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Abstract

Entity analysis in natural language processing involves solving multiple structured predic-
tion problems such as mention detection, coreference resolution, and entity linking. We
explore the space of search-based learning approaches to solve the problem of multi-task
structured prediction (MTSP) in the context of entity analysis. In this paper, we study
three different search architectures to solve MTSP problems that make different tradeoffs
between speed and accuracy of training and inference. In all three architectures, we learn
one or more scoring functions that employ both intra-task and inter-task features. In the
“pipeline” architecture, which is the fastest, we solve different tasks one after another in
a pipelined fashion. In the “joint” architecture, which is the most expensive, we formu-
late MTSP as a single-task structured prediction, and search the joint space of multi-task
structured outputs. To improve the speed of joint architecture, we introduce two different
pruning methods and associated learning techniques. In the intermediate “cyclic” architec-
ture, we cycle through the tasks multiple times in sequence until there is no performance
improvement. Results on two benchmark domains show that the joint architecture im-
proves over the pipeline approach as well as the previous state-of-the-art approach based
on graphical models. The cyclic architecture is faster than the joint approach and achieves
competitive performance.

Keywords: Structured Prediction, Natural Language Processing, Learning for Search

1. Introduction

Many problems in AI including natural language processing (NLP) and computer vision
require solving multiple related structured prediction tasks. Entity Analysis is one of the
key steps in NLP and includes multiple subtasks such as detecting the mentions, clustering
them to corefering sets, linking them to entities, and identifying their semantic roles. Each
task requires jointly assigning values to multiple inter-dependent output variables.

In multi-task structured prediction (MTSP), we learn a single joint scoring function to
evaluate candidate outputs of all tasks. The scoring function includes inter-task and intra-
task features and is trained with the goal of scoring the correct outputs of all tasks higher
than all alternatives. Learning the scoring function involves adjusting its weights to make
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it consistent with the training data. Given such a scoring function, the inference task is to
generate the outputs for all tasks that maximizes the joint scoring function. By viewing
MTSP problem through the lens of AI search, we design learning algorithms and heuristics
to search the space of solutions to find the best scoring output.

Two different architectures for MTSP present themselves as natural candidates. One is
a “pipeline” architecture, where the different tasks are solved one after another in sequence.
Each task in the pipeline adds more information that is used by the following tasks. While
it has the advantages of simplicity and reduced search space, as we will see, the pipeline
architecture is too sensitive to the task order and is prone to error propagation.

The second natural candidate is a “joint” architecture, where we treat the MTSP prob-
lem as a single task and search the joint space of multi-task structured outputs. Although it
offers an elegant unified framework, the joint architecture poses multiple challenges. First,
the branching factor of the joint search space increases in proportion to the number of tasks,
making the search too expensive. To address this problem and make the training process
more efficient, we learn a pruning function that prunes bad candidate solutions from the
search space. Second, it is also important to initiate the search from a good starting solu-
tion to reduce the effective depth of the search. We do this by training an i.i.d. classifier
to predict each output separately. Given a good initializer, it may only be necessary to
correct a few mistakes, which reduces the effective search depth. Third, even with reduced
branching factors and depth, exhaustive search is impractical. Following many other works,
we employ best first beam search, which is space efficient.

Finally, we introduce a third search architecture referred as “cyclic,” whose complex-
ity is intermediate between the above two architectures. The different tasks are done in a
sequence, but repeated in the same order as long as the performance as indicated by the
current task’s scoring function improves. The cyclic architecture has the advantage of not
increasing the branching factor of the search beyond that of a single task, while offering
some error tolerance and robustness with respect to task order. We make the following
contributions in this paper. First, we establish the viability of search-based multi-task
structured prediction for entity analysis by jointly solving named entity recognition, coref-
erence, and entity linking tasks on multiple benchmark datasets, namely ACE 2005 (25)
and TAC-KBP 2015 (17). Second, we show that the joint approach not only outperforms
the pipeline approach with all task orders, but also the prior state-of-the-art approach based
on graphical models. Third, we develop and evaluate new search space pruning approaches.
The score-agnostic pruning method, which prunes the search space before learning the
scoring function, reduces the inference time by about half with negligible loss in accuracy.
The score-sensitive pruning approach learns a pruning function after the scoring function
has been learned and improves the accuracy further. Finally, we show that the cyclic ar-
chitecture offers competitive performance compared to the joint architecture at a reduced
computational cost even relative to the pruning-based approaches.

2. Related Work

Prior work on structured prediction mostly considers single tasks. There are many frame-
works to solve structured prediction problems with varying strengths and weaknesses. They
include generalization of standard classification approaches such as conditional random field
(CRF) (19), structured SVM (SSVM) (32), and structured perceptron, which require a good
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inference algorithm to make predictions; and search-based approaches that learn different
forms of search control knowledge such as greedy policies (9; 29), heuristic functions (8; 35),
heuristic and cost functions (11; 20), and coarse-to-fine knowledge (34).

There is some work on jointly solving two structured prediction tasks (7; 14; 15; 22), but
very little work on jointly learning and reasoning with three or more tasks (31; 13). There
are graphical modeling approaches that learn a global scoring function in the framework
of CRFs or Structured SVMs (14; 10; 31; 13). Indeed, our work is inspired by the work
of (13) which employed graphical models and approximate inference via belief propagation
for integrating multiple NLP subtasks for joint entity analysis. Integer linear programming
(ILP) (30) formulation and inference is another potential approach, and has shown a lot
of success in practice (10; 5). But it faces severe efficiency issue due to the large number
of variables and constraints from multiple tasks. Also, the ILP formulation leads one to
use optimized blackbox ILP engines, where learning new search control knowledge, e.g., the
pruning rules in our approach, is difficult.

