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Abstract

The problem is that of sequential probability forecasting for discrete-valued time series.
The data is generated by an unknown probability distribution over the space of all one-way
infinite sequences. It is known that this measure belongs to a given set C, but the latter is
completely arbitrary (uncountably infinite, without any structure given). The performance
is measured by asymptotic average log loss. In this work it is shown that the minimax
asymptotic performance is always attainable, and it is attained by a Bayesian mixture over
countably many measures from the set C. This was previously only known for the case
when the best achievable asymptotic error is 0. The new result can be interpreted as a
complete-class theorem for prediction. It also contrasts previous results that show that
in the non-realizable case all Bayesian mixtures may be suboptimal. This leads to a very
general conclusion concerning model selection for a problem of sequential inference: it is
better to take a model large enough to make sure it includes the process that generates the
data, even if it entails positive asymptotic average loss, for otherwise any combination of
predictors in the model class may be useless.

1. Introduction

Given a sequence x1, . . . , xn of observations xi ∈ X , where X is a finite set, we want to
predict the probabilities of observing xn+1 = x for each x ∈ X , before xn+1 is revealed,
after which the process continues sequentially. The sequence x1, . . . , xn, . . . is generated by
some unknown stochastic process µ, a probability measure on the space of one-way infinite
sequences X∞. Further, a set C of such measures is given, and it is known that µ ∈ C. The
set C can be thought of as the set of models, experts, or the set of strategies of the adversary
(a.k.a. Nature). The requirement that the true measure µ that generates the data is in C
means that we are in the “realizable” case of the problem (in other words, there is at least
one expert that is optimal).

Unlike most of the literature on the subject, which assumes that the set C is parametrized
and endowed with some structure, here we would like to treat the problem in full generality
and thus shall not make any assumptions whatsoever on the set C or its elements. Note
that making even such innocuous-looking assumptions on the set C as are the common
topological ones, such as local compactness, separability, tightness, not to mention stronger
assumptions involving the existence of densities or smoothness, implicitly gives the problem
a structure (e.g., a topology in which the assumption is fulfilled) that in itself constitutes
a large part of the solution. Here we are interested rather in the fundamental question of
which principles to use when choosing a model for a problem, and thus would like not to
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make any assumptions at all (not even measurability). It is also worth reiterating that the
measures in C are not required to be i.i.d., finite-memory, mixing, etc.

We are interested in the question whether it is possible to attain the minimax optimal
asymptotic performance by using a combination of measures in C as a predictor. A com-
bination is a measure of the form ν =

∫
C dW where W is some measure over C (or, more

generally, over a measurable subset of C; recall that C itself is not required to be measur-
able). The measure W can be thought of as a prior distribution, and prediction is then
by evaluating the posterior ν(·|x1, . . . , xn) on the observed sequence x1, . . . , xn. In other
words, we are asking whether it is possible to achieve optimal prediction with a Bayesian
predictor with some prior (that is, whether there exists such a prior); however, we are not
interested in optimality with prior probability 1, but rather in the minimax (worst-case)
asymptotic optimality of such predictors. The answer we obtain is positive.

Thus, the main result is that the minimax asymptotic performance is always attainable
and it is attained by a combination of countably many measures from the set C. Note that
this statement is completely assumption-free: not even measurability of C is required.

Previously, this result was only established (Ryabko, 2010) under the assumption that
there is a predictor whose error is asymptotically 0 on any measure µ ∈ C, that is, the
minimax asymptotic error is 0. Here we get rid of this (last) assumption. Examples of cases
where the minimax asymptotic error is greater than 0 are easiest to come by if we suppose
that some aspects of the process are completely arbitrary. The easiest example is when
nothing is predictable: the data is an arbitrary deterministic sequence. This example gives
the maximal possible worst-case asymptotic error of log |X |. A more meaningful example
is that of processes with (frequent) abrupt changes: between the changes, the distribution
belongs to some (nice) given family (e.g., i.i.d. Bernoulli trials) but when the changes occur
is not known, and a change is to an arbitrary distribution in the family. This example is
considered in more detail in Section 5.

Moreover, the case when the best possible asymptotic error is greater than 0 is par-
ticularly important in light of recent results achieved in the non-realizable case, that is,
when the measure µ generating the data does not have to belong to C. In this case, one is
interested in the regret with respect to C, that is, the performance of the predictor minus
the best performance of all the measures in C on the given µ. Ryabko (2016) shows that,
in the non-realizable case, it can happen that the best regret a predictor can achieve with
respect to a set C is zero, but any Bayesian mixture predictor has regret bounded away from
0 by a large constant (see Section 6 for a precise formulation). In other words, the experts
in C are useless: one can do as well as any of them, but not by combining them. Note that
any such set C has to be uncountable, which brings it out of the traditional expert advice
settings (a survey of which can be found in Cesa-Bianchi and Lugosi, 2006).

