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Abstract
Spatial covariance matrix estimation is of great significance in many applications in climatology,
econometrics and many other fields with complex data structures involving spatial dependencies.
High dimensionality brings new challenges to this problem, and no theoretical optimal estimator
has been proved for the spatial high-dimensional covariance matrix. Over the past decade, the
method of regularization has been introduced to high-dimensional covariance estimation for vari-
ous structured matrices, to achieve rate optimal estimators. In this paper, we aim to bridge the gap
in these two research areas. We use a structure of block bandable covariance matrices to incorpo-
rate spatial dependence information, and study rate optimal estimation of this type of structured
high dimensional covariance matrices. A double tapering estimator is proposed, and is shown to
achieve the asymptotic minimax error bound. Numerical studies on both synthetic and real data are
conducted showing the improvement of the double tapering estimator over the sample covariance
matrix estimator.
Keywords: high-dimensional statistics, covariance estimation

1. Introduction

Investigation of the covariance structure is one of the central topics in high dimensional statistics
Pourahmadi (2014); Cai et al. (2016); Fan et al. (2016). The covariance matrix, as well as its in-
verse, plays a significant role in many applications, including classification problem in discriminant
analysis Anderson (2003), portfolio selection Markowitz (1952), Gaussian graphical models Wang
et al. (2016) and dimensionality reduction (e.g., principal component analysis). However, it has
been shown that the sample covariance matrix has inferior performance in the high dimensional set-
ting Johnstone (2001). On the other hand, regularization methods, including banding, tapering, and
thresholding the sample covariance matrix, have been successfully applied in this area as the im-
provement against the inferior performance of the sample covariance matrix estimator in estimating
covariance in high dimensions Bickel and Levina (2008a,b). For the high dimensional covariance
estimation problem Cai et al. (2016); Fan et al. (2016), theoretical asymptotic rate optimality has
been proven for various classes of structured matrices, such as bandable matrices Cai et al. (2010);
Cai and Yuan (2012) and Toeplitz matrices Xiao and Wu (2012); Cai et al. (2013). Those structures
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however do not describe spatial dependence and the theoretical results of rate optimal estimation
for high-dimension spatial covariance matrix is yet to be proven.

Spatial data are encountered in a wide range of disciplines. With the increasing complex data
model being investigated, for example in climate science Benestad et al. (2008), high dimensional
spatial covariance matrix estimation is a crucial element of spatial data analysis. The spatial co-
variance matrix is useful in both supervised regression problem Cressie (1993); Christensen (2002);
Montero et al. (2015) and unsupervised problem Benestad et al. (2015), as well as other areas like
spatial econometrics LeSage and Pace (2009).

For high dimensional covariance matrix estimation, there are two types of regularized estimators
based on different matrix specifications. One specification does not depend on the index structure,
for which the thresholding Bickel and Levina (2008b) estimator is used. The other specification
is based on the index structure (i.e., some feature dependency structure is assumed), which corre-
sponds to banding and tapering Bickel and Levina (2008a) estimators. As is noted in Bickel and
Levina (2008b), in the application of spatial data, banding or tapering the covariance matrix can be
applied as long as there is an appropriate metric (for example, some underlying distance) on variable
indexes. The tapering estimator has been studied in spatial statistics; while most literature focus on
computational issues, see Kaufman (2008); Shaby and Ruppert (2012) and the references therein,
the theoretical rate optimality is not established, as there was not a good class of structured matri-
ces describing the spatial covariance matrix. Hence the theoretical optimality results on bandable
matrices and Toeplitz matrices (which were developed for time series data) do not apply.

As noted in Zhu and Liu (2009), the theoretical treatment of spatial matrix estimation is more
difficult than that of time series data (partially) because there is no natural ordering (or indexing) of
the observation. In this paper, we show that spatial covariance matrices can exhibit a block bandable
structure under the default ordering method in Zhu and Liu (2009). Bandable covariance matrix is
a class of matrices that has large values when the elements are close to its diagonal and decays
gradually to its upper-right and lower-left corners, which is applicable to covariance matrices of
some time series. A block bandable matrix has many blocks of bandable submatrices, while the
blocks also decay further from the diagonal in the pattern of a bandable matrix. We establish the
minimax risk bound for block bandable matrix estimation under the Frobenius norm, which is a
commonly used norm in covariance estimation problems Lam and Fan (2009); Ravikumar et al.
(2011). We show that a double-tapering estimator achieves the minimax rate, which indicates that
it preforms best in the worst possible case allowed in the problem, thus is indeed theoretically
rate optimal. Numerical performance of the double-tapering estimator is shown through simulation
studies and two applications to image compression and climate downscaling.

