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Abstract
Bayesian optimization (BO) is a sample-efficient method for global optimization of expensive,
noisy, black-box functions using probabilistic methods. The performance of a BO method depends
on its selection strategy through the acquisition function. Expected improvement (EI) is one of
the most widely used acquisition functions for BO that finds the expectation of the improvement
function over the incumbent. The incumbent is usually selected as the best-observed value so far,
termed as ymax (for the maximizing problem). Recent work has studied the convergence rate for
EI under some mild assumptions or zero noise of observations. Especially, the work of Wang and
de Freitas (2014) has derived the sublinear regret for EI under a stochastic noise. However, due to
the difficulty in stochastic noise setting and to make the convergent proof feasible, they use an al-
ternative choice for the incumbent as the maximum of the Gaussian process predictive mean, µmax.
This modification makes the algorithm computationally inefficient because it requires an additional
global optimization step to estimate µmax that is costly and may be inaccurate. To address this
issue, we derive a sublinear convergence rate for EI using the commonly used ymax. Moreover, our
analysis is the first to study a stopping criteria for EI to prevent unnecessary evaluations. Our anal-
ysis complements the results of Wang and de Freitas (2014) to theoretically cover two incumbent
settings for EI. Finally, we demonstrate empirically that EI using ymax is both more computationally
efficiency and more accurate than EI using µmax.

1. Introduction

Global optimization is fundamental to diverse real-world problems where parameter settings and
design choices are pivotal - as an example, in algorithm hyper-parameter tuning (Nguyen et al.,
2017) or engineering design (Frazier and Wang, 2016; Rana et al., 2017)). In particular, these al-
gorithms and designs can be viewed as an optimization problem of a black-box objective function.
Here, the input of the black-box are the hyper-parameters, and the objective function value is the
output performance such as accuracy. This requires us to optimize a non-convex objective function
using sequential and noisy observations. Critically, the objective functions are unknown and expen-
sive to evaluate. The challenge is to find the maximum of such expensive objective functions in few
sequential queries, thus minimizing time and cost.

Bayesian optimization (BO) has become a popular choice for improving the performance of
machine learning algorithms and laboratory experiments (Brochu et al., 2010; Snoek et al., 2012;
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Dai Nguyen et al., 2016; Shahriari et al., 2016; Li et al., 2017). BO finds a solution of an expensive
black-box function x∗ = argmax f (x)

x∈X
by making a series of evaluations x1, ...,xT of f . Fundamen-

tally, BO builds and sequentially updates a surrogate model, typically through a Gaussian process
(GP) (Rasmussen, 2006). Then, given the GP posterior update, BO defines a decision function -
known as the acquisition function - to select a next experimental setting.

Although many acquisition functions have been proposed (e.g. Hennig and Schuler (2012);
Hernández-Lobato et al. (2014); Srinivas et al. (2010)), the expected improvement (EI) (Mockus
et al., 1978; Jones et al., 1998)is considered as one of the most popular acquisition function for
Bayesian optimization and remains the default choice in BO packages, such as Spearmint (Snoek
et al., 2012). EI balances the exploration and exploitation by taking the expectation of the improve-
ment function over the incumbent ξ , i.e. E [max{0, f (x)−ξ}]. The incumbent ξ is often set to the

best-observed value up to an iteration t, i.e. ξ = ymax = maxyi∈Dt−1 yi (Brochu et al., 2010; Snoek
et al., 2012) where Dt =

{
xi ∈ Rd ,yi ∈ R

}t
i=1 is the observation set including the feature xi and the

outcome yi = f (xi)+ εi given f (.) which is the black-box function.
Theoretical analyses for the expected improvement (EI) have been studied in recent work under

some mild conditions (Vazquez and Bect, 2010; Bull, 2011; Ryzhov, 2016). Since Bayesian op-
timization needs to accommodate the noise measurement that EI also needs to be able cope with.
Theoretical analysis of EI for the noisy setting is notably studied in (Wang and de Freitas, 2014).
However, due to the difficulty in stochastic setting and to make the proof feasible, instead of choos-
ing the standard ξ = ymax, (Wang and de Freitas, 2014) uses the alternative choice of the incumbent
as the maximum of the GP predictive mean ξ = µmax = maxx∈X µt−1 (x) to derive the convergence
bound. Due to this modification, the Bayesian optimization algorithm needs an additional step of
global optimization to estimate µmax in Rd . As a result, the computational cost of the whole BO
process increases. In addition, the estimation of global optimization is not always accurate espe-
cially for high dimension problems. This computational cost and inaccuracy in the incumbent µmax