Putting these results together, we reach the following fundamental recommendation
for choosing a model for sequential data:

Better take a model large enough to make sure it includes the process that generates the
data, even if it makes the worst-case asymptotic error larger than zero, for otherwise any
combination of predictors in the model class may be useless.

For the initiated reader this result has a distinct decision-theoretic flavour to it. Indeed,
as we explain in Section 4, it provides (a strong form) of the the complete-class theorem for
the problem of sequential prediction, as well as a partial form of the minimax theorem.
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Related work. The literature on (nonparametric) sequential prediction is huge, and we do
not attempt to provide an adequate survey here. Some pointers to climb references to and
from in different branches of science are: (Cesa-Bianchi and Lugosi, 2006) for the expert
advice setting (machine learning side), (Kalai and Lehrer, 1994; Noguchi, 2015) for the non-
parametric Bayesian approach (econometrics side; most results with prior probability 1),
(Ryabko, 1988; Morvai et al., 1997; Gyorfi and Ottucsak, 2007) for predicting stationary
ergodic time series (perhaps the largest class considered in statistics; non-parametric statis-
tics/information theory side), (Solomonoff, 1978; Hutter, 2005) for predicting computable
measures. The study of the realizable and non-realizable sides of the prediction problem
together in the setting considered here has been initiated by Ryabko (2011) that also poses
the question that Ryabko (2016) resolves.

To the author’s knowledge, this is the first work to consider the general case case when
the best achievable asymptotic regret is greater than 0. One specific example that was con-
sidered before is that of processes with abrupt changes mentioned above. Willems (1996)
considers the case when the processes between the changes are i.i.d., but the method pro-
posed is general. It is, in fact, a Bayesian construction, where the prior is over all possible
sequences of changes. The goal is to minimize the regret with respect to the predictor that
knows the sequence of changes (but not the distributions); the best achievable asymptotic
regret was not considered directly. Subsequent work on this problem is largely devoted to
computational considerations; see (Gyorgy et al., 2012) and references therein.

Related decision-theoretic results concern the setting of the problem for “predicting”
just one (the first) symbol of the sequence. For KL divergence (expected log loss) these
results include (Ryabko, 1979; Gallager, 1976 (revised 1979; Haussler, 1997); a variety of
generalizations to other losses is presented in (Grünwald and Dawid, 2004).

2. Preliminaries

Let X be a finite set. The notation x1..n is used for x1, . . . , xn. We consider (probability)
measures on (X∞,F), where F is the usual Borel sigma-field. For a finite set A denote |A|
its cardinality. We use Eµ for expectation with respect to a measure µ.

For two measures µ and ρ introduce the expected cumulative Kullback-Leibler divergence
(KL divergence) as

dn(µ, ρ) := Eµ

n∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)
ρ(xt = a|x1..t−1)

=
∑

x1..n∈Xn
µ(x1..n) log

µ(x1..n)

ρ(x1..n)
.

(1)
In words, we take the expected (over data) average (over time) KL divergence between µ-
and ρ-conditional (on the past data) probability distributions of the next outcome; and this
gives simply the µ-expected log-ratio of the likelihoods.

Definition 1 Define the asymptotic average KL loss of ρ on µ as

D(µ, ρ) := lim sup
n→∞

1

n
dn(µ, ρ). (2)

For a set C of measures define

D(C, ρ) := sup
µ∈C

D(µ, ρ).
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The main quantity of interest is the following minimax loss:

Definition 2 For a set C of measures define

VC := inf
ρ∈P

D(C, ρ) = inf
ρ∈P

sup
µ∈C

D(µ, ρ), (3)

where the infimum is taken over the set P of all probability measures on (X∞,F).

Thus, VC is the minimax loss for the set C of strategies of the Nature and the unrestricted
set of Statistician’s strategies.

3. Main result

The main result shows that the minimax loss is always achievable and is achieved by a
convex combination (a Bayesian mixture) of measures in C — without any assumptions on
C. Moreover, for any predictor ρ there is a convex combination of measures in C that is as
good as ρ.

Theorem 3 For any set C of probability measures on (X∞,F), there exist a sequence of
measures µk ∈ C, k ∈ N and a sequence of real weights vk > 0, k ∈ N whose sum is 1, such
that for the measure ϕ :=

∑
k∈N vkµk we have

D(C, ϕ) = VC .

Moreover, for every measure ρ there exists a predictor ϕ of the form above such that
D(µ, ϕ) ≤ D(µ, ρ) for all µ ∈ C.

Before giving the proof, we present informally some ideas behind it. Imagine first that for the
set C we already knew a predictor ρ that attains the value VC . Imagine furthermore, that for
each µ ∈ C the limit limn→∞− 1

n log ρ(x1..n)
µ(x1..n)

exists for µ-almost all x = x1, . . . , xn, · · · ∈ X∞.

