Y ,

πσ,j,+1 · πσ,j,−1 ≥ 1− r2 · δ2 · gj(x)

tΦ
≥ 1− δ2

tΦ
.

Combining these inequalities we have,

EPn
(σ‖j0)

[∣∣πnσ,j,+1 − πnσ,j,−1

∣∣ |Sω] ≤ 2
√

2 ·

√
1−

(
1− δ2

tΦ

) 1
2
·
∑n
i=1 ωi

.

Note that for any l ≥ 2 and x ≥ 0 we have 2
(

1−
(
1− x2

) l
2

)
≤ lx2. Hence, we have

EPn
(σ‖j0)

[∣∣πnσ,j,+1 − πnσ,j,−1

∣∣ |Sω] ≤ 2δ ·

√∑n
i=1 ωi
tΦ

.

It follows that EPn
(σ‖j0)

[∣∣∣πnσ,j,+1 − πnσ,j,−1

∣∣∣]
=

∑
ω∈{0,1}n

Pn(σ‖j0) [Dn ∈ Sω] · EPn
(σ‖j0)

[∣∣πnσ,j,+1 − πnσ,j,−1

∣∣ |Sω]

≤ 2δ√
tΦ
·
∑

ω∈{0,1}n

n∏
i=1

µ (Aj)
ωi · (1− µ (Aj))

1−ωi ·

√√√√ n∑
i=1

ωi

≤ 2δ√
tΦ
·

√√√√ ∑
ω∈{0,1}n

n∏
i=1

µ (Aj)
ωi · (1− µ (Aj))

1−ωi ·
n∑
i=1

ωi

=
2δ√
tΦ
·
√
n · µ (Aj) ≤ 2δ ·

√
nu

tΦ
.

This completes the proof of the lemma.
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Lemma A.3 Suppose that Φ satisfies Elkan’s reasonableness assumption and let cΦ, κΦ, tΦ be
as in the statement of Lemma A.1. Take m ∈ N and u > 0 and suppose that there are disjoint
sets {Aj}mj=1 such that for each j ∈ {1, · · · ,m} there exists Bj ⊂ Aj with µ(Bj) ≤ u and
µ (Aj\Bj) = 0 along with a function gj : X → [0, 1] with gj(x) = 0 for all x /∈ Aj and gj(x) = 1
for all x ∈ Bj . We also take σ ∈ {−1, 0,+1}m along with ησ and Pσ as in the statement of
Lemma A.2. Suppose we have constants Cβ > 0, β > 0, ζmax ∈ (0,MΦ (n (κΦ))), and δ ∈ (0, tΦ)

satisfying m ·u ≤ Cβ · (cΦ · δ)β . Then the measure Pσ satisfies the margin condition with constants
(β,Cβ, ζmax).

Proof First note that by the construction of ησ (see Lemma A.2), combined with the fact that if
x ∈ Bjx we have gjx(x) = 1 and gj(x) = 0 for j 6= jx, so

ησ(x) = n

κΦ + δ ·
m∑
j=1

σj · gj(x)

 = n (κΦ + δ · σjx) .

Hence, by Lemma A.1 we have MΦ (ησ(x)) ≥ cΦ · δ. On the other hand, if x ∈ X\
⋃m
j=1Aj then

gj(x) = 0 for all j, so ησ(x) = n (κΦ), so M (ησ(x)) > ζmax.
We now fix ζ < ζmax < MΦ (n (κΦ)). We must show that,

µ ({x ∈ X : MΦ (η(x)) ≤ ζ}) ≤ Cβ · ζβ.

Now if ζ < cΦ · δ then

µ ({x ∈ X : MΦ (η(x)) ≤ ζ}) ≤ µ

 m⋃
j=1

Aj\Bj

 = 0.

On the other hand, if ζ ∈ (cΦ · δ, ζmax), then

µ ({x ∈ X : MΦ (η(x)) ≤ ζ}) ≤ µ

 m⋃
j=1

Aj


≤ m · u ≤ Cβ · (cΦδ)

β ≤ Cβ · ζβ.

Lemma A.4 Suppose thatW = {wj}mj=1 is a r-separated set for some r > 0. There exist functions
{gj}mj=1 such that for each j ∈ {1, · · · ,m}, gj(x) = 0 for all x /∈ Br/3(wj), gj(x) = 1 for all
x ∈ Br/6(wj) and for any Cα > 0, α ∈ (0, 1], δ ∈ (0, (Cα/12) · rα] and σ ∈ {−1, 0,+1}m, the
function ησ : X → RL×1 by

ησ(x) = n

κΦ + δ ·
m∑
j=1

σj · gj(x)

 ,

is Hölder continuous with constants (α,Cα).
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Proof Firstly, we define a function u : [0, 1]→ [0, 1] by

u(t) =


1 for t ∈ [0, 1/3]

2− 3t for t ∈ [1/3, 2/3]

0 for t ≥ 2/3.

For each j ∈ {1, · · · ,m} we let gj(x) = u ((2/r) · ρ(x,wj)). Clearly if x /∈ Br/3(wj) then
(2/r) · ρ(x,wj) ≥ 2/3 so gj(x) = 0. On the other hand, if x ∈ Br/6(wj) then (2/r) · ρ(x,wj) <
1/3, so gj(x) = 1. We now fix δ ∈ (0, (Cα/12) · rα] and σ ∈ {−1, 0,+1}m and show that ησ is
Hölder continuous with constants (α,Cα). By the definition of n it suffices to show that

ϕσ(x) = κΦ + δ ·
m∑
j=1

σj · gj(x)

is Hölder continuous with constants (α,Cα). Since gj(x) = 0 for all x /∈ Br/3(wj) and {wj}mj=1
is an r-separated set, we have ϕσ(x) = δ · σjx · u ((2/r) · ρ(x,wjx)) whenever x ∈ Br/3(wjx)
for some jx ∈ {1, · · · ,m}, and ϕ(x) = 0 if x ∈ X\

⋃m
j=1Br/3(wj). Now take x0, x1 ∈ X .

If ϕσ(x0) = ϕσ(x1) = 0 then ‖ϕσ(x0) − ϕσ(x1)‖ ≤ Cα · ρ(x0, x1)α holds trivially. Now
suppose that ϕσ(x0) 6= 0 or ϕσ(x1) 6= 0. Without loss of generality we assume that ϕσ(x0) 6= 0.
Hence, for some j0 ∈ {1, · · · ,m} we have x0 ∈ Br/3(wj0). Now either x1 ∈ Br/2(wj0) or
x1 /∈ Br/2(wj0). If x1 ∈ Br/2(wj0) then we have ϕσ(x0) = δ · σj0 · u ((2/r) · ρ(x0, wj0)) and
ϕσ(x1) = δ · σj0 · u ((2/r) · ρ(x1, wj0)). Moreover, |ρ(x0, wj0) − ρ(x1, wj0)| ≤ ρ(x0, x1), so
|u ((2/r) · ρ(x0, wj0))− u ((2/r) · ρ(x1, wj0)) | ≤ (6/r) · ρ(x0, x1). Hence,

‖ϕσ(x0)− ϕσ(x1)‖ ≤ δ · (6/r) · ρ(x0, x1)

≤ Cα · rα−1 · ρ(x0, x1) ≤ Cα · ρ(x0, x1)α,

since α ≤ 1 and ρ(x0, x1) ≤ r.
On the other hand, if x1 /∈ Br/2(wj0) then ρ(x0, x1) ≥ ρ(x1, wj0)− ρ(x0, wj0) ≥ r/6 whilst

‖ϕσ(x0)− ϕσ(x1)‖ ≤ 2 · δ ≤ 2 · ((Cα/12) · rα) ≤ Cα · ρ(x0, x1)α.

Given a smooth manifold x0, x1 ∈ M we let ρg(x0, x1) denote the geodesic distance and
for r > 0 we let Bg

r (x0) denote the geodesic metric ball of radius r. Given a set A ⊂ M
and r > 0, an r-separated subset of A is a set Wr = {wj}Qj=1 ⊆ A such that for j0 6= j1,
ρ(wj0 , wj1)‖wj0 , wj1‖2 > r. A maximal r-separated subset is an r-separated subset of maximal
cardinality. Note that r-separation is with respect to the Euclidean metric, rather than the geodesic
metric.

Lemma A.5 SupposeM ⊆ Rd is a compact smooth submanifold with dimension γ and reach τ .
Fix x∗ ∈ M, r∗ > 0. For each r ∈ (0, r∗) we construct S(r) by taking a maximal r-separated
subset of Bg

r∗(x∗),Wr = {wj}Q(r)
j=1 , and defining

S (r) :=

Q(r)⋃
j=1

Bg
r/6 (wj),

For all r ∈ (0, r∗), S (r) is a
(
2−14γ ,min {r∗, τ/8}

)
regular set.
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To prove lemma A.5 we shall utilise the following geometric lemmas, the proof of which is
given in appendix F. Let vγ denote the volume of the γ-dimensional Euclidean unit ball.