2. Block Bandable Spatial Covariance Estimation

In this section, we first define the class of block bandable matrices, and show its connection with the
covariance matrices of two-dimensional spatial data. Then we describe the regularization estimator
based on this structure of covariance matrices.

2.1. Block Bandable Spatial Covariance

Spatial data is recorded based on its geographical location, e.g., latitude and longitude. One of the
main challenge for this kind of data in Rd with d ≥ 2 is that, they are not ordered as the case in R1

such as in time series data. As a consequence, the simple structures like Toeplitz matrices Xiao and
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Wu (2012); Cai et al. (2013) are not applicable for spatial data whose dimension is higher than one
Zhu and Liu (2009).

We consider the case that the spatial dependence decays with respect to their spatial distances,
which can be viewed as a type of generalization of the parametric isotropic covariance models
Montero et al. (2015); Sherman (2011). In this case, when we index the spatial observations in a
regular scheme, the resulting covariance matrices exhibits a certain trackable structure.

For example, we consider a grid of 10×10 spatial stations as shown in the right panel of Figure 1
where we index the spatial stations by raster scan. If the dependence decays exponentially with the
underlying spatial distance, the covariance structure is shown as the left panel in Figure 1 (whiter
pixels correspond to higher values, and redder corresponds to lower values).

Generally speaking, if we have p = p1 × p2 spatial locations with p1 rows and p2 columns, and
index them by raster scan order from 1 to p 1, the resulting p× p dimensional covariance matrix has
p1 × p1 blocks of sub-matrices. Each sub-matrix is of p2 × p2 dimensions and is a bandable matrix
Bickel and Levina (2008a); Cai et al. (2010). In this way, the spatial observatory station in the ith

row and jth column corresponds to the [p2(i − 1) + j]th indexed element used for constructing
the covariance matrix. Moreover, the values on the sub-diagonals of the blocks closer to the main
diagonal tend to be greater than the values on the sub-diagonals of those blocks more apart from
the main diagonal. We term this kind of matrices the block bandable matrices, of which the class
is formally defined next. Thus, the block bandable matrices can be used to model the dependency
structure of two-dimensional data that decays according to its spatial distance. It is worth noting
that matrices that exhibit block structure plays a significant role in spatial modeling, such as the
circulate embedding of random fields Lord et al. (2014).

Let Σp×p be the covariance matrix of dimensions p × p with p = p1p2. It consists of block
sub-matrices Σst with 1 ≤ s ≤ p1, and 1 ≤ t ≤ p1. Here Σst = {σstij}1≤i,j≤p2 with σstij being the
element at the ith row and jth column of the block sub-matrix. We then focus the theoretical study
on the following class of block bandable matrices:

Bα,β(M, ε) ={Σ : |σstij | ≤M(|i− j|−α ∧ |s− t|−β),∀1 ≤ i 6= j ≤ p2, 1 ≤ s 6= t ≤ p1,

ε ≤ λmin(Σst), λmax(Σst) ≤ 1

ε
,∀s, t},

(1)

where λmin(A) and λmax(A) correspond to the minimal and maximal eigenvalue of a matrix A.
The ∧ denotes the minimum operator throughout the paper. The first condition reflects the bandable
structure in both directions. The covariance decays, in the tail, at exponential rates bounded by α
and β respectively along the latitude and along the longitude. The second condition imposes the
boundedness of the eigenvalues to ensure non-singularity. This class is an extension of the classes
studied by Cai et al. (2010); Bickel and Levina (2008a); Cai and Yuan (2012); Xue and Zou (2013)
which are suited for covariances among locations in a equidistant one-dimensional grid, while our
class Bα,β(M, ε) is the corresponding class for the two-dimensional grid.