In this paper, we address the problem of joint inference and learning through the frame-
work of search-based structured prediction, which combines the benefits of structured SVM
and AI search, and has found success in multiple applications (8; 35; 9; 11). Some ap-
proaches learn a scoring function to guide beam search in the space of partial structured
outputs (incremental prediction approach) (7; 2; 16). In contrast, we perform search in the
space of complete structured outputs (12) and use good initialization to improve the accu-
racy of learning and inference. Our formulation also allows us to optimize non-decomposable
loss functions. Additionally, we also handle latent variables, which do not appear in the
supervised output, but nevertheless indirectly determine the output. One example of latent
variables are the coreference links between a mention and a single previous (parent) mention
that it co-refers. While there are many potential parents for a mention, they are not usually
provided in the supervised output, but are extremely useful.

3. Problem Setup

Multi-Task Structured Prediction. We consider the problem of multi-task structured
prediction (MTSP), where the goal is to predict the structured outputs of k (k > 1) related
tasks, y = (y1, y2, · · · , yk), for a given structured input x. Without loss of generality,
assume that the structured output for a task t, yt consists of T output variables: yt =
(yt1, y

t
2, . . . , y

t
T ), and each output variable ytj can take values from a candidate set C(ytj) of

size d. We are provided with a training set of input-output pairs {(x, y∗)}, where x is a
structured input and y∗ = (y1∗, y2∗, · · · , yk∗) is the correct multi-task structured output.
The goal is to learn a function/predictor that can accurately map structured inputs to
multi-task structured outputs.

Single task structured prediction problems are traditionally formulated as learning a
linear scoring function of a joint feature vector Φ over an input and candidate output pair
x, y so that for any input x, the correct output y∗ has the highest score over all possible
y’s. We generalize this to multi-task structured prediction, where Φ now consists of both
intra-task and inter-task features, which respectively encode the dependencies between the
output variables of a single task and different tasks.

MTSP for Entity Analysis. In this paper, we consider entity analysis which consists of
several related NLP tasks in recognizing and mapping noun phrases, also called mentions,
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to entities in a knowledge base (KB). In particular, these include named entity recognition
(NER), coreference resolution (CR), and entity linking (EL). NER refers to tagging named
entities with their semantic types, while CR and EL respectively refer to clustering corefer-
ant mentions and linking them to the corresponding KB entries (26; 17; 27). The strong
interdependence between these tasks can be seen in the following example:

“He left [Columbia] in 1983, ... after graduating from [Columbia University ], he
worked as a community organizer in Chicago ...”

In this example, while it is difficult to identify the meanings of the first instance of [Columbia]
in isolation, it is straightforward to infer it from the second mention, once we have co-
reference information between the mentions, which follows from their proximity. In general,
the three tasks can benefit by mutually constraining each other, a fact that has been estab-
lished in prior work through joint graphical modeling (13).

To simplify the entity analysis problem and make it easier to compare to prior work,
we assume the availability of extracted mentions for each document and all three tasks are
applied to the same sequence of mentions as input. The output of the three tasks has the
same size, which equals to the number of mentions. Note that our framework allows to
include mention extraction as another task, although it significantly increases the size of
the multi-task output space.

Given a document x that consists of T mentions m1, m2, ...,mT in the textual order,
we use yc to denote the coreference resolution output, yn to denote the named entity typing
output, and yl to denote the linking output. The entity analysis output can be written
as y = (yc, yn, yl). For each sub-structure output yt, the interpretation of decision on a
mention mi, denoted by yti , is as follows:

• Coreference decision yci ∈ {1 . . . i} represents an antecedent mention index j ≤ i where
mi is coreferent to mj . When j = i, mi starts a new singleton cluster. Thus, each
coreference output forms a left-linking tree. Note that the left-linking tree is not
unique for a given coreference clustering.

• Entity Typing decision yni ∈ T is a semantic tag assigned to mi (T is a constant set).

• Entity Linking decision yli is a knowledge base entry e, from a heuristically generated
candidate set.1

In MTSP, we seek to learn an output scoring function S(x, y) which takes the form
S(x, y) = w ·Φ(x, y). The joint input-output feature vector Φ(x, y) can be decomposed into
two groups: intra-task features, and inter-task features:

Φ(x, y) = Φ1(x, y1) ◦ · · · ◦ Φk(x, yk)︸ ︷︷ ︸
intra-task features

◦ · · · ◦ Φ(ti,tj)(x, yti , ytj ) ◦ · · ·︸ ︷︷ ︸
1st-order inter-task features

◦ · · ·︸︷︷︸
higher-order features

(1)

where Φt(x, yt) denotes intra-task features for the tth task, Φ(ti,tj)(x, yti , ytj ) denotes the
first-order inter-task features for tasks ti and tj , and ◦ stands for concatenation of features.
Note that we can easily add higher-order inter-task features as needed.

1. In some datasets, we also employ a slightly different definition yli = (q, e), where the query q is a sub-span
of mi, and e is the KB entry that can be retrieved using q as keyword. A value (q, e) of yli is correct
if e = e∗i . Since there could be more than one q that can link to the same e, under this definition, yl∗

would also be non-unique.
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For our entity analysis problem, we employ c, n, and l to represent coreference, NER
typing, and linking tasks respectively. For the intra-task group, we aggregate the feature
vectors for individual tasks: Φc(x, yc) ◦ Φn(x, yn) ◦ Φl(x, yl). For the inter-task group, we
only employ the first-order inter-task features, and aggregate the feature vectors for all task
pairs: Φ(c,n)(x, yc, yn) ◦ Φ(c,l)(x, yc, yl) ◦ Φ(n,l)(x, yn, yl).