Then we could define (µ-almost everywhere) the function fµ(x) whose value at x equals this
limit. Let us call it the “log-density” function. (The reader can recognize behind the log the

expression limn→∞
ρ(x1..n)
µ(x1..n)

that defines the familiar densities.) Furthermore, nothing forbids
us to imagine that this log-density is measurable. What we would be looking for thence
is to find a countable dense subset of the set of log-densities of all measures from C. The
measures µ corresponding to each log-density in this countable set would then constitute
the sequence whose existence the theorem asserts. To find such a dense countable subset
we could employ a standard procedure: approximate all log-densities by step functions with
finitely many steps. The main technical argument is then to show that, for each level of the
step functions, there are not too many of these functions whose steps are concentrated on
different sets of non-negligible probability, for otherwise the requirement that ρ attains VC
would be violated. Here “not too many” means exponentially many with the right exponent
(the one corresponding to the step of the step-function with which we approximate the
density), and “non-negligible probability” means a probability bounded away (in n) from
0. Getting back to reality, we cannot say anything about the existence of the limits. What
we do instead is use the step-functions approximation at each time step n. Since there are
only countably many time steps, the result is still a countable set of measures µ from C.
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Finally, we are not given a measure ρ that attains the value VC ; so we find a sequence of
predictors ρεn that approach this value instead, and perform the procedure above for each
ρεn .

It is worth noting that the proof that Ryabko (2010) obtains for the special case VC = 0
does not directly generalize. In fact, tidying up the constants in that proof, one can only
obtain the asymptotic loss of 2VC for the mixture predictor. While not a problem for the
case VC = 0, this is of course not what we want in the general case. The reason behind this
problem is that for the construction in that proof one can only use the fact that each of the
measures µk in the sequence is as good as the predictor ρ whose existence is assumed (the
one that attains VC = 0). In contrast, in the proof below we are able to use the fact that
each measure in the sequence is in fact much better than ρ on some subsets of X n.
Proof Define the weights wk := w/(k+ 1) log2(k+ 1), where w is the normalizer such that∑

k∈Nwk = 1. Introduce the notation M := log |X |.
We start with the second statement of the theorem. Take any predictor ρ. We shall find

a measure ν of the form
∑

k∈Nw
′
kµk, where µk ∈ C such that

D(µ, ν) ≤ D(µ, ρ) ∀µ ∈ C. (4)

Replacing ρ with (ρ+p)/2 if necessary, where p is the i.i.d. measure with equal probabilities
of outcomes, we shall assume

− log ρ(x1..n) ≤ nM + 1 for all n ∈ N and x1..n ∈ X n. (5)

Thus, in particular, dn(µ, ρ) ≤ nM + 1 for all µ.
For each µ ∈ C, n ∈ N define the sets

Tnµ :=

{
x1..n ∈ X n :

µ(x1..n)

ρ(x1..n)
≥ 1

n

}
. (6)

From the Markov’s inequality, we obtain

µ(X n\Tnµ ) ≤ 1/n. (7)

For each k ∈ N let Uk be the partition of [− logn
n ,M + 1

n ] into k intervals defined as
follows. Uk := {uik : i = 1..k}, where

uik =


[
− logn

n , iMk

]
i = 1,(

(i−1)M
k , iMk

]
1 < i < k,(

(i−1)M
k ,M + 1

n

]
i = k.

Thus, Uk is a partition of [0,M ] into k equal intervals but for some padding that we added
to the leftmost and the rightmost intervals: on the left we added [− logn

n , 0) and on the right
(M,M + 1/n].

For each µ ∈ C, n, k ∈ N, i = 1..k define the sets

Tnµ,k,i :=

{
x1..n ∈ X n :

1

n
log

µ(x1..n)

ρ(x1..n)
∈ uik

}
. (8)
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Observe that, for every µ, k, n ∈ N, these sets constitute a partition of Tnµ into k disjoint

sets: indeed, on the left we have 1
n log µ(x1..n)

ρ(x1..n)
≥ − 1

n log n by definition (6) of Tnµ , and on

the right we have 1
n log µ(x1..n)

ρ(x1..n)
≤M + 1/n from (5). In particular, from this definition, for

all x1..n ∈ Tnµ,k,i we have

µ(x1..n) ≤ 2
iM
k
n+1ρ(x1..n). (9)

For every n, k ∈ N and i ∈ {1..k} consider the following construction. Define m1 :=
maxµ∈C ρ(Tnµ,k,i) (since the sets X n are finite all suprema are reached). Find any µ1 such
that ρ(Tnµ1,k,i) = m1 and let T1 := Tnµ1,k,i. For l > 1, let ml := maxµ∈C ρ(Tnµ,k,i\Tl−1). If
ml > 0, let µl be any µ ∈ C such that ρ(Tnµl,k,i\Tl−1) = ml, and let Tl := Tl−1 ∪ Tnµl,k,i;
otherwise let Tl := Tl−1 and µl := µl−1. Note that, for each x1..n ∈ Tl there is l′ ≤ l such
that x1..n ∈ Tnµl′ ,k,i and thus from (8) we get