2.2. Double Tapering Estimation

We assume that the observed normalized data {Xi}ni=1 is drawn from a p dimensional normal dis-
tribution with zero mean and covariance matrix Σ. The (maximal likelihood estimator) sample

1. Such an ordering method is termed default ordering in Zhu and Liu (2009), which shows relatively better results than
other ordering methods discussed therein.
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Figure 1: Left: Example of the spatial covariance matrix. Right: The two-dimensional stations are
indexed in a raster scan order to build a one dimensional long vector.

covariance matrix is Σ̃. We define the double tapering covariance matrix Σ̂, consisting of sub-block
matrices Σ̂st, as

Σ̂st = {ω(
|i− j|
k

)σ̃stij}1≤i,j≤p2 , Σ̂ = {ω(
|s− t|
l

)Σ̂st}1≤s,t≤p1 , (2)

where ω(x) is a tapering function which is non-increasing and equals to one near zero, and zero
when x is large 2. The two-step tapering estimator corresponds to regularization in both dimensions,
i.e. inside each sub-block matrix and across all sub-block matrices. Thus, we name it the double
tapering estimator for the spatial block bandable matrix. For example, banding function could be
defined as ω(x) = 1[0, 3

4
](x), while linear tapering function could be defined as follow,

ω(x) =


1, for x < 0.5,

2− 2x, for 0.5 ≤ x ≤ 1,

0, for x > 1.

(3)

Other possible tapering and banding function ω(·) are plotted in Figure 2.

3. Statistical Error

In this section, we first study the upper bound of the asymptotic minimax risk for the proposed
double tapering estimator. Then the asymptotic minimax lower bound over the class of block band-
able covariance matrices is derived, which shows the rate optimality of our proposed method. We
consider the high-dimensional asymptotic case of all n, p1 and p2 increases to infinity.

3.1. Upper Bound

To derive the upper bound of the tapering estimator, we will adopt the so-called norm compression
(in)equality (NCI) as a tool to deal with our block bandable matrix. NCI has been studied with

2. The tapering function ω(·) is similar to the kernel function, but is not restricted to the unit integration.
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Figure 2: The tapering function ω(x) which is used in the double tapering estimator.

various matrix norms King (2003); Audenaert (2006), which is of independent interest. Here we
will use the Frobenius norm, the square-root of the sum of squares of every element in the matrix,
denoted as ‖ · ‖F . Let matrix A be partitioned into d1 × d2 blocks of sub-matrices Aij as:

A =


A11 A12 . . . A1d2

A21 A22 . . . A2d2

. . . . . . . . . . . . . . . . . . . . . . .
Ad11 Ad12 . . . Ad1d2

 . (4)

If we replace each Aij with its (Frobenius) norm, then we get a “compressed” version of A,
denoted by N(A):

N(A) =


‖A11‖ ‖A12‖ . . . ‖A1d2‖
‖A21‖ ‖A22‖ . . . ‖A2d2‖
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
‖Ad11‖ ‖Ad12‖ . . . ‖Ad1d2‖

 . (5)

The NCIs establish the relationship between ‖A‖ and ‖N(A)‖, which becomes an equality for
the Frobenius norm.

Lemma 1 (NCI for Frobenius norm) Let A be a matrix that could be partitioned as in (4), and
N(A) be its compressed matrix as defined in (5) with Frobenius norm. We have

‖A‖F = ‖N(A)‖F . (6)

Proof Since ‖A‖2F is the sum of squares of every elements in the matrix while ‖Ai1i2‖
2
F is the sum

of squares of every elements in Ai1i2 , the ith1 and ith2 sub-matrix of the partitioned A, so obviously

‖A‖2F =

d1∑
i1=1

d2∑
i2=1

‖Ai1i2‖
2
F = ‖N(A)‖2F . (7)

212



RATE OPTIMAL ESTIMATION FOR HIGH DIMENSIONAL SPATIAL COVARIANCE MATRICES

This implies that the risk of the block bandable covariance matrix under Frobenius norm could
be broken down into the sum of the risk corresponding to each individual small block. Based on
this fact, we first derive the element-wise error and combine the results to get the risk upper bound
under the Frobenius norm, which leads to the following theorem (proof in Appendix A).