4. Search-based Learning Algorithms for MTSP

In this section, we present three different search architectures, pipeline, joint, and cyclic,
with varying speed and accuracy tradeoffs for solving MTSP problems. We first describe
the details of structured SVM training and search-based inference that is common to all
three approaches, and subsequently, explain the three architectures.

4.1. Structured SVM Training and Search-based Inference

The key idea is to learn a function to score the candidate outputs generated by beam search.
We employ SSVM approach for learning the scoring function due to its robustness (18). The
main advantages of search-based inference and training over graphical model approach are:
1) enable the injection of procedural knowledge through the design of appropriate search
space; 2) delink the complexity of features from the computational complexity of inference;
and 3) let the user control the time for inference based on the application needs.

Algorithm 1 Structured SVM Training
Input: D, training examples,
Φ(x, y), joint feature function
Output: w, the scoring function weights

1: Initialization: active constraint set A← ∅
2: repeat
3: w ← batch optimization with constraints A
4: for each training example (x, y∗) ∈ D do
5: ŷ ← Beam-Search-Inference(x,w)
6: if ŷ 6= y∗ then
7: Add constraint w · Φ(x, y∗) > w · Φ(x, ŷ) to A
8: end if
9: end for

10: until convergence
11: return weights of the scoring function w

4.1.1 Structured SVM Training.
Structured SVMs are a generalization
of SVMs for standard classification.
They learn a scoring function of the
form w · Φ(x, y) in order to rank
the correct output y∗ above exponen-
tially many alternative candidate out-
puts y ∈ Y (x) \ y∗ for a training input
x. SSVM employs the iterative cutting
plane algorithm to efficiently solve this
optimization problem. The key idea is
to maintain a small set of active con-
straints A for tractability. It performs
the following two steps in each itera-
tion: 1) Solves the optimization prob-
lem with constraints A; and 2) Adds a most violated constraint for each training example to
A. The training algorithm stops when no more constraints can be added to A. To compute
the most violated constraint for a training input x, we need to search the space of candidate
outputs Y (x) to find the best scoring output ŷ. We employ beam search for this task.

Latent SSVM. Some MTSP problems have hidden structure which is not apparent in
the inputs and outputs, and may be represented by the latent variables h. For example,
in coreference resolution task, h corresponds to the left-linking tree, which represents, for
each mention, one of the previous mentions that belongs to the same cluster. Latent SSVM
(36) extends SSVM for training with hidden variables using the Concave-Convex Procedure
(CCCP). The key idea is to use the current weights to perform a maximization over hidden
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variables (say h∗) and use h∗ as the ground truth for training via SSVM training. These
two steps are repeated for some fixed number of iterations or until convergence.

4.1.2 Search-based Inference. Our beam search inference procedure consists of the
following components: 1) Search space; 2) Beam width b; and 3) Number of search steps.
The beam search is guided by a scoring function of the form w · Φ(x, y) until it reaches a
locally optimal state with output ŷ (see the supplementary material for pseudo-code).

Search Space. Each state in our search space is a partial (for pipeline approach) or
complete (for joint and cyclic approaches) multi-task structured output. The successor
function Succ generates a successor state by executing an action a(i, j, z), which indicates
changing ith slot of parent output y of task j to a new value z, where z 6= yji , z ∈ C(yji ),
and retaining the values of all other output variables unchanged. For both pipeline and
cyclic architectures, we only consider changes to the output variables of a single task until
it is finished (task j is fixed). On the other hand, for joint architecture, we consider changes
to all output variables of all tasks at every step, which results in a large branching factor.

We design a simple, but effective search space to reduce the depth at which target
outputs can be found. To bootstrap the search, we initialize the search with the output
obtained from predictions of the i.i.d classifiers r1, r2, . . . , rk for the k structured predic-
tion tasks learned using only the unary features. The initial search state I(x) is equal to
y0 = (r1(x), r2(x), . . . , rk(x)). Intuitively, we expect that starting from the output of i.i.d
classifiers will only need a small number of corrections to reach the target output.

Beam Search Procedure. The beam is initialized with I(x), the output from i.i.d clas-
sifiers. Each search step picks the best node in the beam according to the scoring function
(selection), generates all its successors by calling Succ function (expansion), and updates
the beam with the top-b scoring nodes in the candidate set (pruning), where b is the beam
width. The search continues until the maximum number of steps or a local optima is reached.
Beam search is a tradeoff between greedy (b = 1) and pure best-first search (b = ∞) and
maintains tractability in terms of time and space to produce high scoring outputs.

4.2. Pipeline Architecture

The pipeline architecture requires an ordering over all the k tasks. Suppose Π denotes an
ordering over all the tasks, where Π(i) denotes the ith task in the order.

Model. We learn one model Mi (weight vector) to predict the output variables for task
Π(i) in a sequential manner.

Making Predictions. Given an input x and learned models (M1,M2, · · · ,Mk), we predict
the multi-task structured output as follows. Run beam search guided by M1 to predict ŷ1.
For predicting ŷi+1, we use the context of predictions ŷ1, ŷ2, · · · , ŷi, and perform beam
search guided by Mi+1 in the search space of candidate outputs for task Π(i+ 1).