2
(i−1)M

k
n−lognρ(x1..n) ≤ µl′(x1..n). (10)

Finally, define

νn,k,i :=

∞∑
l=1

wlµl (11)

(notice that for every n, k, i there is only a finite number of positive ml, since the set X n is
finite; thus the sum in the last definition is effectively finite) and the resulting predictor ν
as

ν :=
1

2

∑
n,k∈N

wnwk
1

k

k∑
i=1

νn,k,i +
1

2
r, (12)

where r is a regularizer to be defined below. The regularizer r is defined so as to have for
each µ′ ∈ C and n ∈ N

log
µ′(x1..n)

ν(x1..n)
≤ nM +O(log n) for all x1..n ∈ X n; (13)

this and the stronger statement (5) for ν can be obtained analogously to the latter inequality
in the case the i.i.d. measure p is in C; otherwise (since we need to define ν as a combination
of measures from C only), r can be defined the same way as is done in (Ryabko, 2010, Step r
of the proof of Theorem 5); for the sake of completeness, this argument is given in the end
of this proof.

We shall show that (4) holds for ν defined in (12), which will establish the second
statement of the theorem. First, we want to show that, for each µ ∈ C, for each fixed k, i,
the sets Tnµ,k,i are covered up to a negligible µ-probability by the sets Tl with indices l that
are not too small. Observe that, by definition, for each n, i, k the sets Tl\Tl−1 are disjoint
(for different l) and have non-increasing (with l) ρ-probability. Therefore, ρ(Tl+1\Tl) ≤ 1/l
for all l ∈ N. Hence, from the definition of Tl, we must also have ρ(Tnµ,k,i\Tl) ≤ 1/l for all

l ∈ N. From the latter inequality and (9) we obtain µ(Tnµ,k,i\Tl) ≤
1
l 2

iM
k
n+1. Consequently,

for any a > M/k taking l := 2(
iM
k

+a)n+1 we obtain that for each x1..n ∈ Tnµ,k,i except

6



Universality of Bayesian mixture predictors

possibly for a set of µ-probability 2−an (that is, for x1..n ∈ Tnµ,k,i\Tl) there is l′ ≤ l such
that the following chain holds

ν(x1..n) ≥ wnwk
1

k
w
2(
iM
k

+a)nµl′(x1..n) ≥ 2−(
iM
k

+a)n+o(n)µl′(x1..n) ≥ 2−(a+
M
k
)n+o(n)ρ(x1..n),

(14)
where the first inequality is from (12) and (11) (with the value of l we selected), the second
is by definition of wl and the third uses (10).

Suppose that there exist µ ∈ C and δ′′ > 0 such that

1

n
dn(µ, ν) >

1

n
dn(µ, ρ) + δ′′ (15)

infinitely often. Note that (13) implies that 1
n log µ(x1..n)

ν(x1..n)
is bounded uniformly (w.r.t. x1..n)

from above. Using this and (7) we can restrict (15) to Tnµ , obtaining

1

n

∑
x1..n∈Tnµ

µ(x1..n) log
µ(x1..n)

ν(x1..n)
>

1

n

∑
x1..n∈Tnµ

µ(x1..n) log
µ(x1..n)

ρ(x1..n)
+ δ′ (16)

infinitely often for some δ′ > 0. Consequently, again invoking the boundedness (13), we

conclude that there exist ε′, δ > 0, an infinite sequence of indices (n′j)j∈N and sets A′j ⊂ T
n′j
µ

such that µ(A′j) > ε′ and − log ν(x1..nj ) > njδ− log ρ(x1..nj ) for x1..nj ∈ A′j . Recall that for
each k ∈ N the sets Tnµ,k,j partition each of the sets Tnµ and therefore each of the sets A′j
into at most k sets. Hence, for every k there must exist a cell of this partition, that is, an
index i ∈ {1..k}, along with an ε ≥ ε′/k > 0 and subsequences (nj)j∈N and (Aj)j∈N (with
Aj ⊂ Xnj ) of the sequences (n′j)j∈N and (A′j)j∈N such that µ(Aj ∩ T

nj
µ,k,i) > ε for all j ∈ N.

Denote Bj = Aj ∩T
nj
µ,k,i for each j ∈ N. We have thus obtained, finally, an infinite sequence

of indices (nj)j∈N and sets Bj ⊂ T
nj
µ,k,i of µ-probability bounded from below by ε/2, such

that for each x1..nj ∈ Bj we have

ν(x1..nj ) < 2−δnjρ(x1..nj ). (17)

Take k > 0 such that M/k < δ/4. To conclude the proof of the second statement of the
theorem, it remains to observe that (17) contradicts (14) with a = δ/2.