can degrade the efficiency of the EI and Bayesian optimization as a whole.
Moreover, none of the existing work considers the stopping criteria for EI. Stopping criteria is

critical in Bayesian optimization to control when to stop the search. This is because BO algorithm
is often run and terminated after a finite number of iterations in practice. However, this stopping
condition is not theoretically studied in the literature (Lorenz et al., 2015). A possible stopping
criteria can be set as the maximum possible value of the black-box function if we know it in advance.
For example in optimizing the hyper-parameter for a machine learning algorithm to get the highest
F1-score, a simple stopping criteria is when the F1-score reaches to 1. However, this maximum
possible value of F1-score is never reachable due to the imperfection of the learning algorithm and
the given data. Hence, the Bayesian optimization may waste time and resource for evaluations even
after it visits the best location. Thus, BO needs a principle criteria to stop the search.

To address these gaps, we consider the original version of EI that uses the best-observed func-
tion value ymax. Allowing noisy observations, we prove the sublinear convergence rate of BO using
EI over ymax. In addition, we are the first to present and connect the stopping criteria for BO using
EI into the regret. We show the convergence rate which is sublinear in the number of iteration T .
Therefore, our analysis is complementary to (Wang and de Freitas, 2014). Finally, we empiri-
cally show that our EI (using ymax) is more efficient in computational time and accuracy than the
µmax counterpart in (Wang and de Freitas, 2014) because our EI version gets rid of the additional
optimization step of estimating µmax.
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Algorithm 1 Bayesian optimization using expected improvement (EI) with stopping condition.
Input: Max iteration T , a stopping criteria κ (a small positive constant, e.g., 10−9)

1: Initialize the data D0
2: for t = 1 to T and αEI

t−1 (xt−1) = max∀x∈X αEI
t−1 (x)≥ κ do

3: Fit a GP to compute the predictive mean µt−1(.) and variance σt−1(.) from the data Dt−1.

4: Original setting (Mockus et al., 1978) using the best-observed value: ξ = max yi,∀yi ∈Dt−1.
This step is obtained from Dt−1 without performing optimization.

5: Alternative setting (Wang and de Freitas, 2014) using maximum GP predictive mean: ξ =
argmaxx∈X µt−1(x). This step requires to perform a global optimization in Rd .

6: Define αEI
t (x) = σt−1 (x)φ (z)+ [µt−1 (x)−ξ ]Φ(z) where z(x) = µt−1(x)−ξ

σt−1(x)
.

7: Optimize xt = argmaxx∈X αEI
t (x)

8: Evaluate the function yt = f (xt) and augment the data Dt = Dt−1∪ (xt ,yt)
9: end for
Output: xmax,ymax

2. Bayesian Optimization

Our goal is solving the global optimization problem x∗ = argmax f (x)
x∈X

. Bayesian optimization is

one approach to solve the above optimization problem by making a series of evaluations x1, ...,xT

of f such that the maximum of f is found in the fewest iterations (Shahriari et al., 2016). Bayesian
optimization reasons about f by building a surrogate model through evaluations, typically a Gaus-
sian process (Rasmussen, 2006). This flexible distribution allows us to associate a normally dis-
tributed random variable at every point in the continuous input space. Formally, a GP is given by
f (x) ∼ GP(m(x) ,k (x,x′)), where m(x) is the mean, and k (x,x′) contains the covariance of any
two observations. A popular choice for the covariance function is the squared exponential function:

k (x,x′) = σ2
f exp

[
−(x−x′)2

2l2

]
where l is the length scale and σ2

f is the output variance. The length
scale defines the “region of influence” of a point within the parameter space that the influence of
an observation decreases as one considers points farther away from this observation. We get the
predictive distribution for a new observation p( fN+1 | X1:N ,y1:N ,xN+1) that also follows a Gaussian
distribution (Rasmussen, 2006) - its mean and variance are given by:

µ (xN+1) = k∗K−1y σ
2 (xN+1) = k∗∗−k∗K−1kT

∗

where the covariance matrices are defined as the following k∗ = [k(x1,x∗),k(x2,x∗), ...,k(xN ,x∗)],
K = [k(xi,x j)]∀xi,x j∈Dt

and k∗∗ = k(xN+1,xN+1).