Learning. We train the models M1,M2, · · · ,Mk sequentially as in stacking (6) and forward
training. Model M1 is trained such that for each training input x, the score of the ground
truth output y∗1 is higher than all other candidate outputs. We train model Mi+1 condi-
tioned on the outputs of the learned models M1,M2, · · · ,Mi with no sharing of parameters.
Specifically, for each training input x, the score of ŷ1, ŷ2, · · · , ŷi, y∗i+1 is higher than the
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score of ŷ1, ŷ2, · · · , ŷi, yi+1, where yi+1 is any wrong output for Π(i + 1), and ŷ1, ŷ2, · · · , ŷi
correspond to the predictions of M1,M2, · · · ,Mi.

The training and inference in the pipeline architecture is very fast. However, it suffers
from two drawbacks that can be detrimental to overall accuracy: 1) its sensitivity to the
the task ordering Π, and 2) its susceptibility to error propagation.

4.3. Joint Architecture

In the joint architecture, we learn a single model (weight vector) to score a given structured
input x and candidate multi-task structured output y = (y1, y2, · · · , yk) pair. Given an
input x and the learned model, we predict the multi-task output by performing beam search
in the joint search space. Learning is performed similarly to the single-task structured
prediction.

Motivation for Pruning. Our formulation of beam search for MTSP problems in joint
architecture suffers from a large branching factor, which is equal to the total number of
output variables times the number of candidate values. Specifically, the number of successors
or branching factor is O(kTd), where k is the number of tasks, T is the number of output
variables, and d is the average size of candidate value set C(yji ). For our entity analysis

problem, k = 3 and T is the number of mentions. The size of the candidate value set |C(yji )|
is generally small for entity typing (number of tags) and entity linking (number of candidate
entries extracted from KB), but it is very large for coreference resolution (all antecedent
mentions: O(T )). For example, some large documents typically contain 300 mentions with
a branching factor larger than 9000 for all tasks combined. We address this problem by
learning pruning functions to create sparse search spaces.

Pruning Mechanism. The pruning method considers all candidate label changing actions
A(I) available at the initial search state and selects the top-scoring α |A(I)| actions Ap using
a learned pruning function P , where α ∈ [0, 1] is a pruning parameter. Only actions from
Ap will be used throughout the search process. This reduces the branching factor from
|A(I)| to α |A(I)|, and can significantly improve the speed of inference for small values of
α. The key challenge is to learn an effective pruning function that prunes all but α fraction
of the actions, while still retaining near-optimal solutions in its space.

Learning Choices. We can learn pruning function in two different ways. 1) Score-
agnostic: First learn pruning function P to create a sparse search space and then learn
a scoring function using the sparse search space created by the learned P . This approach
will speed up both training and test-time inference. 2) Score-sensitive: First learn the
scoring function over complete search space and then learn a pruning function to retain or
improve the accuracy of search with the learned scoring function. The second approach will
only improve the speed of test-time inference. However, it might improve the accuracy over
the complete search by pruning nodes where the scoring function is inaccurate.

Pruning Function Learning. We formulate pruning function learning as a rank learning
problem. This allows us to leverage powerful off-the-shelf rank learning algorithms. Given
the actions A(I) available at the initial search state, we consider any label changing action
a ∈ A(I) that improves the accuracy over the initial output as a good action; otherwise,
it is a bad action. We assume the availability of a feature function Ψ over state-action
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pairs. We define Ψ as the difference between the features of child state and parent state:
Ψ(a) = Φ(x, ychld)− Φ(x, yprnt). We study the following two pruning approaches.

1. Score-Agnostic Pruning: We represent a bipartite ranking example in the form
(Q > Q′), which means that in the list Q∪Q′, every element in Q should be ranked higher
than every element in Q′. In the first iteration, we collect one bipartite ranking example of
actions from each MTSP training example: (GOOD(I) > BAD(I)), where GOOD(I) and
BAD(I) refer to the set of good and bad actions from A(I) respectively. The aggregate set
of ranking examples R is given to a rank learner to induce a pruning function P . Then a
scoring function is trained in the sparse space defined by Ap.

In subsequent iterations, we collect additional ranking examples based on the mistakes
of the current P on each MTSP training example. Define A−p = A(I) \ Ap, and M =
GOOD(I) ∩ A−p . We consider a ranking result of A(I) as a mistake if M 6= ∅. Once there
is a mistake, we collect a new bipartite ranking example: (M > bottom |M | bad actions
in Ap), and then add it to R. The rationale is that we need to get the good actions in M
into Ap, and we can do this with minimal pair swapping by pushing the worst-scoring bad
actions out of Ap. The pruning function P is re-learned using the updated R.

2. Score-Sensitive Pruning: In this case, we give the weights of the scoring function
learned in the complete search space as input to the pruning function learner. As before, the
pruning function is learned iteratively. Suppose Pi is the learned pruning function at the end
of iteration i. For input example x, we use ŷi to denote the prediction of search guided by
the learned scoring function in the sparse search space created by Api−1 , and Mi ⊆ A(I) be
the set of actions corresponding to mistakes (incorrect outputs) in ŷi. The key idea behind
learning is to keep the actions in

⋃i
j=1Mj outside Ap to improve the accuracy of search

with scoring function. We initialize P0 to a random scoring function. In each iteration i,
we initialize ranking example set R = ∅. Let M ′i =

⋃i
j=1Mj . For each MTSP training

example, if Mi 6= ∅, we create one bipartite ranking example as follows. To the actions
in GOOD(I) we add the top few actions in BAD(I) \M ′i according to Pi−1 to get a set
GOOD′ which is no larger than Api−1 . We then add the example GOOD′ > M ′i to R. The
pruning function Pi is learned using ranking examples R at the end of iteration i.