Lemma A.6 Let M ⊆ Rd be a compact smooth submanifold with dimension γ, reach τ and
Riemannian volume form VM. Then for all x ∈M and r < τ/8 we have

4−γ · vγ · rγ ≤ VM (Bg
r (x)) ≤ VM (Br(x)) ≤ 4γ · vγ · rγ .

Lemma A.7 With the assumptions of lemma A.6, for all x, x̃ ∈ M and r̃ ≤ r < τ/8 with
ρg(x, x̃) ≤ r + r̃/2 we have VM

(
Bg
r (x) ∩Bg

r̃ (x̃)
)
≥ 2−4γ · vγ · r̃γ .

Proof [Proof of Lemma A.5] Fix r ∈ (0, r∗) and take x̃ ∈ S(r) and r̃ ∈ (0,min {r∗, τ/8}). We
consider two cases.

Case 1: r̃ ≥ 7r/3. Let J (x̃, r̃) =
{
j ∈ {1, · · · , Q(r)} : Br(wj) ∩Br̃/2(x̃) 6= ∅

}
. Given

j ∈ J (x̃, r̃), we have ‖x̃− wj‖2 < r + r̃/2. Thus, if z ∈ Bg
r/6(wj) then ‖z − x̃‖2 ≤ ρg(z, wj) +

‖x̃− wj‖2 < 7r/6 + r̃/2 ≤ r̃. Thus,

S(r) ∩Br̃ (x̃) ⊇
⋃

j∈J (x̃,r̃)

Bg
r/6(wj).

SinceWr is r-separated, for j0 6= j1 we have ρg(wj0 , wj1) ≥ ‖wj0 − wj1‖2 ≥ r, so Bg
r/6(wj0) ∩

Bg
r/6(wj1) = ∅. Hence, we may apply Lemma A.6 to obtain

VM (S(r) ∩Br̃ (x̃)) ≥
∑

j∈J (x̃,r̃)

VM

(
Bg
r/6(wj)

)
≥ #J (x̃, r̃) · 4−γ · vγ · (r/6)γ .

Now we shall give a lower bound on #J (x̃, r̃). First note that since x̃ ∈ S(r) andWr ⊂ Bg
r∗(x∗)

we have ρg(x, x̃) ≤ r∗ + r/6 < r∗ + r̃/4. Moreover, r̃/2 ∈ (0,min {r∗, τ/8}), so by Lemma A.7
we have

VM
(
Bg
r∗(x∗) ∩Br̃/2(x̃)

)
≥ 2−5γ · vγ · r̃γ .

By the maximality ofWr we haveBg
r∗(x∗) ⊆

⋃Q(r)
j=1 Br(wj), soBg

r∗(x∗)∩Br̃/2(x̃) ⊆
⋃
j∈J (x̃,r̃)Br(wj).

Hence,

2−5γ · vγ · r̃γ ≤ VM
(
Bg
r∗(x∗) ∩Br̃/2(x̃)

)
≤

∑
j∈J (x̃,r̃)

VM

(
Br(wj)

)
≤ #J (x̃, r̃) · 4γ · vγ · rγ .

Thus, #J (x̃, r̃) ≥ 2−7γ · (r/r̃)γ and

VM (S(r) ∩Br̃ (x̃)) ≥ 2−12γ · vγ · r̃γ ≥ 2−14γ · VM (Br̃(x̃)) .

Case 2: r̃ < 7r/3. Since x̃ ∈ S(r) we may take jx̃ ∈ {1, · · · , Q(r)} so that x̃ ∈ Bg
r/6(wjx̃). By

Lemma A.7 we have

VM (S(r) ∩Br̃ (x̃)) ≥ VM
(
Bg
r/6(wjx̃) ∩Br̃/14 (x̃)

)
≥ 2−8γ · vγ · r̃γ ≥ 2−10γ · VM (Br̃ (x̃)) .

24



MINIMAX RATES FOR COST-SENSITIVE LEARNING ON MANIFOLDS

Lemma A.8 Fix x∗ ∈ M, let τ̃ = min{τ, 1} and take r∗ = τ̃ /16. Choose r < r∗ and let S(r)
and Q(r) by as in the statement of Lemma A.5. Then Q(r) ≥

(
2−8 · τ̃

)γ · r−γ .

Proof Note thatWr = {wj}Q(r)
j=1 is a maximal (ρg, r)-separated subset ofBg

r∗(x∗). Hence,Bg
r∗(x∗) ⊆⋃

j=1B
g
r (wj). Thus,

2−6γ · vγ · τ̃γ ≤ VM
(
Bg
τ̃/16(x∗)

)
≤

Q(r)∑
j=1

VM

(
Br(wj)

)
≤ Q(r) · 22γ · vγ · rγ .

Lemma A.9 Let S(r) be as in the statement of Lemmas A.5 and A.8 with r∗ = τ̃ /16. Then

(3−1 · 2−12 · τ̃)γ · vγ ≤ VM (S(r)) ≤ vγ · (τ̃ /2)γ .

Proof Since r ∈ (0, r∗) we must have S(r) ⊂ B2r∗ (x∗), so it follows from Lemma A.6 that
VM (S(r)) ≤ 4γ · vγ · (2r∗)γ ≤ vγ · (τ̃ /2)γ . On the other hand, sinceWr is r-separated the balls{
Bg
r/6(wj)

}Q(r)

j=1
are disjoint. Hence, combining Lemmas A.6 and A.8 we have

VM (S(r)) ≥
Q(r)∑
j=1

VM

(
Bg
r/6(wj)

)
≥ Q(r) · 3 · 2−3γ · vγ · rγ ≥ (3−1 · 2−11 · τ̃)γ · vγ .

We are now well placed to complete the proof of Proposition A.1.
Proof [Proof of Proposition A.1]

We take κΦ as in the statement of Lemma A.1 and define ZΦ = MΦ (n (κΦ)) > 0. Take
c0 ∈

(
0, 2−14γ

)
, r0 ∈ (0, τ̃ /16), νmin ∈

(
0, (2/τ̃)γ · v−1

γ

)
, νmax ∈

(
(214/τ̃)γ · v−1

γ ,∞
)
, ζmax ∈

(0, ZΦ), α ∈ (0, 1), β ∈ (0, γ/α), Cα, Cβ > 0 and let

Γ = 〈(r0, c0, νmin, νmax) , (β,Cβ, ζmax) , (α,Cα)〉 .

For each r ∈ (0, r0) we shall construct an associated set of probability measures P (r) ⊂ P (M,Γ)
as follows. Fix some r ∈ (0, r0). We begin by constructing µ, which will be common to all
P ∈ P (r). To do so we take S(r) as in the statement of Lemma A.5. That is, we fix some x∗ ∈M
and construct S(r) by takingWr = {wj}Q(r)

j=1 to be a maximal r-separated subset of Bg
r∗(x∗) and

define,

S (r) =

Q(r)⋃
j=1

Bg
r/6 (wj).

Let ν∗(r) = (VM (S(r)))−1. We let µ be a probability measure which is absolutely continuous
with respect to VM and has density

ν(x) =

{
ν∗(r) if x ∈ S(r)

0 if x /∈ S(r).
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Clearly, supp(µ) = S(r) and by Lemma A.5 the set S(r) is (c0, r0) regular. Moreover, by Lemma
A.9 we have

νmin < (2/τ̃)γ · v−1
γ ≤ ν∗(r) ≤ (214/τ̃)γ · v−1

γ < νmax.