Acquisition function. As the original function is expensive to evaluate, the acquisition func-
tion acts as a surrogate that determines which point should be selected next. Therefore, instead
of maximizing the original function f , we maximize the acquisition function to select the next point
xt+1 = argmaxx∈X αt (x). In particular, the acquisition function takes into account the mean and
variance of the GP predictions. The decision represents an automatic trade-off between exploration
(where the objective function is very uncertain) and exploitation (where the objective function is
expected to be high). This exploration-exploitation trade-off has the nice property that it aims to
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minimize the number of objective function evaluations. Moreover, it is likely to do well even in
settings where the objective function has multiple local maxima (Brochu et al., 2010). Unlike the
original objective function f (x), the acquisition function α (x) can be cheaply sampled. Therefore,
we can utilize some standard optimization packages.

3. Expected Improvement for Bayesian Optimization

Although many acquisition functions have been proposed, the expected improvement (EI) is con-
sidered as one of the most popular acquisition function for Bayesian optimization and remains the
default choice in BO packages, such as Spearmint (Snoek et al., 2012). In particular, EI consid-
ers the expectation over the improvement function. The improvement function is defined over the
incumbent ξ as It (x) = max{0, f (x)−ξ} where ξ = ymax

t−1 = maxyi∈Dt−1 yi is the maximum in the
observation set.

Let us denote by z = zt−1(x) =
µt−1(x)−ymax

t−1
σt−1(x)

, we obtain the closed-form acquisition function by
taking the expectation over the improvement function as E [It (x)] (refer to Appendix A for the
derivation). Thus, this strategy is called expected improvement,

α
EI
t (x) = E [It (x)] = σt−1 (x)φ (z)+

[
µt−1 (x)− ymax

t−1
]

Φ(z) (1)

where φ is the standard normal p.d.f. and Φ is the c.d.f. When σt (x) = 0, we set αEI(x) = 0.
We define the function zt−1 (x) =

µt−1(x)−ymax
t−1

σt−1(x)
and the function τ (z) = zΦ(z)+ φ (z) where Φ

and φ are the c.d.f. and the p.d.f. of the standard normal distribution.

Lemma 1 The acquisition function of EI can be expressed as αEI
t (x) = σt−1 (x)τ (zt−1 (x)) and

αEI
t (x) ≤ τ (zt−1 (x)) where τ (z) = zΦ(z)+φ (z) with Φ and φ are the c.d.f. and the p.d.f. of the

standard normal distribution.

Proof Given zt−1 (x) =
µt−1(x)−ymax

t−1
σt−1(x)

, from Eq. (1) we have αEI
t (x) = σt−1 (x) [z×Φ(z)+φ (z)] =

σt−1 (x)τ (zt−1(x)) . In addition, σt−1 (x)≤ 1, then αEI
t (x)≤ τ (zt−1 (x)).

3.1. Existing Convergence Analysis for Expected Improvement

The convergence property of EI has been studied in recent work. (Vazquez and Bect, 2010) provides
the convergent property of EI by assuming some mild assumptions on the mean and covariance func-
tions that the EI strategy produces a dense sequence of evaluation points in the search domain. How-
ever, these assumptions may not always hold. (Ryzhov, 2016) characterizes the asymptotic rates of
EI for a finite decision space (e.g., the case of multi-arm bandit). The work of (Bull, 2011) considers
a global optimization problem with a continuous, d-dimensional decision space, and derives a con-
vergence rate of O

(
T−

1
d

)
. However, this work assumes zero noise for the outcomes and may not

be applicable to practical scenario where observations always have measurement noises. Recently,
(Wang and de Freitas, 2014) extends the work of (Bull, 2011) to stochastic objective functions with
noise. However, due to the difficulty in stochastic setting and to make the proof feasible, instead of
choosing ξ = ymax, they use the alternative choice of the incumbent as ξ = µmax = maxx∈X µt−1 (x)
to derive the convergence bound. Due to this modification, the Bayesian optimization algorithm
needs to use an additional global optimization step to estimate µmax in Rd . As a result, the compu-
tational cost of the whole BO process (unnecessarily) increases. In addition, the estimation of global
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optimization is not always accurate, especially in high dimensions. This computational cost and in-
accurate incumbent µmax can degrade the efficiency of EI strategy and the Bayesian optimization in
general. Moreover, none of the existing work has considered the stopping criteria for EI.