Theorem 2 (Upper Bound) Let the double tapering estimator Σ̂k of the covariance matrix Σp×p
be defined in (2). Then we have the following upper bound for the asymptotic minimax risk over the
block bandable matrices class Bα,β with α, β > 1, as n→∞, p1→∞ and p2 →∞,

sup
Bα,β

E
1

p

∥∥∥Σ̂− Σ
∥∥∥2

F
≤ Cn−

(2α−1)(2β−1)
4αβ−1 p

2β−1
4αβ−1

1 p
2α−1
4αβ−1

2 ∧ p
n
. (8)

3.2. Lower bound

In this part, we discuss the optimality, i.e. the minimax lower bound for the estimation over the class
Bα,β of block bandable matrices. The proof applys a similar approach as in Cai et al. (2010). To
show the above upper bound is optimal, we only need to show that the risk is also bounded below
by Ckl/n for such

l = n
2α−1
4αβ−1 p

− 1
4αβ−1

1 p
2α

4αβ−1

2 ∧ p1

2
. k = n

2β−1
4αβ−1 p

2β
4αβ−1

1 p
− 1

4αβ−1

2 ∧ p2

2
, (9)

In this paper, C denotes a general positive constant. Thus the C here can differ from the constant C
in other places including in Theorem 2.

We first describe a version of Assouad’s Lemma, a standard tool to get the minimax lower bound,
whose proof is in Yu (1997); Tsybakov (2008); van der Vaart (1998). Let Ω = {ω = (ω1, · · · , ωN ) :
ωj ∈ {0, 1}} be the set of binary sequences of length N . Let P = {Pω : ω ∈ Ω} be a set of 2N

distributions indexed by the elements of Ω. Let H(ω, ν) =
∑N

j=1 1ωj 6=νj be the Hamming distance
between ω, ν ∈ Ω.

Lemma 3 (Assouad van der Vaart (1998)) Let P = {Pω : ω ∈ Ω} be a set of distributions
indexed by Ω and let θ(P) be a parameter. For any m > 0 and any metric d,

max
ω∈Ω

2mEω[dm(θ̂, θ(Pω))]

≥N
2

min
H(ω,ν)≥1

dm(θ(Pω), θ(Pν))

H(ω, ν)
· min
H(ω,ν)=1

‖Pω ∧ Pν‖ .
(10)

Here, ‖P ∧Q‖ := λ(p ∧ q) is the affinity (or the total variational distance) of two probability
measures P and Q with density p and q with respect to common dominating measure λ Pollard
(2002).

To establish the minimax lower bound with Lemma 3, we construct a finite collection of normal
distributions with the covariance matrices as a subset of Bα,β , and separately bound the Frobenius
norm and the affinity on this subset. The σstij and σtsji in the covariance matrix represent the sym-
metric elements and have the same value. Therefore, we consider the following class of covariance
matrices where we perturb each pair by a fixed amount τ .

B2 ={Σ(θ) : Σ(θ) = Ip + (θstij τ
1√
n
11≤|i−j|≤k,1≤|s−t|≤l)p×p

∀θstij = θtsji = 0 or 1,∀1 ≤ s, t ≤ p1, 1 ≤ k, l ≤ p2},
(11)
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where the binary θstij indicates whether the (i, j)th element in the (s, t)th sub-block matrix is per-
turbed, and 0 < τ < M . As n → ∞ and for k, l in (9), it is easy to see that B2 ⊂ Bα,β , allowing
us to establish the asymptotic minimax rate. Thus, in terms of Lemma 3, we have θ ∈ Ω = {0, 1}N
with N � klp1p2. Here and in the following, the � denote that the asymptotic order is the same.
That is, ξn � ηn if there exist a positive constant ε such that ε ≤ ξn

ηn
≤ 1

ε . Since any two elements θ
and θ′ in Ω differs in exactly H(θ, θ′) components, we have

∥∥Σ(θ)− Σ(θ′)
∥∥2

F
=
τ2

n

∑
s,t,i,j

|θstij − (θ
′
)stij |2 =

τ2

n
H(θ, θ′) (12)

To bound the affinity, we first relate it to Kullback-Leibler (KL) divergence by the following
Lemma (see Tsybakov (2008) for proof).