To prove the first statement of the theorem, first, let γj > VC , j ∈ N be a sequence such
that limj→∞ γj = VC . Find then a sequence ρj ∈ P such that D(C, ρj) ≤ γj . We need to
find a predictor ϕ of the form

∑
k∈Nw

′
kµk, where µk ∈ C such that D(C, ϕ) ≤ D(C, ρj) for

every j ∈ N. So far we have shown that for every ρj , j ∈ N there is a measure νj of the
required form such that D(C, νj) ≤ D(C, ρj). It remains to define ϕ :=

∑
j∈Nwjνj . Indeed,

for every µ ∈ C and every j ∈ N we have

dn(µ, ϕ) = Eµ log
µ(x1..n)

ϕ(x1..n)
≤ Eµ log

µ(x1..n)

νj(x1..n)
− logwj ,

so that D(µ, ϕ) ≤ D(µ, νj) ≤ D(µ, ρj) ≤ γj . Finally, recall that γj → VC to obtain the
desired statement.
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It remains to come back to (13) and define the regularizer r as a combination of measures
from C for this inequality to hold. For each n ∈ N, denote

An := {x1..n ∈ X n : ∃µ ∈ C µ(x1..n) 6= 0},

and let for each x1..n ∈ X n the measure µx1..n be any measure from C such that µx1..n(x1..n) ≥
1
2 supµ∈C µ(x1..n). Define

r′n :=
1

|An|
∑

x1..n∈An

µx1..n

for each n ∈ N, and let r :=
∑

n∈Nwnr
′
n. For every µ ∈ C we have

r(x1..n) ≥ wn|An|−1µx1..n(x1..n) ≥ 1

2
wn|X |−nµ(x1..n)

for every n ∈ N and every x1..n ∈ An, establishing (13).

4. Decision-theoretic interpretations

Classical decision theory is concerned with single-step games. Among its key results are
the complete class and minimax theorems. The infinite-horizon case studied here presents
both differences and similarities which we attempt to summarize here. A distinction worth
mentioning at this point is that the results presented here are obtained under no assumptions
whatsoever, whereas the results in decision theory we refer to always have a number of
conditions; on the other hand, here we are concerned with just one specific loss function
(KL divergence) rather than general losses as is common in decision theory.

Predictors ρ ∈ P are called strategies of the statistician. The measures µ ∈ C are now
the basic strategies of the opponent, and the first thing we need to do is to extend these to
randomized strategies. To this end, denote C∗ the set of all probability distributions over
measurable subsets of C. Thus, the opponent selects a randomized strategy W ∈ C∗ and
the statistician (predictor) ρ suffers the loss

EW (µ)D(µ, ρ), (18)

where the notation W (µ) means that µ is drawn according to W . Note a distinction with
the combinations we considered before. A combination of the kind ν =

∫
C dW is itself a

probability measure over the one-way infinite sequences, whereas a measure W ∈ C∗ is a
measure over C. In other words, the difference is between putting the integral

∫
C dW outside

of D as in (18) or inside of D which would be D(
∫
C dW (µ), ρ). In the terminology of Gray

(1988), the measure
∫
C dW (µ) ∈ P is the barycentre of W ∈ C∗.

Minimax. Generalizing the definition (3) of VC , we can now introduce the upper value

V̄C := inf
ρ∈P

sup
W∈C∗

EW (µ)D(µ, ρ). (19)

Furthermore, the maximin (the lower value) is defined as

V C := sup
W∈C∗

inf
ρ∈P

EW (µ)D(µ, ρ). (20)
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The so-called minimax theorems in decision theory (e.g., Ferguson, 1967) for single-step
games and general loss functions state that, under certain conditions, V̄C = V C and the
statistician has a minimax strategy, that is, there exists ρ on which V̄C is attained. Mini-
max theorems generalize the classical result of von Neumann (1928), and provide sufficient
conditions of various generality for it to hold. A rather general sufficient condition is the
existence of a topology with respect to which the set of all strategies of the statistician, P
in our case, is compact, and the risk, which is D(µ, ρ) in our case, is lower semicontinuous.
Such a condition seems nontrivial to verify. For example, a (meaningful) topology with
respect to which P is compact is that of the so-called distributional distance (Gray, 1988)
(in our case it coincides with the topology of the weak∗ convergence), but D(µ, ρ) is not
(lower) semicontinuous with respect to it. Some other (including non-topological) sufficient
conditions are given in (Sion, 1958; LeCam, 1955).

In our setup, it is easy to see that V̄C = VC and so Theorem 3 holds for V̄C . Thus, using
decision-theoretic terminology, we can state the following.

Corollary 4 (minimax) For every set C of strategies of the opponent, the statistician has
a minimax strategy.