Hence, the measure µ is (c0, r0, νmin, νmax) regular. For each j = {1, · · · , Q(r)} we let Bj =
Bg
r/6 (wj) and Aj = Br/3(wj). Since Wr is r-separated, the balls Aj are disjoint. Hence,

µ(Aj\Bj) = 0, since µ is absolutely continuous and supported on S(r). In addition, by Lemma
A.6 we have v(r) ≤ µ(Bj) ≤ µ(Aj) ≤ u(r) with v(r) = ν∗(r) ·4−γ ·vγ ·(r/6)γ and u(r) = ν∗(r) ·
4γ ·νγ · (r/6)γ . Take tΦ as in the statement of Lemma A.1 and let δ(r) = min{tΦ/2, (Cα/12) ·rα}.
In addition, we take m(r) = min{Q(r), b(Cβ · cΦ)β · u(r)−1 · δ(r)βc}. By Lemma A.8 we have
Q(r) ≥

(
2−8 · τ̃

)γ ·r−γ . Hence, there exists constantsR(Γ),m0(Γ) > 0 such that for all r < R(Γ),
δ(r) = (Cα/12) · rα and m(r) ≥ m0(Γ) · rα·β−γ . By Lemma A.4 there exists functions {gj}mj=1

so that gj(x) = 1 for all x ∈ Bj , gj(x) = 0 for all x /∈ Aj and σ ∈ {−1, 0,+1}m, the function
ησ : X → RL×1 by

ησ(x) = n

κΦ + δ ·
m∑
j=1

σj · gj(x)

 ,

is Hölder continuous with constants (α,Cα). For each σ ∈ {−1, 0,+1}m we let Pσ denote the
measure on Z = X ×Y formed by taking µ to be the marginal distribution over X and ησ to be the
conditional distribution of Y given x ∈ X . Since δ(r) ∈ (0, tΦ) and m(r) ·u(r) ≤ Cβ · (cΦ · δ(r))β
and ζmax ∈ (0, ZΦ), it follows from Lemma A.3 that each Pσ satisfies the margin condition with
constants (β,Cβ, ζmax). We let

P(r) := {Pσ : σ ∈ {−1,+1}m} .

We have shown that µ is (c0, r0, νmin, νmax) regular each ησ is Hölder continuous with constants
(α,Cα) and each Pσ satisfies the margin condition with constants (β,Cβ, ζmax). Thus, P(r) ⊂
P ∈ PΦ (VM,Γ). Hence, by Lemma A.2, for all classifiers f̂ and all n ∈ N we have

sup
P∈PΦ(VM,Γ)

{
EPn

[
RP(f̂n)

]
−RP(f∗P)

}

≥ (2cΦ ·m(r) · v(r)) · δ(r) ·

1− 2δ(r) ·

√
n · u(r)

tΦ

 .

It follows from the construction of δ(r), u(r), v(r), m(r) and Lemma A.9 we see that there exists
R′, C ′, C ′′ > 0, depending purely upon Φ, γ, τ and Γ, such that for all r < R′,

δ(r)2 · u(r) · t−1
Φ < C ′ · rγ+2α

cΦ ·m(r) · v(r) · δ(r) > C ′′ · r(αβ−γ)+γ+α = C ′′ · rα(β+1).

Thus, if we take r = min{R′, (16C ′)−1} ·n−
1

2α+γ we have 2δ(r) ·
√
n · u(r) · tΦ−1 < 1/2. Hence,

sup
P∈PΦ(VM,Γ)

{
EPn

[
RP(f̂n)

]
−RP(f∗P)

}
≥ C ′′ ·

(
min{R′, (16C ′)−1}

)α(β+1) · n−
α(β+1)
2α+γ .

This completes the proof of Proposition A.1.
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Appendix B. Bounding the probability of mis-classification

In this section we prove Proposition B.1 which forms the first part of Theorem 5.

Proposition B.1 Suppose that P satisfies the margin condition with constants (β,Cβ, ζmax) and
that the conditional η is measure-smooth, with constants (λ,Cλ). Suppose that generates ω measure-
approximate nearest neighbours with respect to the measure µ. Take k0 > 0 and for each n ∈ N
take kn = k0 ·n

2λ
2λ+1 · (1+log(1/δ))1/(2λ+1). There exists a constant C > 0 depending purely upon

Cλ, λ, Cβ, β, k0 such that for all n ∈ N, with probability at least 1− δ over Dn ∼ Pn we have

P
[
fSn,k(X) /∈ Y∗Φ (η(X))

]
≤ δ + C ·

(
ωλ · Λ(Φ) ·

√
log(L)

)β
·
(

1 + log(1/δ)

n

)βλ/(2λ+1)

.

To prove Proposition B.1 we first introduce some notation before giving some preliminary lem-
mas. We define rp(x) = inf {r > 0 : µ (Br(x)) ≥ p}. We make use of the following standard
results.

Lemma B.1 Take x ∈ X . Suppose that p ∈ [0, 1], ξ ≤ 1, k ≤ (1− ξ)np. Then

Pn [max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} > rp(x)] ≤ exp(−kξ2/2).

Lemma B.2 Take x ∈ X . For each δ > 0 we have

Pn
∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn)

η(Xi)

∣∣∣∣∣∣∣∣
∞
≥ δ|Fn

 ≤ 2L exp(−2kδ2).

The proof of lemmas B.1 and B.2 is given in Appendix E. Recall that we defined Λ(Φ) by

Λ(Φ) := (L− 2) · Asym(Φ) + 2‖Φ‖∞.

Lemma B.3 Given y0, y1 ∈ Y and n0,n1 ∈ ∆(Y) we have

‖ (e(y1)− e(y0))T Φ (n0 − n1) ‖ ≤ Λ(Φ) · ‖n0 − n1‖∞.

Proof This follows immediately from the definitions.

Given p ∈ (0, 1), and ∆ > 0 we define

Xp,∆ =
{
x ∈ X : ∀x̃ ∈ Brp(x)(x), y0 ∈ Y∗Φ (η(x)) , y1 ∈ Y\Y∗Φ (η(x)) ,

(e(y1)− e(y0))T Φ η(x̃) ≥ Λ(Φ) ·∆
}
,

and let ∂θp,∆ = X\X θp,∆.

Lemma B.4 Suppose that k < n and S generates ω measure approximate nearest neighbours.
Take p ∈ (0, 1) and ∆ > 0 and suppose that x ∈ Xp,∆ satisfies both
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1. max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} ≤ rp/ω(x)

2.
∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn) η(Xi)

∣∣∣∣∣∣∣∣
∞
< ∆.

Then fSn,kn(x) ∈ Y∗Φ (η(x)).

Proof Since max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} ≤ rp/ω(x) and S generates ω measure-approximate
nearest neighbours we have max {ρ(x,Xi) : i ∈ Sk(x,Fn)} ≤ rp(x). Since x ∈ X θp,∆ for any
y0 ∈ Y∗Φ (η(x)), y1 ∈ Y\Y∗Φ (η(x)) we have (e(y1)− e(y0))T Φ η(Xi) ≥ Λ(Φ) · ∆ for all i ∈
Sk(x,Fn), so

(e(y1)− e(y0))T Φ

1

k

∑
i∈Sk(x,Fn)

η(Xi)

 ≥ Λ(Φ) ·∆.

Moreover, since
∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn) η(Xi)

∣∣∣∣∣∣∣∣
∞
< ∆, by Lemma B.3, this implies that for all

y0 ∈ Y∗Φ (η(x)) and y1 ∈ Y\Y∗Φ (η(x)) we have

(e(y0))T Φ η̂Sn,k(x) < (e(y1))T Φ η̂Sn,k(x).

Thus, Y∗Φ (η(x)) = Y∗Φ
(
η̂Sn,k(x)

)
. Hence, fSn,kn(x) ∈ Y∗Φ (η(x)).

Lemma B.5 Take δ ∈ (0, 1), k · ω < n and suppose that S generates ω measure approximate
k-nearest neighbours. With probability at least 1− δ over Dn ∼ Pn we have

P
[
fSn,k(X) /∈ Y∗Φ (η(X))

]
≤ δ + µ (∂p,∆) ,

where

p =
k

n
· ω

1−
√

(2/k) log(2/δ2)
and ∆ =

√
1

2k
log

4L

δ2
.

Proof Given Dn ∼ Pn we define A (Dn) =
{
x ∈ Xp,∆ : fSn,k(X) /∈ Y∗Φ (η(X))

}
. To prove the

lemma it suffices to show that with probability at least 1− δ overDn ∼ Pn we have P [A(Dn)] ≤ δ.
This follows from the definition of ∂p,∆ as X\Xp,∆. Now by Lemma B.4 we have

A (Dn) ⊆
{
x ∈ X : max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} > rp/ω(x)

}
∪

x ∈ X :

∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn)

η(Xi)

∣∣∣∣∣∣∣∣
∞
≥ ∆

 .

Now take x ∈ X . By Lemma B.1 with ξ = 1− (kω)/(np) we have

Pn
[
max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} > rp/ω(x)

]
≤ exp(−kξ2/2) =

δ2

2
.
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By Lemma B.2 we have

Pn
∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn)

η(Xi)

∣∣∣∣∣∣∣∣
∞
≥ ∆

 ≤ 2L exp(−2k∆2) =
δ2

2
.

Hence, Pn [x ∈ A(Dn)] ≤ δ2. Since this holds for all x ∈ X , by Fubini’s theorem we have

En [P [A(Dn)]] = En
[
E
[
1X∈A(Dn)

]]
= E

[
En
[
1X∈A(Dn)

]]
= E [Pn [X ∈ A(Dn)]] ≤ δ2.