3.2. Stopping Criteria for Expected Improvement

In Bayesian optimization, although the theoretical analysis assumes the number of iteration goes
to infinity T → ∞, we always run a finite number of iterations in practice. Thus, there should be
a stopping point where to terminate the search, such as when there is no more promising locations
to visit. Such stopping criteria is essential because each evaluation in Bayesian optimization comes
at a cost. Despite of its importance, this stopping criteria is not well studied in the literature for
Bayesian optimization. In this section, we consider the stopping criteria for Expected improvement
strategy. This stopping condition is later integrated into our derivation of the cumulative regret.

The acquisition function value at the selected point αEI(xt) = maxx∈X α(x) encodes the maxi-
mum improvement that the BO can make. Because EI is a function of the variance and the improve-
ment quantity (encoded by σ and τ in Lem. 1), the value of EI tends to decrease w.r.t. iterations (cf.
Fig. 1 for the trend). Therefore, we can stop the algorithm to prevent from unnecessary evaluations
when the maximum amount of improvement is smaller than a threshold κ .

Lemma 2 The value of the EI acquisition function at the selected point should be positive for a
valid optimization, i.e. ∀xt ∈ Dt ,α

EI
t (xt) ≥ κ > 0 where κ is a small positive constant. If this

condition is violated, the optimization should be stopped.

Proof Using Lem. 1 and the fact that σ(x) ≥ 0 and τ(.) ≥ 0, we have ∀x ∈X ,αEI (x) ≥ 0. In
addition, we select a point by maximizing the acquisition function as xt = argmax

x∈X

αEI
t (x). Thus, the

value of the selected point should be positive αEI
t (xt)> 0. As a result, there exists a small positive

constant κ such that ∀xt ∈Dt ,α
EI
t (xt)≥ κ > 0.

Lem. 2 prevents BO from selecting the sub-optimal locations where the maximum amount of
improvement is less than a user-defined threshold αEI(xt)< κ . Based on this condition, we also have
the predictive variance at the selected points positive ∀xt ∈Dt ,σt−1 (xt)≥ κ

τ(.) > 0 which means that
the selected location is informative to explore. We note that this stopping criteria is specific for the
EI that may not directly be applicable to other acquisition functions.

4. Convergence Rate for EI over the Best-Observed Value with Stopping Condition

Our general goal in Bayesian optimization is to maximize the rewards. Equivalently, we could also
minimize the (cumulative) regret. Similar to (Srinivas et al., 2010; Wang and de Freitas, 2014), we
use the regret to measure the convergence. We consider the case with noisy output, i.e., yt = f (xt)+
εt and assume that the noise process εt is sub-Gaussian, and that the black-box function f is smooth
according to the reproducing kernel Hilbert space (RKHS) associated with a GP kernel k(). Let the
global maximum point be x∗= argmax

x∈X

f (x) and our choice at iteration t be xt . The cumulative regret

RT after iteration T is the sum of the instantaneous regrets: RT = ∑
T
t=1 rt where rt = f (x∗)− f (xt).

We are going to derive that RT grows almost at a sublinear rate, i.e. limT→∞
RT
T = 0.

We follow (Srinivas et al., 2010) to define the maximum information gain in the following.
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Definition 3 Given A = {x1, ···,xT} ⊂ X, let fA = { f (xi)}, yA = fA + εA and I be the mutual infor-
mation. The maximum information gain after T iterations is defined as γT = maxA∈X ,|A|=T I(yA; fA).

We now present the main theorem of the paper that provides the sublinear cumulative regret for EI
using best-found value ymax as the incumbent.

Theorem 4 Let κ > 0 be a pre-defined small constant as a stopping criteria, γT ∼O
(
(logT )d+1

)
be the maximum information gain for the squared exponential kernel, σ2 be the measurement noise
variance, C , log

[ 1
2πκ2

]
, βT = 2|| f ||2k + 300γT log3 (T

δ

)
and δ ∈ (0,1). Then with probability at

least 1−δ , the cumulative regret of EI, using best-found value ymax = maxyi∈Dt yi as the incumbent,

obeys the following sublinear rate RT >
√

T βT γT ∼ O(

√
T × (logT )d+4.