However, the question of whether the upper and the lower values coincide remains open.
That is, we are taking the worst possible distribution over C, and ask what is the best
possible predictor with the knowledge of this distribution ahead of time. The question is
whether V C = VC . A closely related question is whether there is a worst possible strategy for
the opponent. This latter would be somehow a maximally spread-out (or maximal entropy)
distribution over C. In general, measurability issues seem to be very relevant here, especially
for the maximal-entropy question.
Complete class. For a set of measures (strategies of the opponent) C, a predictor ρ1 is
said to be as good as a predictor ρ2 if D(µ, ρ1) ≤ D(µ, ρ2) for all µ ∈ C. A predictor ρ1
is better (dominates) ρ2 if ρ1 is as good as ρ2 and D(µ, ρ1) < D(µ, ρ2) for some µ ∈ C.
A predictor ρ is admissible (also called Pareto optimal) if there is no predictor ρ′ which is
better than ρ; otherwise it is called inadmissible. Similarly, a set of predictors D is called
a complete class if for every ρ′ /∈ D there is ρ ∈ D such that ρ is better than ρ′. A set of
of predictors D is called an essentially complete class if for every ρ′ /∈ D there is ρ ∈ D
such that ρ is as good as ρ′. An (essentially) complete class is called minimal if none of its
proper subsets is (essentially) complete.

Furthermore, in decision-theoretic terminology (Ferguson, 1967), a predictor ρ is called a
Bayes rule for a prior W ∈ C∗ if it is optimal for W , that is, if it attains infρ∈P EW (µ)D(µ, ρ).
Clearly, if W is concentrated on a finite or countable set then any mixture over this set with
full support is a Bayes rule, and the value of the inf above is 0.

In decision theory, the complete class theorem (Wald, 1950; LeCam, 1955, see also
Ferguson, 1967) states that, under certain conditions similar to those above for the minimax
theorem, the set of Bayes rules is complete and the admissible Bayes rules form a minimal
complete class.

An important difference in our set-up is that all strategies are inadmissible (unless
VC = 0), and one cannot speak about minimal (essentially) complete classes. However, the
set of all Bayes rules is still essentially complete, and an even stronger statement holds: it
is enough to consider all Bayes rules with countable priors:
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Proposition 5 For every set C, the set of those Bayes rules whose priors are concentrated
on at most countable sets is essentially complete. There is no admissible rule (predictor)
and no minimal essentially complete class unless VC = 0. In the latter case, every predictor
ρ that attains this value is admissible and the set {ρ} is minimal essentially complete.

Proof The first statement is a reformulation of the second statement of Theorem 3. To
prove the second statement, consider any C such that VC > 0, take a predictor ρ that attains
this value (such a predictor exists by Theorem 3), and a measure µ such that D(µ, ρ) > 0.
Then for a predictor ρ′ := (ρ + µ)/2 we have D(µ, ρ′) = 0 while D(ν, ρ) ≥ D(ν, ρ′) for all
ν, so that ρ′ is better than ρ. Therefore, ρ is inadmissible. The statement about minimal
essentially complete class is proven analogously. The statement about the case VC = 0
follows directly from the definitions.

5. Examples

Ryabko (2010) considers in detail several examples of processes classes for the case VC = 0;
these examples include countable sets C, the set of i.i.d. measures, Markov chains, bounded-
memory processes and stationary ergodic processes. Therefore, here we will only look at
the case VC > 0. For simplicity, we assume X = {0, 1} in the examples.
Typical Bernoulli 1/3 sequences. We start with a somewhat artificial example, but a
one on which it is relatively easy to see how countable mixtures give predictors for large
uncountable sets. Take the binary X and consider all sequences x ∈ X∞ such that the
limiting number of 1s in x equals 1/3. Denote the set of these sequences S and let the
set C consist of all Dirac measures concentrated on sequences from S. Observe that the
Bernoulli i.i.d. measure δ1/3 with probability 1/3 of 1 predicts measures in C relatively
well: D(C, δ1/3) = h(1/3), where h stands for the binary entropy, and this is also the
minimax loss for this set, VC . It might then appear surprising that this loss is achievable
by a combination of countably many measures from C — after all, this set consists only
of deterministic measures. Let us try to see what such a combination may look like. By
definition, for any sequence x ∈ S and every ε we can find nε(x) ∈ N such that for all
n ≥ nε(x) the average number of 1s in x1..n is within ε of 1/3. Fix the sequence of indices
kj := 2j , j ∈ N and the sequence of thresholds εl := 2−l. For each kj let S′lj ⊂ S be the set

of all sequences x ∈ S such that nεl(x) < nj . Select then a finite subset Slj of S′lj such that

for each x′ ∈ S′lj there is x ∈ S such that x′1..nj = x1..nj . This is of course possible since the

set X nj is finite. Now for each x ∈ Slj take the corresponding measure µx ∈ C and attach to