Thus, by Markov’s inequality Pn [P [A(Dn)] > δ] ≤ δ. Thus, with probability at least 1 − δ over
Dn ∼ Pn we have P [A(Dn)] ≤ δ and the lemma holds.

Lemma B.6 Suppose that P satisfies the margin condition with constants (β,Cβ, ζmax) and that
the conditional η is measure-smooth, with constants (λ,Cλ). Given any ∆ > 0 and p ∈ (0, 1)
satisfying Λ(Φ) ·

(
∆ + Cλ · pλ

)
< ζmax we have

µ (∂p,∆) ≤ Cβ ·
(

Λ(Φ) ·
(

∆ + Cλ · pλ
))β

.

Proof Suppose that x ∈ ∂p,∆. Then there exists some x̃ ∈ X with ρ(x̃, x) ≤ rp(x), some y0 ∈
Y∗Φ (η(x)) and some y1 ∈ Y\Y∗Φ (η(x)) such that (e(y1)− e(y0))T Φ η(x̃) < Λ(Φ) ·∆. Since η is
measure smooth with constants (λ,Cλ) we have,

‖η(x̃)− η(x)‖∞ ≤ Cλ · µ
(
Bρ(x̃,x)(x)

)λ ≤ Cλ · µ (Brp(x)(x)
)λ ≤ Cλ · pλ.

By Lemma B.3 this implies that

MΦ (η(x)) = (e(y1)− e(y0))T Φ η(x) < Λ(Φ) ·
(

∆ + Cλ · pλ
)
.

Hence,

µ (∂p,∆) ≤ µ
({
x ∈ X : MΦ(η(x)) < Λ(Φ) ·

(
∆ + Cλ · pλ

)})
≤ Cβ ·

(
Λ(Φ) ·

(
∆ + Cλ · pλ

))β
.

Proof [Proof of Proposition B.1] First note that without loss of generality we may assume that
ζmax = ∞. Indeed if P satisfies the margin condition with constants (β,Cβ, ζmax) then P also
satisfies the margin condition with constants (C̃β, β,∞), where C̃β = max{Cβ, 2ζ−βmax}.

To complete the proof, for each n ∈ N, we take

kn = k0 · n
2λ

2λ+1 (1 + log(1/δ))1/(2λ+1)

pn = (knω)/
(
n
(

1−
√

(2/kn) log(2/δ2)
))

∆n =
√

(1/2kn) log (4L/δ2),
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and apply lemmas B.5 and B.6. Indeed, suppose that n ≥ (16/k0)(2λ+1)/(2λ) (1 + log(1/δ)). It
follows that

√
(2/kn) log(2/δ2) < 1/2, so

pn < (2ω) · kn
n

= (2k0ω) ·
(

1 + log(1/δ)

n

)1/(2λ+1)

.

In addition, for some constant ck0 , depending upon k0, we have

∆n ≤ ck0 ·
√

log(L) ·
(

1 + log(1/δ)

n

)λ/(2λ+1)

.

Moreover, by lemmas B.5 and B.6, we have

P
[
fSn,k(X) /∈ Y∗Φ (η(X))

]
≤ δ + µ (∂p,∆)

≤ δ + Cβ ·
(

Λ(Φ) ·
(

∆n + Cλ · pλn
))β

≤ C ·
(
ωλ · Λ(Φ) ·

√
log(L)

)β
·
(

1 + log(1/δ)

n

)βλ/(2λ+1)

,

where C is a constant depending purely upon k0, β, λ, ζmax, Cβ, Cλ. By increasing the constant,
depending upon k0, β, λ, the bound also holds for n < (16/k0)(2λ+1)/(2λ) (1 + log(1/δ)).

Appendix C. Bounding the expected risk

In this section we prove Proposition C.1 which forms the second part of Theorem 5.

Proposition C.1 Suppose that P satisfies the margin condition with constants (Cβ, β, ζmax) and
that the conditional η is measure-smooth, with constants (λ,Cλ). Suppose that generates ω measure-
approximate nearest neighbours with respect to the measure µ. Take k0 > 0 and for each n ∈ N
take kn = k0 · n

2λ
2λ+1 . There exists a constant C > 0 depending purely upon Cλ, λ, Cβ, β, k0 such

that for all n ∈ N we have

En
[
R
(
fSn,kn

)]
−R∗ ≤ C · L ·

(
ωλ · Λ(Φ)

)1+β
· n−

λ(1+β)
2λ+1 .

Proposition C.1 follows from Propositions C.2 and C.3.

Proposition C.2 Take a probability distribution P on Z = X × Y determined by a marginal
distribution µ and conditional probability η. Suppose that for each n ∈ N, η̂n : X → RL is an
estimator of η determined by Dn ∼ Pn. Suppose further that there exists constants C1, C2 > 0,
N0 ∈ N and some decreasing positive sequence (an)n≥N0 such that for each n ≥ N0, µ almost
every x ∈ X there exists a set An(x) ⊆ Zn such that Pn [An(x)] ≤ a1+β

n and for all ξ ≥ an we
have

Pn [‖η̂n(x)− η(x)‖∞ > ξ|Dn /∈ An(x)] ≤ C1 · exp

(
−C2 ·

(
ξ

an

)2
)
.
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Suppose for each n ∈ N we construct a classifier f̂n : X → Y , based on η̂n : X → RL and defined
by f̂n(x) = min (Y∗Φ (η̂n(x))). If P satisfies the margin condition with constants (Cβ, β, ζmax) then
there exists C = C (C2, Cβ, β, ζmax) > 0, which is monotonically increasing with β, such that for
all n ≥ N0 we have

En
[
R
(
f̂n

)]
−R∗ ≤ C · (1 + C1) · (Λ(Φ) · an)1+β .

Proposition C.3 Suppose that the conditional η is measure-smooth, with constants (λ,Cλ), and
that S generates ω measure-approximate nearest neighbours. Then for any n ∈ N, k ≤ n/2 if for
µ almost every x ∈ X we let

An(x) =
{
Dn : max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} > r2k/n(x)

}
.

Then Pn [An(x)] ≤ exp(−k/8) and for all ξ ≥ 2Cλ ·
(

2ωk
n

)λ
we have

Pn
[∣∣∣∣∣∣∣∣η̂Sn,k(x)− η(x)

∣∣∣∣∣∣∣∣
∞
≥ ξ|Dn /∈ An(x)

]
≤ 2L exp(−kξ

2

2
).

Proof [Proof of Proposition C.1] We combine Proposition C.2 with Proposition C.3, with an =

2Cλ · (2ωk0)λ · n−
λ

2λ+1 .

Proof [Proof of Proposition C.2] First note that as in the proof of Propostion B.1 we may assume
that ζmax = ∞, without loss of generality. We define a Bayes optimal classifier f∗ : X → Y by
f∗(x) = min (Y∗Φ (η(x))), so R(f∗) = R∗. Hence,

En
[
R
(
f̂n

)]
−R∗

= En
[
R
(
f̂n

)
−R(f∗)

]
= En

[
E
[
φf̂n(X),Y − φf∗(X),Y

]]
= En

[∫ (
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)dµ(x)

]
=

∫
En
[(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)

]
dµ(x)

≤
∫ (

En
[(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)|Dn /∈ An(x)

]
+ 2 · ‖Φ‖∞ · Pn [An(x)]

)
dµ(x)

≤
∫

En
[(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)|Dn /∈ An(x)

]
dµ(x) + Λ(Φ) · a1+β

n .

Thus, it suffices to show that there exists C̃ = C̃ (C2, Cβ, β) > 0, which is monotonically increasing
with β, such that for all n ≥ N0,∫

En
[(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)|Dn /∈ An(x)

]
dµ(x) ≤ C̃ · (1 + C1) · (Λ(Φ) · an)1+β .

(3)
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We define sets Ωj(Dn) for each j ∈ N and Dn ∼ Pn by

Ω0(Dn) =

{
x ∈ X : 0 <

(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x) < Λ(Φ) · an

}
Ωj(Dn) =

{
x ∈ X : 2j−1 · Λ(Φ) · an <

(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x) < 2j · Λ(Φ) · an

}
.

Note that for all j ≥ 1, if x ∈ Ωj(Dn) then

2j−1 · Λ(Φ) · an <
(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x).

On the other hand, by the construction of f̂n we have(
e(f̂n(x))− e(f∗(x))

)T
Φ η̂n(x) ≤ 0.

Thus, by Lemma B.3 for all j ≥ 1, if x ∈ Ωj(Dn) then ‖η̂n(x) − η(x)‖∞ > 2j−1an ≥ an.
Moreover, for all j ∈ N, if x ∈ Ωj(Dn) then MΦ (η(x)) < 2j · Λ(Φ) · an. So if j ≥ 1 we have

1Ωj(Dn) ≤ 1{‖η̂n(x)−η(x)‖∞>2j−1an} · 1{MΦ(η(x))<2j ·Λ(Φ)·an}.