Lemma 4 Let KL(P,Q) be the KL divergence between two probability measures P and Q, we
have

‖P ∧Q‖ ≥ 1

2
e−KL(P,Q). (13)

Using this, we have the following lower bound for the affinity (proof in Appendix B).

Lemma 5 Let Pθ ∼ N(0,Σ(θ)) be the joint distribution of i.i.d sample {Xi}ni=1 with Σ(θ) ∈ B2.
Then

min
H(θ,θ′ )=1

∥∥Pθ ∧ Pθ′
∥∥ ≥ C1. (14)

Using Frobenius norm as the metric in Lemma 3 and m = 2, combining equations (12) and (14)
with C = C1τ

2, we get the lower bound on risk.

Theorem 6 The asymptotic minimax risk for estimating the covariance matrix Σ over B2 under
the Frobenius norm satisfies, as n→∞ and for k, l in (9),

inf
Σ̂

sup
B2

E
1

p

∥∥∥Σ̂− Σ
∥∥∥2

F
≥ Ckl

n
, (15)

for some C > 0.

Combining Theorem 2 and Theorem 6, we have the exact optimal minimax risk rate.

Corollary 7 The minimax risk for estimating the covariance matrix Σ under Frobenius norm satis-
fies

inf
Σ̂

sup
Bα,β

E
1

p

∥∥∥Σ̂− Σ
∥∥∥2

F
� n−

(2α−1)(2β−1)
4αβ−1 p

2β−1
4αβ−1

1 p
2α−1
4αβ−1

2 ∧ p
n
. (16)

And this optimal minimax risk rate is achieved by the double tapering estimator.

The tapering in each direction should be adjusted according to the decay rate in that direction
to achieve the optimal rate. The double tapering estimator is then rate optimal over the class Bα,β

when α, β > 1. For the simple case of α = β (the decay rates are the same along the latitude

as along the longitude), the optimal minimax risk rate is O(n
− (2α+1)2

4(α+1)2−1 p
2α+1

4(α+1)2−1 ), which only
depends on the total size of the grid p = p1p2 but not on the specific values of p1 and p2.
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4. Experimental Results

In this section, we study the numerical performance of our estimators. We first apply our method on
synthetic data to demonstrate its performance under various decay rates, feature dimensions and the
sample size. Then, we test it with real data in an application of image compression using principal
component analysis (PCA) and a climate application with statistical downscaling.

4.1. Synthetic Data

The simulation of block bandable covariance matrices is based on the class Bα,β in (1). Specifically,
let the true covariance matrix Σ have the form

σsti,j =

{
M(|i− j|−α ∧ |s− t|−β), i 6= j or s 6= t

2.5, i = j, s = t
(17)

where M = 1, α = β = a. The multivariate Gaussian random data is generated with mean zero
and covariance matrix Σ. The rate of the parameters k and l are decided by the result in equation
(9). Each of the simulation study is based on the average results from 100 replications.

In particular, we are interested in the relative performance of the regularized estimators (banding
and tapering) under the Frobenius norm against the sample covariance matrix. Several factors are
considered in our simulation study including the decay rate (a), dimension (p) and sample size (n).
We focus on the square cases where p1 = p2, thus p = p1p2 = p2

1.

Decay Rate. We consider the decay rate a = 1.1, 1.2, 1.3, 1.4 and 1.5. The error for each setting
is measured by the Frobenius norm of the difference between the (regularized) estimators and the
true covariance matrix. The relative error, i.e. the ratio of the error for regularized estimators with
respect to the sample covariance matrix is considered. Thus, smaller relative error (less than one)
implies better performance than the sample covariance matrix.

Result of this comparison is presented in Figure 3. The sample size is set to be n = 1000,
while the dimension is p = 3600. The red bar corresponds to the sample covariance matrix to itself,
which is always one, while the blue and green bar correspond to the (double) banding and (double)
linear tapering estimators, which reduce the relative error of the sample covariance matrix. Thus,
both the banding and linear tapering estimator significantly improve the performance of the sample
covariance matrix.

Dimension. We now compare cases where p1 = p2 = 10, 20, 30, 40, 50, 60, thus p = 100, 400, ..., 3600.
Result of this comparison is presented in Figure 4. The sample size is set to be n = 1000, while
the decay rate is a = 1.5. The red dashed line corresponds to the sample covariance matrix to
itself, which is one, while the blue and green lines correspond to the banding and linear tapering
estimators respectively. As we can see from the plot, both the banding and linear tapering estimator
improve the performance of the sample covariance matrix more as the dimension increases.