it the weight wlwj/|Slj |, where, as before, we are using the weights wk = w/k log2 k. Taking
these measures for all j, l ∈ N we obtain our convex combination. Of course we did not
enumerate all sequences in S (or measures in C) this way; but for each sequence x ∈ S and
for each n there is a sequence among those that we did enumerate that coincides with x up
to the index n. One can then use the theory of types (Csiszar, 1998) to calculate the sizes
of the sets Slj and to check that the weights we found give the optimal loss we are after;
but for the illustrative purposes of this example this is already not necessary.
Processes with abrupt changes. Start with a family of distributions S for which we
have a good predictor, for example S is the set B of all Bernoulli i.i.d. processes, or more
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generally a set for which VS = 0. The family CS,α parametrized by α ∈ (0, 1) and S is
then the family of all processes constructed as follows: there is a sequence of indexes ni
such that Xni..ni+1 is distributed according to µi for some µi ∈ S. Take then all possible
sequences µi and all sequences ni whose limiting frequency limi→∞{i : ni < n} is bounded
by α to obtain our set CS,α. Thus, we have a family of processes with abrupt changes
in distribution, where between the changes the distribution is from S, the changes are
assumed to have the frequency bounded by α but are otherwise arbitrary. This example
was considered in (Willems, 1996) for the case S = B, with the goal of minimizing the regret
w.r.t. the predictor that knows where the changes occur (the value VC was not considered
directly). The method proposed in the latter work, in fact, is not limited to the case
S = B, but is general. The algorithm is based on a prior over all possible sequences ni of
changes; between the changes the optimal predictor for B is used, which is also a Bayesian
predictor with a specific prior. The regret obtained is of order logn. Since for Bernoulli
processes themselves the best achievable loss up to time n is 1/2 log n+ 1, we can see that
VCB ,α = α(1− 1/2 logα). A similar result can be obtained if we replace Bernoulli processes
with Markov processes, but not with an arbitrary S for which VS = 0. For example, if we
take S to be all finite-memory distributions, then the resulting process may be completely
unpredictable (VC = 1): indeed, if the memory of distributions µi grows (with i) faster than
αn, then there is little one can do. For such sets S one can make the problem amenable by
restricting the way the distributions µi are selected, for example, imposing an ergodicity-like
condition that the average distribution has a limit. Another way (often considered in the
literature in slightly different settings, see (Gyorgy et al., 2012) and references therein) is to
have α→ 0, although in this case one recovers VCS = 0 provided α goes to 0 slowly enough
(and, of course, provided VS = 0).
Predictable aspects. The preceding example can be thought of as an instantiation of
the general class of processes in which some aspects are predictable while others are not.
Thus, in the considered example changes between the distributions were unpredictable, but
between the changes the distributions were predictable. Another example of this kind is
that of processes predictable on some scales but not on others. Imagine that it is possible
to predict, for example, large fluctuations of the process but not small fluctuations (or the
other way around). More formally, consider now an alphabet X with |X | > 2, and let Y
be some partition of X . For any sequence x1, . . . , xn, . . . there is an associated sequence
y1, . . . , yn, . . . where yi is defined as y ∈ Y such that xi ∈ y. We can obtain examples of
sets C of processes with VC ∈ (0, 1) by restricting the distribution of y1, . . . , yn, . . . to a set
B with VB = 0. The interpretation is that, again, we can model the y part (by processes in
B) but not the rest, which we then allow to be arbitrary.

Yet another example is that of processes predictable only after certain kind of events:
for example, after a price drop; or after a rain. At other times, the process is unpredictable:
it can, again, be an arbitrary deterministic sequence. More formally, let a set A ⊂ X ∗ :=
∪k∈NX k be measurable. Consider for each sequence x = x1, . . . , xn, . . . another (possibly
finite) sequence x′ = x′1, . . . , x

′
n, . . . given by x′i := (xni+1)i∈N where ni are all indexes such

that x1..ni ∈ A. We now form the set C as the set of all processes µ such that x′ belongs (µ-
a.s.) to some pre-defined set B; for this set B we may have VB = 0. This means that we can
model what happens after events in A — by processes in B, but not the rest of the times, on
which we say the process may be arbitrary. For different A and B we then obtain examples
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where VC ∈ (0, 1). A particular instance of this, as well as of the preceding, example is
predicting selected bits. Specifically, Hutter (2005) mentions the problem of predicting
every second bit in a sequence, asking whether Solomonoff’s predictor (Solomonoff, 1978),
which is a mixture over the countable set of all (semi-)computable measures, would still
work in the setting — despite the sequence being possibly non-computable. (For the time-
averaged KL loss of the present work this question is trivial, but is not trivial for other
losses.) This question is generalized (and answered) to that of predicting the bits on a
computable subsequence of time steps by Lattimore et al. (2011).

6. Relation to the non-realizable case

As mentioned in the Introduction, Ryabko (2016) shows that in the non-realizable case all
Bayesian mixture predictors may be suboptimal. Here we make this statement precise in
order to clarify its relation to the main result.