For clarity in the notation, we denote the noise variance as σ2 s.t. εt ∼N
(
0,σ2

)
and the predictive

variance as σ2
t (x). Without loss of generality, we assume k (x,x) = 1.

Lemma 5 (Theorem 6 of (Srinivas et al., 2010)) Let δ ∈ (0,1) and assume that the noise variables
εt are uniformly bounded by σ . Define βt = 2|| f ||2k +300γt ln3 ( t

δ

)
, then

p
(
∀t,∀x ∈X , |µt (x)− f (x)| ≤

√
βtσt (x)

)
≥ 1−δ

Lemma 6 The improvement function It (x) = max
{

0, f (x)− ymax
t−1

}
and the acquisition function

αEI
t (x) = E [It (x)] satisfy the inequality such that It (x)−

√
βtσt−1 (x)≤ αEI

t (x) .

Proof If σt−1 (x) = 0 then α (x) = It (x) = 0 which makes the result trivial. We now assume that
σt−1 (x)> 0. We set q =

f (x)−ymax
t−1

σt−1(x)
and z = µt−1(x)−ymax

t−1
σt−1(x)

. Using Lem. 1 and Lem. 5, we then express
the acquisition function as follows

α
EI
t (x)≥ σt−1 (x)τ

(
q−
√

βt

)
≥ σt−1 (x)

(
q−
√

βt

)
byτ (z)≥ z

If It (x) = 0, the result is trivial. Thus, we can assume It (x)> 0 and conclude the proof

α
EI
t (x)≥ It (x)−

√
βtσt−1 (x) .

Using the results of (Srinivas et al., 2010), we have the maximum information gain for common
kernels, such as γT ∈O

(
(logT )d+1

)
for the SE kernel, γT ∈O

(
(logT )d

)
for linear kernel. Lemma

5.4 of (Srinivas et al., 2010) has provided the bound of the variance of the selected points with γT .
However, we can generalize for any arbitrary set of points (not just for selected points xt) because
the maximum information gain γT quantifies the maximum possible information gain achievable by
sampling T points in a GP with kernel function k(.) (Srinivas et al., 2010; Krause and Ong, 2011).
Therefore, we have the following lemma.

Lemma 7 The sum of the predictive variances is bounded by the maximum information gain γT .
That is ∀x ∈X ,∑T

t=1 σ2
t−1 (x)≤ 2

log(1+σ−2)
γT .
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Proof Using the fundamental inequality of logarithm x
log(1+x) ≥ 1, we have 1

σ2 log(1+σ−2)
≥ 1. Since

s2

log(1+s2)
≤ 1

σ2 log(1+σ−2)
for s2 ∈

[
0,σ−2

]
and σ−2σ2

t−1 (x)≤ σ−2 since σ2
t−1 (x)≤ k (x,,x) = 1.

∀x ∈X ,
T

∑
t=1

σ
2
t−1 (x) =

T

∑
t=1

σ
2

σ
−2

σ
2
t−1 (x)︸ ︷︷ ︸
s2

≤
T

∑
t=1

σ
2

[
log
(
1+ s2

)
σ2 log(1+σ−2)

]

=
2

log(1+σ−2)

1
2

T

∑
t=1

log
(
1+σ

−2
σ

2
t−1 (x)

)
=

2
log(1+σ−2)

I ( f ;yA)≤
2

log(1+σ−2)
γT

where the last equation utilizes the property that I ( f ;yA) =
1
2 ∑

T
t=1 log

[
1+σ−2σt−1 (x)

]
.

Lemma 8 Let κ > 0 be a pre-defined stopping threshold on the acquisition function αEI
t−1 (x), if

ymax
t−1 −µt−1 (xt)> 0, we have ymax

t−1 −µt−1 (xt)≤ σt−1 (xt)
√

C where C , log
[ 1

2πκ2

]
.

Proof Let us define a constant C , log
[ 1

2πκ2

]
≥ 0. By using Lem. 2, we write

κ ≤ σt−1 (xt)τ (zt−1(xt)) . (2)

Using the lemma assumption of µt−1 (xt)− ymax
t−1 ≤ 0, we get τ (zt−1(xt))≤ φ (zt−1(xt)) by utilizing

the property of the τ function that τ (z)≤ φ (z) ,∀z < 0. It means

κ ≤ σt−1 (xt)
1√
2π

exp
[
−1

2
z2

t−1(xt)

]
√

2πκ

σt−1 (xt)
≤ exp

[
−1

2
z2

t−1(xt)

]
.