4.4. Cyclic Architecture

The cyclic architecture lies in between pipeline and joint architectures in terms of the overall
complexity. It retains the efficiency of pipeline architecture by focusing on one task at a
time, but tries to avoid its weaknesses of dependence on task order and error propagation
by cycling through the tasks mutiple times.

Model. We learn one model Mi (weight vector) to predict the output variables for task
Π(i) in a sequential manner.

Making Predictions. Given an input x and learned model (M1,M2, · · · ,Mk), we predict
the multi-task structured output as follows. We initialize the output of all k tasks using i.i.d
classifiers (say y(0)). We perform sequential inference using the models until convergence
(multi-task output does not change in two consecutive cycles) or for maximum number of
cycles. In each cycle, we make predictions for tasks in the same order as Π via beam search
using the most recent predictions for all other tasks as context.
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Learning. We train the models M1,M2, · · · ,Mk sequentially as in the pipeline architecture
with two differences: 1) The model for each task is trained conditioned on the most recent
model (or i.i.d classifier) for all the other tasks; and 2) The training process is repeated for
a fixed number of cycles to further improve the models. The number of training cycles are
determined based on the performance on development data.

We explored two different versions of the cyclic architectures. In one, there is a single
set of shared weights for all tasks. In the second, each task has its own set of weights even
for shared inter-task features. While sharing weights could improve statistical efficiency, it
also results in reduced expressiveness which is sometimes detrimental to accuracy.

5. Experiments and Results
We evaluate our approach on two annotated datasets, ACE 2005 corpus (25) and TAC-KBP
2015 Entity Linking corpus (17), on three entity analysis tasks: named entity recognition,
coreference resolution, and entity linking. For both corpora, we first report the results of
learning and inference using the complete search spaces, and show that we can achieve
comparable or better performance than state-of-the-art approaches. Next, we present the
results for pruned and cyclic architectures to show the improvements in speed and accuracy.

5.1. Experimental Setup

Datasets. ACE 2005 corpus contains 599 English documents. We follow the same setting
as (13) to make a train/dev/test split of 338/144/117, so that all the results are comparable.
The original ACE 2005 has included the gold annotation for coreference and NE types, but
does not contain the entity linking annotation. In order to do entity linking model training
and evaluation, we add ACE-to-Wiki annotation (1) to the corpus. Therefore, the linking
task on ACE 2005 will use Wikipedia as the KB. TAC-KBP 2015 Entity Linking corpus is
released for TAC-KBP 2015 Tri-lingual Entity Discovery and Linking (TEDL) task (17).

Evaluation Metrics. The ACE 2005 evaluation follows the standard metrics for each
task. Coreference results are evaluated using MUC, B3, CEAFe, and the average of these
three metrics called the CoNLL metric (26). We employed the official CoNLL scorer to
compute scores. For NER typing, results are scored using Hamming accuracy. We evaluate
the entity linking result on overall accuracy, which is just the percentage of mentions that
are linked correctly. Note that for entity linking in ACE 2005, only the proper and nominal
mentions will be considered because ACE-to-Wiki annotation does not include pronouns.

Following the TAC-KBP EL evaluation procedure (17), the metrics for scoring typing
and linking are the same as ACE 2005. Additionally, the competition also computes a
score called NERLC, where a decision is scored correct if both the mention’s type and its
linked KB ID are correct. The clustering is evaluated by cross document CEAFm (23). We
also report the within document coreference scores using the same metrics as ACE 2005
(25). Note that the TAC competition not only requires the system to link each mention
to its correct KB ID entry when it exists, but also to cluster the NIL mentions (mentions
without links) according to their coreferent similarities. We employ a simple rule-based
agglomerative clustering approach similar to the Stanford multi-sieve system to perform
NIL clustering (21). All the reported scores are computed through the official scoring
script. For all the three tasks, we assume that the gold mention boundaries are given.

System Implementation Details. Our entity analysis system is developed based on
Berkeley-Entity-Resolution system (13). We replace the learning and inference components
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with our search-based structured prediction approach. For the experiments on ACE 2005,
documents are preprocessed using OpenNLP-tokenizer and Berkeley-Parser. For TAC-KBP
2015 corpus, we employ StanfordCoreNLP pipeline to do all the pre-processing.

We employ Illinois-SL (3) structured learning library for latent SSVM training with
maximum number of CCCP iterations set to 10. The scoring function is trained to optimize
the Hamming loss. For named entity typing and entity linking, the Hamming loss is simply
the classification error over all mentions, while for coreference, we compute the Hamming
loss using the proportion of mentions with the wrong left-linked antecedent (i.e. inconsistent
with the ground truth clustering). For pruning function learning, we employed XGBoost (4)
library to learn boosted regression trees with pairwise ranking loss as our training objective.
The learning algorithm for pruning is run for 5 iterations. All hyper-parameters are tuned
using the development data.