The non-realizable case is when the measure generating the data does not belong to C.
We are then looking at the set C as the set of experts or models, and we seek a predictor ρ
that predicts any measure ν (that generates the data) whatsoever as well as the best (for
this ν) µ ∈ C.

Thus, if we have two predictors µ and ρ, we can define the regret up to time n of (using
the predictor) ρ as opposed to (using the predictor) µ on the measure ν (that is, ν generates
the sequence to predict) as

Rνn(µ, ρ) := dn(ν, ρ)− dn(ν, µ).

Furthermore, define the asymptotic average regret as

R̄ν(µ, ρ) := lim sup
n→∞

1

n
Rνn(µ, ρ),

and
R̄ν(C, ρ) := sup

µ∈C
R̄ν(µ, ρ).

Ryabko (2016) shows that there exists a set C such that any Bayesian predictor must
have a linear regret, while there exists a predictor with a sublinear regret:

Theorem 6 (Ryabko, 2016) There exist a set C of measures and a predictor ρ such
that R̄ν(C, ρ) = 0 for every measure ν, yet for every Bayesian predictor ϕ with a prior
concentrated on C there exists a measure ν such that we have R̄ν(C,ϕ) ≥ c > 0 where c is
a constant (independent of ϕ).

In the same work it is argued that this applies more broadly than just to Bayesian predictors:
all non-trivial combinations of measures in C may be useless for minimizing regret. We
remind again that such a set C must necessarily be uncountable.

7. Discussion and directions for future research

A statistician facing an unknown stochastic phenomenon has a large, nonparametric model
class at hand that she has reasons to believe captures some aspects of the problem. Yet other
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aspects remain completely enigmatic, and there is little hope that the process generating the
data indeed comes from the model class. For this reason the statistician is content at having
non-zero error no matter how much data may become available now or in the future, but
she would still like to make some use of the model. There are now two rather distinct ways
to proceed. One is to say that the data may come from an arbitrary deterministic sequence,
and try to construct a predictor that minimizes the regret with respect to every distribution
in the model class, on every deterministic sequence. The other way is to try to enlarge the
model class, in particular, by allowing that all there is unknown in the process may be
arbitrary (that is, an arbitrary deterministic sequence). This second way may be more
difficult precisely on the modelling step. Yet, the conclusion of this work is that this is the
way to follow, for in this case one can be sure that it is possible to make statistical inference
by standard available tools, specifically, Bayesian forecasting: even if the best achievable
asymptotic error is non-zero it is attained by a Bayesian forecaster with some prior. Finding
such a prior is a separate problem, but it is a one with which Bayesians are familiar. Here,
modelling that unknown part should not create much trouble: a good distribution over
all deterministic sequences is just the Bernoulli i.i.d. measure with equiprobable outcomes.
(Note that it is not necessary to look for priors concentrated on countable sets.) On the
other hand, for the regret-minimization route, the statistician cannot use an arbitrary model
class; indeed, she would first need to make sure that regret minimization is viable at all
for the model class at hand: it may happen that every combination of distributions in the
model is suboptimal.

There are no criteria for checking this, only some (rather small) examples, such as finite
or countable sets, or specific parametric families. Finding such criteria for the viability of
regret minimization is an interesting open problem. To make it more precise, the question
is for which sets C of distributions the minimax regret (is attainable and) can be attained
by a combination (either Bayesian or some other) of distributions in C.

It is worth noting that the conclusions of the paper are not about Bayesian versus non-
Bayesian inference. Rather, Bayesian inference is used as a generic approach to construct
predictors for general (uncountable) model classes. At this level of generality it is hard to
find any alternative approach, although it would be interesting to see which predictors can
be generalized (to arbitrary model classes) and whether the corresponding result holds for
them. The negative result of Ryabko (2016), as explained in that work, is not restricted to
Bayesian predictors but holds much more generality.

The quantity VC introduced in Section 3 appears to be an important characteristic of a
set of processes C, as it quantifies the best possible attainable worst-case performance. It
thus seems interesting to calculate it for various classes of processes, similar to what is done
in Section 5 for the examples considered there.

Another interesting question concerns different losses. While the proof does not seem to
be hinged very specifically on the log loss, it does use some properties of it in an important
way. In particular, the property that if µ predicts ν then also any convex combination
αµ+ (1− α)ρ predicts ν for any ρ. This does not hold for some other losses, in particular
already for KL loss without Cesaro averaging; see (Ryabko and Hutter, 2008) for some
results on this property.

Finally, an intriguing question is whether a result like Theorem 3 holds if one allows
convergence rates into consideration. Now that we know that the minimax asymptotic
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error is achievable, we can ask whether the minimax rate of convergence to this error is also
achievable (by a Bayesian predictor). The proof of the version of Theorem 3 for the VC = 0
case in (Ryabko, 2010) clearly does not generalize to achieve such a result (the rates one
extract from that proof are rather bad), but with the present proof this may be possible.
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