Sample Size. Similar to the previous settings, we consider sample size n ranging from 250 to
3000. Result of this comparison is presented in Figure 4. The dimension is set to be p = 3600,
while the decay rate is a = 1.5. The red dashed line corresponds to the sample covariance matrix
to itself, while the blue and green lines correspond to the banding and linear tapering estimators
respectively, which greatly reduce the relative error of the sample covariance matrix.

A more comprehensive simulation study results are reported in the supplemental materials. The
overall result shows the effectiveness of our double tapering estimator.
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Figure 3: Relative error (w.r.t sample covariance matrix) for the banding and linear tapering esti-
mator. The comparison is against the decay rate a.
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Figure 4: Relative error (w.r.t. sample covariance matrix) for the banding and linear tapering esti-
mators. The comparison is on the left: against the dimension p; on the right: against the
sample size n.

4.2. Application on Image Compression

Image compression aims to reduce the size of the image data in order to store or transmit data
efficiently. Principal component analysis is a classical way to perform dimensionality reduction
and to compress images. In this part, we compare the performance of the image compression and
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Original Images Sample Covariance Tapered Covariance

Figure 5: Examples of the face data set. The three groups (four images each) from left to right: orig-
inal images, the reconstructed images by keeping q = 1000 principal components based
on the sample covariance matrix and based on the double tapered covariance matrix.

reconstruction results using principal component analysis (PCA) based on the sample covariance
matrix versus the results using PCA based on the proposed double tapered covariance estimator.

As an example, we consider the Olivetti face data3 which contains 400 face images of 40 persons
and each image is of size 64 by 64. We use 40% of the dataset for training, and the rest 60% dataset
for testing.

In the training period, we estimate the mean of the features and the principal subspace spanned
by the top q principal components based on the training data. For the proposed double tapering
estimator, the parameters k = 85 and l = 9 are chosen via five-fold cross-validation within the
training data. In the testing period, we compressed the testing images by projecting the data onto the
trained principal subspace. The compressed images are then reconstructed with the top q principal
components and the feature mean. The reconstruction error is based on the Frobenius norm between
the reconstructed images and the true testing images.

The left four plots of Figure 5 shows four example original images. The reconstructed images
based on sample covariance matrix and the double tapered covariance matrix are presented respec-
tively in the middle four plots and the right four plots of Figure 5 under the same compression ratio,
i.e. keeping the same number (q = 1000) of principal components. By keeping the same amount
of information, our proposed method reconstructs clearer images compared with using the sample
covariance matrix. This is confirmed with the reconstruction error plot in Figure 6.

4.3. Application on Climate Data

In this part, we apply our proposed spatial covariance estimation in a real climate task, i.e. statistical
downscaling (Benestad et al., 2008, 2015). It is generally believed that the Global Climate Models

3. This dataset contains a set of face images taken at AT&T Laboratories Cambridge, which is available via the following
link scikit− learn.org/stable/datasets/olivetti faces.html
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Figure 6: Reconstruction error on the testing set as a function of the number of principal component
kept. The double tapered covariance matrix leads to lower reconstruction error compared
with the sample covariance matrix.

(GCMs) provide coarse resolution outputs which preclude their application to accurately assess the
effects of climate change on finer regional scale events. Statistical downscaling are methods that
use statistical models to infer the local-scale climate information from coarsely resolved climate
models. Figure 7 is a typical example of the data for this climate application.

In this experiment, we consider the reanalysis monthly mean temperature data from the National
Oceanic & Atmospheric Administration (NOAA) 4 as the coarse resolution data, which includes
grid points from the world atlas, while the finer resolution temperature data is from the University
of Idaho Gridded Surface Meteorological Data (UofI METDATA) 5, which contain the data of
contiguous united states.