Thus,
∫
En
[
1Ωj(Dn)|Dn /∈ An(x)

]
dµ(x)

≤
∫

En
[
1{‖η̂n(x)−η(x)‖∞>2j−1an} · 1{MΦ(η(x))<2j ·Λ(Φ)·an}|Dn /∈ An(x)

]
dµ(x)

=

∫
En
[
1{‖η̂n(x)−η(x)‖∞>2j−1an}|Dn /∈ An(x)

]
· 1{MΦ(η(x))<2j ·Λ(Φ)·an}dµ(x)

=

∫
Pn
[
‖η̂n(x)− η(x)‖∞ > 2j−1an|Dn /∈ An(x)

]
· 1{MΦ(η(x))<2j ·Λ(Φ)·an}dµ(x)

≤
∫
C1 · exp

(
−C2 · 4j−1

)
· 1{MΦ(η(x))<2j ·Λ(Φ)·an}dµ(x)

≤ C1 · exp
(
−C2 · 4j−1

)
· µ
(
{MΦ (η(x)) < 2j · Λ(Φ) · an}

)
≤ C1 · exp

(
−C2 · 4j−1

)
· Cβ ·

(
2j · Λ(Φ) · an

)β
.
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In addition
∫
En
[
1Ω0(Dn)|Dn /∈ An(x)

]
dµ(x) ≤ Cβ · (Λ(Φ) · an)β . Thus,∫

En
[(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)|Dn /∈ An(x)

]
dµ(x)

=

∫
En

 ∞∑
j=0

1Ωj(Dn)

(
e(f̂n(x))− e(f∗(x))

)T
Φ η(x)|Dn /∈ An(x)

 dµ(x)

≤ (Λ(Φ) · an) ·
∞∑
j=0

2j ·
∫

En
[
1Ωj(Dn)|Dn /∈ An(x)

]
dµ(x)

≤ (Λ(Φ) · an)1+β · Cβ ·

1 + C1 ·
∞∑
j=1

2jβ exp
(
−C2 · 4j−1

)
≤ Cβ ·

1 +

∞∑
j=1

2jβ exp
(
−C2 · 4j−1

) · (1 + C1) · (Λ(Φ) · an)1+β .

Hence, (3) holds with

C̃ = Cβ ·

1 +
∞∑
j=1

2jβ exp
(
−C2 · 4j−1

) <∞.

This completes the proof of the proposition.

Proof [Proof of Proposition C.3] The fact that Pn [An(x)] ≤ exp(−k/8) follows immediately from
Lemma B.1 applied with p = 2k/n and ξ = 1/2. Moreover, if we take r0 = max {ρ(x,Xi) : i ∈ S◦k(x,Fn)}
then whenever Dn /∈ An(x) we have r0 ≤ r2k/n(x), so µ (Br0(x)) ≤ 2k/n. Hence, letting
r1 = max {ρ(x,Xi) : i ∈ Sk(x,Fn)}, since S generates ω measure-approximate nearest neigh-
bours we have

µ (Br1(x)) ≤ ω · µ (Br0(x)) ≤ ω · 2k

n
.

Hence, providedDn /∈ An(x) the fact that η is measure-smooth, with constants (λ,Cλ) implies that
for each i ∈ Sk(x,Fn) with probability one we have

‖η(Xi)− η(x)‖∞ ≤ Cλ · µ
(
Bρ(x,Xi)(x)

)λ ≤ Cλ · (2ωk

n

)λ
.

Thus, for Dn /∈ An(x), ∣∣∣∣∣∣∣∣1k ∑
i∈Sk(x,Fn)

η(Xi)− η(x)

∣∣∣∣∣∣∣∣
∞
≤ Cλ ·

(
2ωk

n

)λ
.
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Hence, for all ξ ≥ 2Cλ ·
(

2ωk
n

)λ
we have

Pn
[∣∣∣∣∣∣∣∣η̂Sn,k(x)− η(x)

∣∣∣∣∣∣∣∣
∞
≥ ξ|Dn /∈ An(x)

]

≤ Pn
∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn)

η(Xi)

∣∣∣∣∣∣∣∣
∞
≥ ξ

2
|Dn /∈ An(x)

 ≤ 2L exp(−kξ
2

2
),

where the final inequality holds by Lemma B.2, combined with the fact that Pn [Dn /∈ An(x)|Fn] ∈
{0, 1}.

Appendix D. Cost sensitive learning on manifolds

In this section we complete the proof of Theorem 3 by combining Theorems 4 and 5.

Theorem 3 Take d ∈ N and let ρ denote the Euclidean metric on Rd. Let Φ be a cost matrix and
M ⊆ Rd a compact smooth submanifold with dimension γ and reach τ . Take positive constants
k0, r0, c0, νmin, νmax, ζmax, α, β, Cα, Cβ and let Γ = 〈(c0, r0, νmin, νmax) , (β,Cβ, ζmax) , (α,Cα)〉.
Suppose that S generates θ-approximate nearest neighbours for some θ ≥ 1. There exists a con-
stant C > 0, depending upon k0, γ, τ , Γ such that for all P ∈ PΦ (VM,Γ) and n ∈ N the following
holds:

(1) Given ξ ∈ (0, 1) and kn = k0 ·n
2α

2α+γ · (1 + log(1/ξ))γ/(2α+γ) with probability at least 1− ξ
over Dn ∼ Pn we have

P
[
fSn,k(X) /∈ Y∗Φ (η(X))

]
≤ ξ + C ·

(
θα · Λ(Φ) ·

√
log(L)

)β
·
(

1 + log(1/ξ)

n

)βα/(2α+γ)

.

(2) Given kn = k0 · n
2α

2α+γ we have

En
[
R
(
fSn,kn

)]
−R∗ ≤ C · (θα · Λ(Φ))1+β · L · n−

α(1+β)
2α+γ .

Moreover, there exists an absolute constant K > 0 such that whenever θ > 1, given any subgaus-
sian random projection ϕ : Rd → Rh with

h ≥ K · ‖ϕ‖4ψ2
·
(
θ2 + 1

θ2 − 1

)2

·max
{
γ log+(γ/(r0 · τ))− log+ (c0 · νmin) + γ, log δ−1

}
,

with probability at least 1 − δ, S(ϕ) generates θ-approximate nearest neighbours, so both (1) and
(2) hold with fϕn,k in place of fSn,k.

We shall require the following lemmas.
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Lemma D.1 Suppose that X = M ⊂ Rd is a smooth complete manifold with dimension γ
and reach τ . Suppose further that P consists of a marginal µ which is regular with constants
(c0, r0, νmin, νmax), along with a conditional label distribution η which is Hölder continuous with
constants (α,Cα). It follows that the conditional η is measure-smooth, with constants (λ,Cλ),
where λ = α/γ and

Cλ = max
{
Cα, (τ/8)−α , (r0)−α

}
·
(
c0 · νmin · 4−γ · vγ

)−λ
.

Proof We recall from Lemma A.6 that for x0 ∈M and all r ≤ τ/8 we have

VM (Br(x0)) ≥ 4−γ · vγ · rγ .

Moreover, since the marginal µ which is regular with constants (c0, r0, νmin, νmax), for all r ≤ r0

we have,

µ (Br(x0)) =

∫
Br(x0)

ν(x)dx ≥ νmin · VM (supp(µ) ∩Br(x0)) ≥ νmin · c0 · VM (Br(x0)) .

Thus, for all r ≤ min{τ/8, r0} we have

µ (Br(x0)) ≥
(
c0 · νmin · 4−γ · vγ

)
· rγ .

Given x0, x1 ∈ supp(µ) we must show that,

‖η(x0)− η(x1)‖∞ ≤ Cλ · µ
(
Bρ(x0,x1)(x0)

)λ
.

First suppose that ρ(x0, x1) ≥ min{r0, τ/8}. Then we have

‖η(x0)− η(x1)‖∞ ≤ 1 ≤ Cλ ·
((
c0 · νmin · 4−γ · vγ

)
· (min{τ/8, r0})γ

)λ
≤ Cλ · µ

(
Bmin{r0,τ/8}(x0)

)λ ≤ Cλ · µ (Bρ(x0,x1)(x0)
)λ
.

One the other hand, if ρ(x0, x1) < min{r0, τ/8}, then

‖η(x0)− η(x1)‖∞ ≤ Cα · ρ(x0, x1)α

≤ Cλ ·
(
c0 · νmin · 4−γ · vγ

)λ · ρ(x0, x1)α

= Cλ ·
((
c0 · νmin · 4−γ · vγ

)
· ρ(x0, x1)γ

)λ ≤ Cλ · µ (Bρ(x0,x1)(x0)
)λ
.