Before running our system for entity linking, two prerequisite models need to be pre-
pared. First is the scored lookup table µ : q → E for candidate generation. Our system
assumes that the candidate KB entries of mentions are generated before doing the joint
learning or inference. Our candidate generation system takes a mention span sm as input,
generates a query set Q(sm) by taking its substrings or expansions, probes µ for each q ∈ Q
to get scored candidate entity set Eq, and finally, returns top-L scored candidates among⋃

QEq. The score of each query-entity pair, denoted by g(q, e), is the weighted sum of
number of times the map q → e appeared in titles and hyperlinks in the entire KB. Besides
candidate generation, our TAC linking feature also requires mention and entity embeddings
for computing similarity. Similar to the Alignment by Anchor model of (33), we learn word,
mention and entity embeddings by applying the skip-gram model (24) to the training set
created from the English Wikipdia corpus after modifying them by adding the anchor text
and anchor entity to the words in the sentences.
Features. Recall that the joint feature vector in Equation 1 consists of the intra-task and
inter-task features. This can be further decomposed as follows:

Φ(x, y) = Φc(x, yc) ◦ Φn(x, yn) ◦ Φl(x, yl) ◦
∑
i

φ(c,n)(mi,mj , y
n
i , y

n
j ) ◦∑

i

φ(c,l)(mi,mj , y
l
i, y

l
j) ◦

∑
i

φ(n,l)(mi, y
n
i , y

l
i), where j = yci (2)

where φ(t,t′) is the inter-task feature extracted from a mention or a coreferent mention pair
and its corresponding predictions of tasks t and t′. The sums are vector sums over all
mentions mi, and since all mention pair interactions are confined to left links, j = yci .

For ACE 2005 corpus, we follow the same feature design as the Berkeley system (13) for
both intra and inter task features. We define φc(m

′,m) as the intra-coreference features over
mention pair, and φn(m, τ) and φl(m, e) as unary intra NER and linking features between
mention m and its corresponding tag and KB entry. Since we treat a query-entry pair (q, e)
as one value in our formulation, φl(mi, e) is just the concatenation of the feature vector over
(mi, q) and the vector over (q, e) in the Berkeley system.

For TAC-KBP 2015 corpus, we employ the same features as ACE 2005 for φc, φn, and
φ(n,c). For linking, we drop the query variable, and instead use a learned embedding space to
compute the cosine similarity between a mention and a KB entry, and employ this distance
as one of the features. We re-design features φl, φ(c,l), and φ(n,l) as follows:
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• φl(mi, e) includes CandidateGenScore and CosineSimilarity which represent sim-
ilarity scores between mi and e computed using a heuristic function or through the
mention-entity embedding; ExactMatch, SubString, and SameInitial which cap-
ture surface similarities; and HashDescrip, HasType, and HasWebsites that indicate
how informative e is;

• φ(c,l)(mi,mj , y
l
i, y

l
j) includes SameKBID, SameFreebaseType, and SharedRelatedWebsite

which use the properties of linked KB entry of each mention to measure the coreference
consistency between mi and mj .

• φ(n,l)(mi, y
n
i , y

l
i) includes NerFreebaseTypePair and NerFreebaseParentTypePair,

which model a weighted soft map from the assigned Freebase type and its parent type
in Freebase type system of mention mi to the NER types.

Hyper-parameters. In scoring function learning, the C parameter in the latent SSVM
model was tuned using the average hamming accuracy over all tasks on the development
set, and was set to be 0.0001 for both corpora, and fixed in all the experiments. In pruning
function learning with XGBoost, we set the maximum tree depth to be 20, and maximum
boosting iterations to be 500. The pruning parameter α was selected based on the perfor-
mance on development set.

5.2. Beam Size Analysis

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92

 1  5  10  20  40  60

O
ve

ra
ll 

H
am

m
in

g 
A

cc
ur

ac
y

Beam Size

ACE05 and TAC15 Dev Set

ACE05-Good-Init
ACE05-Rand-Init
TAC15-Good-Init
TAC15-Rand-Init

Figure 1: ACE 2005 and TAC-KBP 2015 Dev Set
Performance with different beam sizes.

We considered candidate beam widths b
from {1, 5, 10, 20, 40, 60}. We performed
experiments over development set of the
two datasets in the complete search space
with different b values. Results in Figure 1
show that larger beam size is useful in over-
coming the local optima challenge, but im-
provement becomes small when b is larger
than 20. We conservatively fixed b = 40
for all our experiments and other hyper-
parameters are tuned accordingly.

5.3. Results for Single-Task Structured Prediction and Pipeline Architecture
One simple approach to handle multi-task structured prediction problems is to perform
stacked training and inference, where the output of one task is fed as input to provide
context for solving the next task in the pipeline (6; 28). However, the pipeline approach
requires an ordering of the tasks, which may be hard to fix without significant domain
knowledge. Therefore, we considered all possible orderings over the tasks (6 for 3 tasks) in
our experiments. We refer to the three tasks as CR, NER, and EL. All the results above
will also be compared with the single-task structured prediction (STSP) approach, where
each task is solved independently.

Table 1 shows the results of the pipeline approach with different task orderings and the
STSP approach. We can make two observations. First, the performance of the tasks is
better when they are placed later in the ordering. It is especially true for NER and EL
tasks. This shows that dependencies between tasks exist and can be leveraged to improve the
performance. Second, there is no ordering that allows the pipeline approach to reach peak
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ACE 2005 Test TAC-KBP 2015 Test
Algorithms Coref. NER Link NER Link NERLC w.in Coref.

STSP 75.04 82.24 75.35 87.30 76.20 70.90 81.21

CL→NER→EL 75.04 83.41 77.15 87.90 76.10 71.22 81.21
CL→EL→NER 75.04 85.27 74.64 86.80 75.70 70.71 81.21
NER→CL→EL 76.20 82.24 77.23 87.30 76.50 71.33 82.47
NER→EL→CL 76.50 82.24 76.77 87.30 74.90 69.96 82.62
EL→NER→CL 76.66 84.77 75.35 87.10 76.20 71.01 81.38
EL→CL→NER 76.08 85.08 75.35 88.20 76.20 71.89 79.89

Table 1: ACE 2005 and TAC 2015 Test Set Performance with different pipeline orderings.

performance on all the three tasks. This is due to the inherent limitations of the pipeline
approach: mistakes in earlier tasks can hurt the performance of downstream tasks, and the
architecture does not allow to revisit/correct predictions based on additional evidence(s).
These observations corroborate that a more global learning/inference approach may do
better than both pipeline and STSP approaches.