We use the common time range, years 1979-2013, from the two data sets for training and test-
ing. We choose years 1979-2008 data as the training set, and years 2009-2013 as the testing set.
We normalize the data by removing the historical long range mean for each month. The spatial
covariance matrix is obtained by the sample covariance between each grid point. Moreover, the
double-tappered spatial covariance can be derived based on previous discussion. Since the features
can be highly correlated in this task, we apply hierarchical clustering method to cluster the data and
using the center of each cluster as the derived features for the benchmark predictive model (10-fold
cross-validated LASSO). As we can see from Figure 8 and 9, result shows that the predict perfor-
mance (testing MSE) based on the double-tappered spatial covariance matrix is better than the one
with the sample covariance for both season-wise and overall comparison.

4. https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
5. http://metdata.northwestknowledge.net/
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Figure 7: Example of the statistical downscaling task. Left: the climate variable (monthly mean
temperature in Kelvin) with a coarse resolution at a single time point (Jan. 2009). Right:
the target climate variable with a relatively finer resolution. The goal of statistical down-
scaling is to learn the target climate variable in finer resolution based on the historical
data of the fine and coarse resolution climate data (red is larger and black is smaller).

Figure 8: Downscaling result of the target climate variable in the testing set. The intensity (red is
larger and black is smaller) is the average MSE in each grid point.

5. Conclusions

With the large amount of spatial data becoming available, high-dimensional spatial covariance ma-
trix estimation is becoming more important for data analysis. Here we provide the first minimax
rate optimality results of tapering estimators in this high-dimensional setting. To represent the spa-
tial structure, we propose the block bandable matrices structure to incorporate spatial information.
Accordingly, a double tapering estimator is proposed and is shown to achieve the optimal minimax
rate over a class of block bandable covariance matrices. Numerical study confirms the performance
of the proposed estimator.

Appendix A. Proof of Theorem 2

Let Xm = (X
(1)
m , · · · , X(p)

m )>, m = 1, 2, · · · , n. It is easy to see that σ̃stij , the (i, j)th element of
the (s, t)th sub-matrix corresponds to the (i∗, j∗)th element of the global matrix Σ̃, where i∗(s, i) =

(s− 1)p1 + i and j∗(t, j) = (t− 1)p2 + j. Therefore, we have σ̃stij = 1
n

∑n
m=1X

(i∗(s,i))
m X

(j∗(t,j))
m .

In the rest of the proof, we will write i∗(s, i) and j∗(t, j) more compactly as i∗ and j∗ if their
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Figure 9: Testing MSE across four seasons: DJF (December, January, February), MAM (March,
April, May), JJA (June, July, August), SON (September, October, November). The over-
all MSE is also presented.

meaning is clear from the text. Now we have Eσ̃stij = σstij , and V ar(σ̃stij ) = 1
nV ar(X

(i∗)
m X

(j∗)
m ) ≤

1
nE[(X

(i∗)
m X

(j∗)
m )2] ≤ 1

n

√
E(X

(i∗)
m )4

√
E(X

(j∗)
m )4 ≤ C

n .
For the two-step definition of (2) in the original text, denote the coefficient (weight) of σ̃ij

inside the sub-block matrix in the first step as W = {wstij}, while denote the weight in the second
step among sub-block matrices by V = {vstij}. Then we have Σ̂ = V ◦ W ◦ Σ̃, where ◦ is the
Hadamard product. Thus for the tapering estimator in (2) in the original text, the bias of σ̂stij is
(1 − vstijwstij )σstij and the variance of σ̂stij is (vstijw

st
ij )

2V ar(σ̃stij ). Using the bound on the variance
above, we have the element-wise risk bound

E(σ̂stij − σstij )2 = E(vstijw
st
ij σ̃

st
ij − σstij )2 ≤ (1− vstijwstij )2(σstij )

2 + (vstijw
st
ij )

2C

n
. (18)

Apply this element-wise risk bound with Lemma 1, we get

1

p
E
∥∥∥Σ̂− Σ

∥∥∥2

F
≤ 1

p

∑
1≤s,t≤p1

∑
1≤i,j≤p2

[(1− vstijwstij )2(σstij )
2 + (vstijw

st
ij )

2C

n
]

Note that when both |i − j| < k
2 and |s − t| < l

2 , (1 − vstijw
st
ij )

2(σstij )
2 = 0 which can be

dropped. Otherwise, it can be upper bounded by (σstij )
2. Likewise, when either |i − j| > k or

|s − t| > l, (vstijw
st
ij )