Lemma D.2 Suppose that X = M ⊂ Rd is a smooth complete manifold with dimension γ and
reach τ . Suppose further that µ is a regular probability measure with constants (c0, r0, νmin, νmax).
We let C̃ denote the constant

C̃ =
(
c0 · νmin · 4−γ · vγ

)−1 ·max
{
νmax · 4γ · vγ , (min{τ/8, r0})−γ

}
.

Then, for all x ∈ X , r > 0 and θ ≥ 1, we have µ (Bθ·r(x)) ≤ C̃ · θγ · µ (Br(x)).
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Proof As noted in the proof of Lemma D.1 given any x ∈ supp(µ) and r ≤ min{τ/8, r0} we have

µ (Br(x)) ≥
(
c0 · νmin · 4−γ · vγ

)
· rγ .

In addition, by Lemma A.6, for all x ∈ X and r ≤ τ/8 we have

µ (Br(x)) ≤ νmax · VM (Br(x)) ≤ (νmax · 4γ · vγ) · rγ .

Now take x ∈ X , r > 0 and θ ≥ 1. Firstly, the lemma holds trivially for x /∈ supp(µ), so we may
assume x ∈ supp(µ). We consider two cases.

Case 1: Assume that θ · r ≤ min{τ/8, r0}, so we have

µ (Bθ·r(x)) ≤ (νmax · 4γ · vγ) · (θ · r)γ

≤
(
(νmax · 4γ · vγ) /

(
c0 · νmin · 4−γ · vγ

))
· θγ · µ (Br(x)) .

Case 2: Assume that θ · r ≥ min{τ/8, r0}, so

µ (Br(x)) ≥ µ
(
Bmin{τ/8,r0}/θ(x)

)
≥
(
c0 · νmin · 4−γ · vγ

)
·min{τ/8, r0}γ · θ−γ

≥
(
c0 · νmin · 4−γ · vγ

)
·min{τ/8, r0}γ · θ−γ · µ (Bθ·r(x)) .

Lemma D.3 Suppose that X = M ⊂ Rd is a smooth complete manifold with dimension γ and
reach τ . Suppose further that µ is a regular probability measure with constants (c0, r0, νmin, νmax).
There exists a constant C̃ which depends purely upon c0, r0, νmin, νmax, γ and τ such that given
any θ ≥ 1, whenever S generates θ approximate nearest neighbours for some θ. Then S generates
ω measure-approximate nearest neighbours with respect to the measure µ with ω ≤ C̃ · θγ .

Proof Suppose that S generates θ approximate nearest neighbours. Take some n ∈ N, k ≤ n
and let r0 = max {ρ (x,Xi) : i ∈ S◦k(x,Fn)} and r1 = max {ρ(x,Xi) : i ∈ Sk(x,Fn)}. Since S
generates θ approximate nearest neighbours we have r1 ≤ θ · r0. Hence, by Lemma D.2 we have

µ (Br1(x)) ≤ µ (Bθ·r0(x)) ≤ C̃ · θγ · µ (Br0(x)) .

Lemma D.4 Suppose we have a metric space (x̃, ρ̃) along with a map ϕ : X → X̃ together with
constants c−(ϕ), c+(ϕ) > 0 such that for µ almost every x0, x1 ∈ X we have

c−(ϕ) · ρ (x0, x1) ≤ ρ̃ (ϕ(x0), ϕ(x1)) ≤ c+(ϕ) · ρ (x0, x1) ,

where ρ̃ denotes the metric for X̃ . For each k, n ∈ N we let Sk(x,Fn) denote the indices of
the k nearest neighbours to ϕ(x) in the set {ϕ(Xi)}ni=1 with respect to ρ̃. Then Sk generates θ-
approximate nearest neighbours with θ = c+(ϕ)/c−(ϕ).
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Proof By the construction of Sk we have

max {ρ(x,Xi) : i ∈ Sk(x,Fn)} ≤ c−(ϕ)−1 ·max {ρ̃(ϕ(x), ϕ(Xi)) : i ∈ Sk(x,Fn)}
≤ c−(ϕ)−1 ·max {ρ̃(ϕ(x), ϕ(Xi)) : i ∈ S◦k(x,Fn)}
≤ (c+(ϕ)/c−(ϕ)) ·max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} .

Proof [Proof of Theorem 3] As in the statement of Theorem 3 we take a compact smooth submani-
foldM⊆ Rd with dimension γ and reach τ . Take positive constants k0, r0, c0, νmin, νmax, ζmax, α, β, Cα, Cβ ,
and suppose that S generates θ-approximate nearest neighbours for some θ ≥ 1. By Lemma D.1
there exists a constant Cλ, depending upon γ, τ , Γ, such that η is measure-smooth with constants
(λ,Cλ), where λ = α/γ. In addition, by Lemma D.3 we see that S generates ω-measure approx-
imate nearest neighbours with ω ≤ C̃ · θγ , where C̃ depends purely upon γ, τ and Γ. Hence, the
first part of Theorem 3 follows from Theorem 5.

To prove the second part of Theorem 3, we note that

1 = µ (supp(µ)) =

∫
supp(µ)

ν(x)dVM(x) ≥ νmin · VM (supp(µ)) .

Hence, VM (supp(µ)) ≤ ν−1
min. Moreover, by assumption supp(µ) is a (c0, r0) regular set. Thus, by

Theorem 4, provided

h ≥ K · ‖ϕ‖4ψ2
·
(
θ2 + 1

θ2 − 1

)2

·max
{
γ log+(γ/(r0 · τ))− log+ (c0 · νmin) + γ, log δ−1

}
,

then with probability at least 1− δ, for all pairs x0, x1 ∈ supp(µ) we have

2

θ2 + 1
· ‖x0 − x1‖22 ≤ ‖ϕ(x0)− ϕ(x1)‖22 ≤

2θ2

θ2 + 1
· ‖x0 − x1‖22.

Hence, with probability at least 1 − δ, ϕ : Rd → Rh is bi-Lipchitz with constants c−(ϕ) =√
2/(θ2 + 1) and c+(ϕ) = θ ·

√
2/(θ2 + 1), so by Lemma D.4, S(ϕ) generates θ approximate

nearest neighbours.

Appendix E. Standard lemmas

Recall that rp(x) = inf {r > 0 : µ (Br(x)) ≥ p}. In this section we prove lemmas B.1 and B.2.

Lemma B.1 Take x ∈ X . Suppose that p ∈ [0, 1], ξ ≤ 1, k ≤ (1− ξ)np. Then

Pn [max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} > rp(x)] ≤ exp(−kξ2/2).

Proof Take r > rp(x), so µ (Br(x)) ≥ p. Note that max {ρ(x,Xi) : i ∈ S◦k(x,Fn)} ≥ r if and
only if #Dn ∩Br(x) < k, which is equivalent to

∑n
i=1 1{Xi∈Br(x)} < k. Moreover, taking

p̃ =
1

n

n∑
i=1

E
[
1{Xi∈Br(x)}

]
= µ (Br(x)) ≥ p
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implies k ≤ (1−ξ)np̃ ≤ np̃. Thus, by the multiplicative Chernoff bound (Mitzenmacher and Upfal
(2005)) we have,

Pn [ρ∞ (x, {Xi : i ∈ S◦k(x,Fn))} ≥ r] ≤ P

[
n∑
i=1

1{Xi∈Br(x)} < k

]

≤ P

[
n∑
i=1

1{Xi∈Br(x)} < (1− ξ)np̃

]
≤ exp(−np̃ξ2/2) ≤ exp(−kξ2/2).

Since this holds for any countable decreasing sequence of r with each r > rp(x), the lemma follows
by continuity.

Lemma B.2 Take x ∈ X . For each δ > 0 we have

Pn
∣∣∣∣∣∣∣∣η̂Sn,k(x)− 1

k

∑
i∈Sk(x,Fn)

η(Xi)

∣∣∣∣∣∣∣∣
∞
≥ δ|Fn

 ≤ 2L exp(−2kδ2).

Proof By the construction of η̂Sn,k(x) it suffices to show that

Pn
∣∣∣∣∣∣∣∣ ∑

i∈Sk(x,Fn)

(e(Yi)− η(Xi))

∣∣∣∣∣∣∣∣
∞
≥ k · δ|Fn

 ≤ 2L exp(−2kδ2).

By the union bound it suffices to show that for each l ∈ Y we have

Pn
∣∣∣∣ ∑

i∈Sk(x,Fn)

(e(Yi)l − η(Xi)l)

∣∣∣∣ ≥ k · δ|Fn
 ≤ 2 exp(−2kδ2).