5.4. Results for Joint Architecture without Pruning

In this section, we report the results of our entity analysis system with beam search in the
complete search space. Tests using the paired bootstrap resampling approach indicate that
the performance differences we observe are statistically significant in all three tasks.

Algorithm Coreference NER Link Train
MUC BCube CEAFe CoNLL Accu. Accu. time

Berkeley 81.41 74.70 72.93 76.35 85.60 76.78 31min

a. Results of Joint Architecture without Pruning

STSP 80.28 73.26 71.58 75.04 82.24 75.36 9min
Joint w. Rand Init 80.23 73.79 72.03 75.35 82.20 76.99 48min
Joint w. Good init 82.18 76.57 74.00 77.58 85.71 78.77 34min

b. Results of Joint Architecture with Pruning

Score-agnostic 81.10 75.79 74.33 77.07 85.63 78.71 16min
Score-sensitive 82.81 75.77 74.96 77.85 87.18 80.28 37min

c. Results of Cyclic Architecture

Unshrd-Wt-Cyclic 81.83 76.05 73.99 77.29 84.18 80.67 11min
Shared-Wt-Cyclic 80.97 75.22 73.39 76.53 82.16 79.60 10min

Table 2: ACE 2005 Test Set Performance.

Table 2.a shows the performance on ACE 2005 testing set for all 3 tasks. Berkeley (13)
is our baseline result. STSP is the result without using inter-task features. Joint-Rand-Init
and Joint-Good-Init are the results of joint search-based architecture with random ini-
tial state and the output of STSP respectively. We can draw three conclusions from this
table. First, the difference between STSP and Joint-Good-Init shows that exploiting the
interdependency between the tasks, which is captured by inter-task features, does benefit
the system performance on all tasks. Second, we can see that Joint-Good-Init signif-
icantly outperforms Joint-Rand-Init, which shows that search-based inference for large
structured prediction problems suffers from local optima and is mitigated by a good ini-
tialization. Finally, our search-based MTSP predictor is competitive or better than the
state-of-the-art system for entity analysis.

2. corresponds to NERC metric in the official report.
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Algm. NER2 Link NERLC Within. Coref Crs.Crf Trn.
Accu. Accu. Accu. MUC BCub CEAFe CoNLL CEAFm time

Rank-1st 87.0 - 73.7 - - - - 80.0 -
Berkeley 88.90 74.80 72.80 86.02 83.66 79.27 82.98 80.8 6m29s

a. Results of Joint Architecture without Pruning

STSP 87.30 76.20 70.90 84.29 82.04 77.30 81.21 78.8 2m41s
Joint Rnd. Ini 87.10 71.17 68.33 84.34 82.14 77.45 81.31 78.4 7m19s
Joint Gd. Ini 89.72 76.98 74.43 85.87 83.48 79.05 82.80 81.3 6m11s

b. Results of Joint Architecture with Pruning

Score-agnostic 89.54 76.84 74.31 85.57 84.04 79.38 82.99 81.4 4m15s
Score-sensitive 89.33 77.68 74.63 86.08 84.20 79.22 83.17 81.3 9m2s

c. Results of Cyclic Architecture

Ushrd-Wt-Cyc 89.57 77.68 74.60 84.97 83.08 78.18 82.08 80.5 3m52s
Shard-Wt-Cyc 87.95 73.65 71.32 82.67 81.09 77.86 80.54 77.9 2m56s

Table 3: TAC-KBP 2015 EL Test Set Performance.

Table 3.a presents our results on TAC-KBP 2015. In this table, we add one more baseline
Rank-1st (17), which is the best performing system in TAC-KBP 2015 EL competition.
The NERLC is the official joint metric of entity linking and NER typing performance, and
CEAFm is the official metric for clustering (17). Again, our joint system outperforms both
baselines by at least 1%, and the results show the same trend as ACE 2005. If we compare
the difference between the Link and NERLC, we can see that, STSP loses 6% accuracy from
Link to NERLC, while both joint runs only drop less than 2% accuracy. These differences
show the importance of the joint architecture and the inter-task features.

5.5. Results for Joint Architecture with Pruning
In this section, we report the results of our entity analysis system with beam search in the
pruned search space.

Table 2.b and 3.b show a comparison of test results with and without pruning for both
corpora. Score-Agnostic corresponds to the result of learning the pruning function before
learning the scoring function. Score-Sensitive is the result of learning the pruning func-
tion based on the scoring function. By comparing these tables with Table 3, we can see that
Score-Agnostic achieved a competitive performance with Joint-Good-Init in about half
the training time. Furthermore, Score-Sensitive has outperformed Joint-Good-Init,
which shows that a score-sensitive pruner could correct mistakes of the scoring function,
and bring potential accuracy improvements.

Score-agnostic Pruning. Table 4 is a study of how the accuracy and training time
would change with respect to the pruning parameter when a pruner is learned before the
scoring function. As the table shows, when α becomes larger, the development set perfor-
mance gradually recovers to the level of no-pruning performance, while the training time
increases gradually. The performance loss with small α is mainly caused by the recall loss
during the pruning.