2C
n = 0. Otherwise, it can be upper bounded by C

n . Taken together, the
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above expression can be upper bounded by the sum of R1 = 1
p

∑
|s−t|≤l

∑
|i−j|≤k

C
n and R∗ =

1
p

∑
|s−t|≥ l

2
or |i−j|≥ k

2
(σstij )

2. Furthermore, the second term R∗ ≤ R2 +R3 +R4 where

R2 =
1

p

∑
|s−t|< l

2

∑
|i−j|≥ k

2

(σstij )
2, R3 =

1

p

∑
|s−t|≥ l

2

∑
|i−j|< k

2

(σstij )
2, R4 =

1

p

∑
|s−t|≥ l

2

∑
|i−j|≥ k

2

(σstij )
2.

Then we have

R1 =
1

p

∑
|s−t|≤l

∑
|i−j|≤k

C

n
≤ 1

p
Clp1kp2

1

n
= C

kl

n

R2 =
1

p

∑
|s−t|< l

2

∑
|i−j|≥ k

2

(σstij )
2 ≤ C

p
lp1p2

1

k2α−1
= Clk−2α+1

Similarly, we have R3 ≤ Ckl−2β+1. Moreover,

R4 =
1

p

∑
|s−t|≥ l

2

∑
|i−j|≥ k

2

(σstij )
2 ≤ 1

p
C[p(p1 −

l

2
)k−2α+1 ∧ p(p2 −

k

2
)l−2β+1]

Summing over R1, R2, R3 and R4, the above inequalities imply that for some constant C > 0,

E
1

p

∥∥∥Σ̂− Σ
∥∥∥2

F
≤ Ckl

n
+ C[

l

2
k−2α+1 +

k

2
l−2β+1 + (p1 −

l

2
)k−2α+1 + (p2 −

k

2
)l−2β+1]

= C(
kl

n
+ p1k

−2α+1 + p2l
−2β+1)

≤ Cn−
(2α−1)(2β−1)

4αβ−1 p
2β−1
4αβ−1

1 p
2α−1
4αβ−1

2 .

(19)

In the last step, the optimal k and l is chosen to make all three terms in the second to last expression
to be of the same order. That is,

k∗ = n
2β−1
4αβ−1 p

2β
4αβ−1

1 p
− 1

4αβ−1

2 , l∗ = n
2α−1
4αβ−1 p

− 1
4αβ−1

1 p
2α

4αβ−1

2 (20)

In the case of k∗ > p2 and l∗ > p1, we take k = p2 and l = p1. Thus

E
1

p

∥∥∥Σ̂− Σ
∥∥∥2

F
≤ C p

n
. (21)

The equations (19) and (21) provides the upper bound in Theorem 2.

Appendix B. Proof of Lemma 5

Using the Lemma 4, we only need to bound from above the KL divergence between two perturba-
tions of the distributions within the class.

KL(Pθ,Pθ′ ) = n[
1

2
Tr(Σ(θ

′
)Σ−1(θ))− 1

2
log det(Σ(θ

′
)Σ−1(θ))− p

2
] (22)

Let ∆ = Σ(θ
′
)− Σ(θ). Then, we have

221



LI DING DY

Tr(Σ(θ
′
)Σ−1(θ))− p = Tr(∆Σ−1(θ)). (23)

Let the eigenvalues of ∆Σ−1(θ) be {λi}pi=1. Note that the eigenvalues of Ip + ∆Σ−1(θ) are
1 + λis, and with Taylor expansion we have

log det(Σ(θ
′
)Σ−1(θ)) = log det(I + ∆Σ−1(θ)) = Tr(∆Σ−1(θ))− r0, (24)

with r0 ≤ C0
∑p

i=1 λ
2
i for some constant C0.

Using (23) and (24), the trace term cancels in (22), and we have KL(Pθ,Pθ′ ) ≤ nr0/2. Since
‖∆‖2F is of order 1/n, KL(Pθ,Pθ′ ) is bounded by a positive constant C. Then (13) implies
minH(θ,θ′ )=1

∥∥Pθ ∧ Pθ′
∥∥ ≥ C1, for some constant C1 = 0.5e−C > 0.
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