This in turn follows if we show that for all x1, · · · , xn ∈ X we have

Pn
∣∣∣∣ ∑

i∈Sk(x,Fn)

(e(Yi)l − η(xi)l)

∣∣∣∣ ≥ k · δ∣∣∣∣X1 = x1, · · · , Xn = xn

 ≤ 2 exp(−2kδ2).

Moreover, e(Yi)l = 1{Yi=l} and η(xi)l = P [Yi = l|Xi = xi] = E
[
1{Yi=l}|Xi = xi

]
. Thus, we

must show that

Pn
∣∣∣∣ ∑

i∈Sk(x,Fn)

(
1{Yi=l} − E

[
1{Yi=l}|Xi = xi

]) ∣∣∣∣ ≥ k · δ∣∣∣∣X1 = x1, · · · , Xn = xn


does not exceed 2 exp(−2kδ2). This is immediate from Hoeffding’s inequality (Boucheron et al.
(2013)).
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Appendix F. Geometric lemmas

Lemma A.6 LetM ⊆ Rd be a compact smooth submanifold with dimension γ, reach τ and Rie-
mannian volume form VM. Then for all x ∈M and r < τ/8 we have

4−γ · vγ · rγ ≤ VM (Bg
r (x)) ≤ VM (Br(x)) ≤ 4γ · vγ · rγ .

Proof Fix x ∈M and r < τ/8. By (Chazal, 2013, Corollary 1.3) we have

VM (Br(x)) ≤
(

2τ

τ − 4r

)γ
· vγ · rγ ≤ 4γ · vγ · rγ .

In addition by (Eftekhari and Wakin, 2015, Lemma 12) we have

VM (Br(x)) ≥
(

1− r2

4τ2

) γ
2

· vγ · rγ ≥ vγ · 2−γ · rγ . (4)

Now suppose z ∈ Br/2(x), so ‖z − x‖ < r/2, then by (Niyogi et al., 2008, Proposition 6.3) we
have

ρg(z, x) ≤ τ − τ
√

1− 2‖z − x‖2
τ

≤ 2 · ‖z − x‖2 < r.

Hence, Br/2(x) ⊆ Bg
r (x). Hence, by (4) we have

VM (Bg
r (x)) ≥ VM

(
Br/2(x)

)
≥ vγ · 4−γ · rγ .

Lemma A.7 With the assumptions of lemma A.6, for all x, x̃ ∈ M and r̃ ≤ r < τ/8 with
ρg(x, x̃) ≤ r + r̃/2 we have VM

(
Bg
r (x) ∩Bg

r̃ (x̃)
)
≥ 2−4γ · vγ · r̃γ .

Proof Fix x ∈ M and r > 0 and take x̃ ∈ Bg
r (x) and r̃ ∈ (0,min {r, τ/8}). We claim that

there exists a geodesic ball Bg
r̃/4(y) of radius r̃/2 such that Bg

r̃/2(y) ⊆ Bg
r (x) ∩Bg

r̃ (x̃). To see this
consider two cases.

Case 1: Suppose that ρg(x, x̃) ≤ 3r̃/4 ≤ 3r/4. Then given z ∈ Bg
r̃/4(x̃) we have ρg(x, z) ≤

ρg(x, x̃) + ρg(x̃, z) < 3r/4 + r̃/4 ≤ r. Hence, Bg
r̃/4(x̃) ⊆ Bg

r (x)∩Bg
r̃ (x̃), so the claim holds with

y = x̃.
Case 2: Suppose that 3r̃/4 < ρg(x, x̃) ≤ r. Let c : [0, ρg(x, x̃)] → M be a unit speed

geodesic with c(0) = x and c(1) = x̃. Let y = c (ρg(x, x̃)− 3r̃/4), so ρg(y, x̃) = 3r̃/4 and
ρg(y, x) = ρg(x, x̃)− 3r̃/4 ≤ r − r̃/4. Hence, Bg

r̃/4(y) ⊆ Bg
r (x) ∩Bg

r̃ (x̃).
Hence, the claim holds. Thus, by two applications of Lemma A.6 we have,

VM
(
Bg
r (x) ∩Bg

r̃ (x̃)
)
≥ VM

(
Bg
r̃/4(y)

)
≥ 2−4γ · vγ · r̃γ .

39



MINIMAX RATES FOR COST-SENSITIVE LEARNING ON MANIFOLDS

Appendix G. Random projections theorem

Our goal in this section is to prove Theorem 4.

Theorem 4 There exists an absolute constant K such that the following holds. Given a compact
smooth submanifold M ⊆ Rd with dimension γ and reach τ , suppose that A ⊂ M is (c0, r0)
regular with respect to the Riemannian volume VM. Suppose that ϕ : Rd → Rh is a subgaussian
random projection. Take ε, δ ∈ (0, 1) and suppose that

h ≥ K · ‖ϕ‖4ψ2
· ε−2 ·max

{
γ log+(γ/(r0 · τ)) + log+ (VM(A)/c0) + γ, log δ−1

}
.

Then with probability at least 1− δ, for all pairs x0, x1 ∈ A we have

(1− ε) · ‖x0 − x1‖22 ≤ ‖ϕ(x0)− ϕ(x1)‖22 ≤ (1 + ε) · ‖x0 − x1‖22.

The result generalises Theorem 7.9 from Dirksen (2016) and the proof is very similar. We begin
by recalling another important result from Dirksen (2016). We require some notation. Given a
metric space (X , ρ) and a subset A ⊂ X we define

γtal (A) := inf
T

sup
x∈A

∑
q≥0

2q/2 · ρ(x, Tq)


 ,

where the infimum is taken over sequences T = {Tq}q∈N with each Tq ⊂ A, #(T0) = 1 and for
q ≥ 1, #(Tq) ≤ 22q . Given x0, x1 ∈ Rd we let Ch(x0, x1) denote the normalised chord,

Ch (x0, x1) =
x0 − x1

‖x0 − x1‖2
.

Given a setA ⊂ Rd we letAnc ⊂ Sd−1 ⊂ Rd denote the set of normalised chords,Anc = {Ch(x0, x1) : x0, x1 ∈ A}.
Given x ∈M we let Px denote the projection onto the tangent space ofM at x. Given a matrix M
we let ‖M‖op denote the operator norm of M . Given a semi-metric space (X , ρ), a subset A ⊂ X
and r > 0, a subset {x1, · · · , xq} ⊂ A such that for each a ∈ A we have ρ(a, xi) < r for some
i ∈ {1, · · · , q} is referred to as an r-net of A with respect to ρ. We let N(A, ρ, r) denote the
cardinality of the smallest r-net of A with respect to ρ.

Theorem 6 (Dirksen (2016)) There exists an absolute constant K such that the following holds.
Suppose that A ⊂ Rd and let ϕ : Rd → Rh. Take ε, δ ∈ (0, 1) and suppose that

h ≥ K · ‖ϕ‖4ψ2
· ε−2 ·max

{
γ2

tal (Anc) , log
(
δ−1
)}
.

Then with probability at least 1− δ, for all pairs x0, x1 ∈ A we have

(1− ε) · ‖x0 − x1‖22 ≤ ‖ϕ(x0)− ϕ(x1)‖22 ≤ (1 + ε) · ‖x0 − x1‖22.

Given a (c0, r0) regular setA ⊂Mwe shall seek to bound γ2
tal (Anc). We shall use the following

upper bound.
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Lemma G.1 (Talagrand (2006)) Given a metric space (X , ρ) and a subset A ⊂ X we have

γtal (A) ≤ (log 2)−1/2 ·
∫ diam(A)

0

√
logN(A, ρ, r)dr.

Proof See (Talagrand, 2006, pg. 13).

We require the following lemmas from Dirksen (2016).

Lemma G.2 (Dirksen (2016)) Suppose thatM⊂ Rd is a manifold with reach τ . Then, given any
x0, x1, y0, y1 ∈M we have,

(a) ‖Ch(x0, x1)− Ch(y0, y1)‖2 ≤ 2 · (‖x0 − y0‖2 + ‖x1 − y1‖2) /(‖x0 − x1‖2),

(b) ‖Ch(x0, x1)− Px0 (Ch(x0, x1)) ‖2 ≤ 2τ−1 · ‖x0 − x1‖2,

(c) ‖Px0 − Px1‖op ≤ 2
√

2 · τ−1/2 · ‖x0 − x1‖1/22 .

Lemma G.3 Take any subset A ⊂ M where M ⊂ Rd is a γ-dimensional manifold of reach τ .
For all r > 0, if we let n(r) = N

(
A, ‖ · ‖2,min{τ, 1/8} · r2/16

)
then we have,

N (Anc, ‖ · ‖2, r) ≤ n(r) ·
(
n(r) +

(
1 +

4

r

)γ)
.