Score-sensitive Pruning. Table 5 shows the results of applying the pruner learned
with different α’s after the cost function was learned on the development sets. As α in-
creases, the performance of the three tasks goes up to a maximum, and then slowly goes
down. On ACE 2005 and TAC 2015, these optimal points are reached at α = 0.6 and
α = 0.7 respectively. By carefully adjusting α, the pruner would become tuned to the
scoring function, and improves performance.
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Prn. ACE05 Dev TAC15 Dev
α Hamm. Trn.Tm Hamm. Trn.Tm

0.3 86.53 11m 75.21 2m11s
0.5 90.83 16m 77.27 3m08s
0.7 90.80 22m 80.60 4m15s
0.9 90.67 29m 80.40 5m44s

1 90.58 34m 80.47 6m11s

Table 4: ACE 2005 and TAC 2015 Dev Set accuracy
w.r.t. α with score-agnostic pruning func-
tion. α starts from 0.3 because this pruning
learning requires α|A(I)| > |GOOD(I)| on
average over training set.

Prn. ACE05 Dev TAC15 Dev
α Hamm. Tst.Tm Hamm. Tst.Tm

0.1 81.61 45s 75.61 31s
0.3 87.29 1m17s 78.33 48s
0.5 89.15 1m58s 79.79 1m02s
0.6 90.80 2m10s 80.51 1m15s
0.7 90.78 2m17s 80.83 1m41s
0.9 90.62 2m25s 80.66 1m55s

1 90.58 2m44s 80.47 2m05s

Table 5: ACE 2005 and TAC 2015 Dev Set accu-
racy w.r.t. α with score-sensitive pruning.

5.6. Results for Cyclic Architecture

Table 2.c and 3.c show a comparison of test results of the two cyclic training approaches
on both corpora. Unshared-Wt-Cyclic and Shared-Wt-Cyclic correspond to the cyclic
training method with 3 different task-specific weight vectors and with one single weight
vector, respectively. We tune the parameters (training cycles and task ordering) according
to the overall hamming accuracy on development set.

Unshared-Wt-Cyclic can reach a comparable performance to Joint-Good-Init on
coreference and linking, but is slightly weaker on NER. Shared-Wt-Cyclic performs worse
than Unshared-Wt-Cyclic, especially on NER. Importantly, both cyclic architectures have
a big advantage in training time, even compared to the joint architecture with pruning. In
each task of each cycle, they only perform training and inference on a single task, which is
of similar time complexity to STSP. The search in STSP is faster than joint architecture
due to reduced branching factor as well as search depth.

ACE 2005 Dev Set

Cycle task Unshared-Wt-Cyclic Shared-Wt-Cyclic
orderings Coref. NER Link Coref. NER Link

CL→NER→EL 76.63 84.24 80.06 72.01 82.94 77.30
CL→EL→NER 76.66 84.54 80.01 73.20 84.87 76.17
NER→CL→EL 77.14 84.32 79.93 75.89 83.45 77.29
NER→EL→CL 77.20 84.14 80.00 74.95 83.03 72.39
EL→NER→CL 76.64 84.16 80.21 75.24 84.18 75.21
EL→CL→NER 77.19 84.32 80.08 76.08 84.16 73.43

Figure 2: Unshared-Wt-Cyclic and Shared-Wt-Cyclic performance on
ACE 2005 Dev w.r.t. task orderings.

As can be seen in Ta-
ble 2, Shared-Wt-Cyclic
does not perform as well
as Unshared-Wt-Cyclic.
This is because when
the different tasks share
one weight vector, the
inter-task features of the
weights are updated in
two different task stages
in each cycle. When the
optimal weights for each task are slightly different from the other task, the latter task over-
writes the former task’s learned weights, and vice versa, thus undermining each other. As
a result, only the last task in the ordering can fully exploit the inter-task features.

To verify our hypothesis, we present the ACE05 dev scores of the two algorithms in
table 2. Each row corresponds to one task ordering. It is easy to observe that compared to
Unshared-Wt-Cyclic, in Shared-Wt-Cyclic columns only the last tasks perform relatively
well, while the first task can only reach a score slightly better than the initialization.

In our cyclic approach, there is no need to restrict the testing cycle number to be exactly
the same with the the training cycle number. To determine the proper number of testing
cycle number, we did a study in which we plotted the testing accuracy on dev set with
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different test cycles using the current cyclic model. Our study shows that for both datasets,
and in all task orderings, the best accuracy can be reached after 3 to 4 cycles, and is stable
afterward. In testing, since there is no disadvantage for increasing the number of cycles, we
can do as many cycles as there is time for. We stopped the cycles once more than 95% of
the predicted outputs did not change in the last two cycles.
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Figure 3: Hamming accuracy on ACE05 (l) and TAC15 (r) Dev w.r.t. Unshred-Wt-Cyc training cycles.

In Figure 3 we present the overall hamming accuracy w.r.t. the number of training cycles
for Unshared-Wt-Cyclic. The accuracy at the 0th cycle is computed from initial outputs.
The figure shows that, for both datasets, our cyclic training approach can continuously
improve the accuracy in the first 2 to 4 cycles, regardless of task ordering. However, unlike
during the testing phase, too many training cycles could lead to overfitting. We selected
the best number of training cycles using the development set performance.

6. Summary

We studied the problem of multi-task structured prediction (MTSP) in the context of entity
analysis of natural language text. We developed a search-based learning framework, where
we employed structured SVM for training and beam search for inference. To improve the
efficiency of training and test-time inference, we learned pruning functions to create sparse
search spaces. Our joint search architecture improves on both accuracy and speed over the
state-of-the-art graphical modeling approach. We also explored a cyclic architecture which
is highly efficient and is competitive with the joint search.
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