Proof Take a, b > 0 and let {x1, · · · , xq} ⊂ A be a minimal a-net of A with respect to ‖ · ‖2,
and for each i = 1, · · · , q we let {yij}mij=1 be a b-net for A with respect to the semi-metric
(z0, z1) 7→ ‖Pxi(z0 − z1)‖2. Note that q = N (A, ‖ · ‖2, a) and for each i,

mi = N (A, ‖Pxi (·) ‖2, b) ≤ N ({w ∈ Rγ : ‖w‖2 ≤ 1} , ‖ · ‖2, b) ≤
(

1 +
2

b

)γ
.

Now take t > 0 and decompose Anc into A≥tnc and A<tnc by

A≥tnc = {Ch(z0, z1) : z0, z1 ∈ A, ‖z0 − z1‖ ≥ t}
A<tnc = {Ch(z0, z1) : z0, z1 ∈ A, ‖z0 − z1‖ < t} .

Given z0, z1 ∈ A with ‖z0 − z1‖ ≥ t we may take i0, i1 ∈ {1, · · · , q} so that ‖z0 − xi0‖2 < a and
‖z1 − xi1‖2 < a. It follows from Lemma G.2 (a) that ‖Ch(z0, z1)− Ch(xi0 , xi1)‖2 < 2a/t. Thus,
we have

N
(
A≥tnc , ‖ · ‖2, 2a/t

)
≤ N (A, ‖ · ‖2, a)2 .

Given z0, z1 ∈ A with ‖z0 − z1‖ < t we may take i0 ∈ {1, · · · , q} so that ‖z0 − xi0‖2 < a and
j ∈ {1, · · · ,mi0} so that ‖Pxi0 (Ch(z0, z1)− yi0j) ‖2 < b. Hence,

‖Ch(z0, z1)− Pxi0 (yi0j) ‖2 ≤ ‖Ch(z0, z1)− Pz0 (Ch(z0, z1)) ‖2
+ ‖Pz0 (Ch(z0, z1))− Pxi0 (Ch(z0, z1)) ‖2
+ ‖Pxi0 (Ch(z0, z1)− yi0j) ‖2
≤ 2τ−1 · t+ 2

√
2 · a1/2 + b,
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by applying Lemma G.2 (b) and (c). Thus, we have,

N
(
A<tnc , ‖ · ‖2,

(
2τ−1 · t+ 2

√
2 · a1/2 + b

))
≤ N (A, ‖ · ‖2, a) ·max

i
{N (A, ‖Pxi (·) ‖2, b)}

≤ N (A, ‖ · ‖2, a) ·
(

1 +
2

b

)γ
.

Hence, given any r > 0, taking a = min{τ, 1/8} · r2/16, b = r/2 and t = 2a/r and letting
n(r) = N

(
A, ‖ · ‖2,min{τ, 1/8} · r2/16

)
, we have

N (Anc, ‖ · ‖2, r) ≤ n(r) ·
(
n(r) +

(
1 +

4

r

)γ)
.

Lemma G.4 Take any subset A ⊂ M where M ⊂ Rd is a γ-dimensional manifold of reach τ .
Suppose further that A is a (c0, r0)-regular set. Then, for all r < min{r0, τ/2} we have

N (A, ‖ · ‖2, r) ≤ c−1
0 · VM (A) · (γ + 4)γ/2+2 · r−γ .

Proof Let {x1, · · · , xq} ⊂ A be a maximal r-separated set. By (Eftekhari and Wakin, 2015, Lemma
12), for each i we have

VM
(
Br/2(xi)

)
≥ (63/64)γ/2 · vγ · (r/2)γ =

(
((63 · π)/256)γ/2 /Γ

(γ
2

+ 1
))
· rγ

≥
(

((63 · π)/256)γ/2 ·
(γ

2
+ 2
)−(γ/2+2)

)
· rγ ≥ (γ + 4)−(γ/2+2) · rγ .

Since {x1, · · · , xq} ⊂ A is r-separated, the ballse Br/2(xi) are disjoint, so using the (c0, r0) regu-
larity property,

VM (A) ≥
q∑
i=1

VM
(
A ∩Br/2(xi)

)
≥ c0 ·

q∑
i=1

VM
(
Br/2(xi)

)
≥ q · c0 · (γ + 4)−(γ/2+2) · rγ .

Moreover, since {x1, · · · , xq} ⊂ A is a maximal r-separated set, {x1, · · · , xq} must also be an
r-net for A with respect to ‖ · ‖2, so N (A, ‖ · ‖2, r) ≤ q. Thus,

N (A, ‖ · ‖2, r) ≤ c−1
0 · VM (A) · (γ + 4)γ/2+2 · r−γ .

Lemma G.5 There exists a universal constant K̃ > 0 such that the following holds. Take any
subset A ⊂ M whereM ⊂ Rd is a γ-dimensional manifold of reach τ . Suppose further that A is
a (c0, r0)-regular set. Then, for all r < {r0, 1} we have

log (N (Anc, ‖ · ‖2, r)) ≤ K̃ ·
(
γ log+(γ/τ) + log+ (VM(A)/c0)− γ log+(r) + γ

)
.
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Proof Combine lemmas G.3 and G.4.

Proof [Proof of Theorem 4] To complete the proof of Theorem 4, we apply Lemmas G.1 and G.5,

(γtal (Anc))
2 ≤ (log 2)−1 ·

(∫ 2

0

√
logN(Anc, ρ, r)dr

)2

≤ 2 · (log 2)−1 ·
∫ 2

0
logN(Anc, ρ, r)dr

≤ K ′ ·
(
γ log+(γ/(τr0)) + log+ (VM(A)/c0) + γ

)
.

Hence, Theorem 4 follows from Theorem 6.
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Appendix H. Notation

ζmax Upper limit for ζ in the margin condition

r0 Regularity radius for supp(µ)

c0 Regularity coefficient supp(µ)

Y∗Φ The set of labels which minimise the cost sensitive loss for a given conditional distribution

fSn,k A classifier based on n training examples and k approximate nearest neighbours generated
via Sk

η̂Sn,k An estimator of η based on n training examples and k approximate nearest neighbours
generated via Sk

k The number of nearest neighbours

X The feature space

Zi The ith training example from Dn

Xi The ith feature vector in the training data

Yi The ith test label in the training data

Y The set of class labels

Z The Cartesian product X × Y

Dn A data set Dn = {Z1, · · · , Zn} of size n, with each Zi = (Xi, Yi) ∼ P chosen
independently

n Number of training examples

S◦k A function from a point to the indices of its k nearest neighbours

Sk A function from a point indices of a set of approximate k nearest neighbours

θ Scale factor for approximate nearest neighbours

ω Scale factor for measure-approximate nearest neighbours

λ Smoothness exponent for η with respect to µ

α Hölder exponent for η

Cα Hölder scaling constant for η

γ Dimension of the manifoldM
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Γ Set of parameters defining a set of distributions onM

VM The Riemannian volume form on manifoldM

ν The density of µ with respect VM

β Margin exponent for P

Cβ Margin scaling constant for P

Cλ Smoothness scaling constant for η

x A feature vector

y A class label

X A random feature vector

Y A random class label

e(y) A L× 1 one-hot-encoding of the class label y

Fn The ordered set {X1, · · · , Xn} where Dn = {(X1, Y1), · · · , (Xn, Yn)}

P Distribution over Z = X × Y

µ The marginal distribution over X ie. µ(A) = P [X ∈ A] for A ⊆ X

η The conditional distribution of Y given X = x, as a probability vector

L Number of classes

Φ A L× L cost matrix with entries φi,j

φi,j The cost incurred by predicting class i when the true label is class j

MΦ The cost-sensitive margin

Pn Probability over data sets Dn of size n with each (xi, yi) sampled i.i.d from P

En Expectation over data sets Dn according to Pn

ρ A metric on X . If X ⊂ Rd then ρ denotes the Euclidean metric.

ρg The Riemannian metric onM

‖ · ‖2 The Euclidean norm on Rd

R(h) The risk of a classifier h

R∗ The Bayes risk
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Br(x) The open metric ball of radius r centered at x

Br(x) The closed metric ball of radius r centered at x

Bg
r (x) The open metric ball of radius r centered at x with respect to the geodesic metric ρg

Bg
r (x) The closed metric ball of radius r centered at x with respect to the geodesic metric ρg

1A The indicator function of a set A

τ Reach for a Riemannian manifoldM

M A compact C∞-smooth submanifold of Rd

d Dimension of the ambient Euclidean space Rd

Rd d dimensional Euclidean space

Asym The asymmetry of a cost matrix

PΦ (υ,Γ) A class of measures specified in Definition 2.5

Λ(Φ) The constant Λ(Φ) := (L− 2) · Asym(Φ) + 2 · ‖Φ‖∞
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