Taking the logarithm both sides, we obtain z2
t−1(xt)≤ 2log σt−1(xt)√

2πκ
and thus

0≤ z2
t−1(xt) =

[
µt−1 (xt)− ymax

t−1

σt−1 (xt)

]2

≤ log

[
σ2

t−1 (xt)

2πκ2

]
≤ log

[
1

2πκ2

]
.

In addition, using the lemma condition that ymax
t−1 −µt−1 (xt)> 0, we conclude the proof

ymax
t−1 −µt−1 (xt)≤ σt−1 (xt)

√
C.

We next bound the function τ (−z(x)) which is later used to prove the main theorem.

Lemma 9 Let κ > 0 be a pre-defined stopping criteria, zt−1 (x) =
µt−1(x)−ymax

t−1
σt−1(x)

and τ (z) = zΦ(z)+

φ (z), we have τ (−zt−1(xt))≤ 1+
√

C where C , log
[ 1

2πκ2

]
.
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Proof The property of τ (z) depends on the sign of z. Thus, we consider two cases of ymax
t−1 −

µt−1 (xt)> 0 and ymax
t−1 −µt−1 (xt)≤ 0, respectively. We denote a constant C , log

[ 1
2πκ2

]
.

Case 1: For the first case we assume ymax
t−1 −µt−1 (xt)> 0. Thus, we can utilize the property of

τ (z)≤ 1+ z,∀z≥ 0 and write

τ (−zt−1(xt))≤ 1+
ymax

t−1 −µt−1 (xt)

σt−1 (xt)
≤ 1+

√
C by Lem. 8

Case 2: For the second case we assume ymax
t−1−µt−1 (xt)≤ 0. We utilize ∀z≤ 0,τ (z)≤ φ (z)≤ 1,

τ (−zt−1(xt))≤
1√
2π

exp
[
−1

2
z2

t−1(xt)

]
≤ 1.

Clearly, for both cases, we have τ (−zt−1(xt))≤ 1+
√

C.

We now prove the main Theorem 4 that provides the sublinear cumulative regret for EI using
best-found value ymax as the incumbent.
Proof Let xt = argmax

x∈X

αEI
t (x) be the choice at iteration t, the instantaneous regret is defined as:

rt = f (x∗)− f (xt) = f (x∗)− ymax
t−1︸ ︷︷ ︸

At

+ymax
t−1 − f (xt)︸ ︷︷ ︸

Bt

. (3)

We bound rt with the GP posterior variance so that we later connect it to the maximum information
gain γT . From the definition of xt and Lem. 1, we have αEI

t (x∗) ≤ αEI
t (xt) = σt−1 (xt)τ (zt−1(xt)).

Then, by using Lem. 6 we write

At ≤ α
EI (x∗)+

√
βtσt−1 (x∗)≤ α

EI (xt)+
√

βtσt−1 (x∗)

= σt−1 (xt)τ (zt−1(xt))+
√

βtσt−1 (x∗) by Lem.5

Next, we express the second term in Eq. (3) as follows

Bt =ymax
t−1 −µt−1(xt)+µt−1(xt)− f (xt)

≤σt−1 (xt)(−zt−1(xt))+σt−1 (xt)
√

βt by Lem.5

=σt−1 (xt)
[
τ (−zt−1(xt))+

√
βt − τ (zt−1(xt))

]
byz = τ (z)− τ (−z)

Continuing from Eq. (3), we have rt = At +Bt that is

rt ≤ σt−1 (xt)
[√

βt + τ (−zt−1 (xt))
]
+
√

βtσt−1 (x∗) (4)

Using the bound of τ (−zt−1 (xt)) in Lem. 9, we obtain

rt ≤σt−1 (xt)
[√

βt +1+
√

C
]

︸ ︷︷ ︸
Lt

+
√

βtσt−1 (x∗)︸ ︷︷ ︸
Ut
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where C , log
[ 1

2πκ2

]
. We then simplify Lt and Ut , respectively. Taking the sum of squared regret

and utilizing the Cauchy-Schwartz inequality that (a+b+ c)2 ≤ 3
(
a2 +b2 + c2

)
, we have

T

∑
t=1

L2
t ≤

T

∑
t

σ
2
t−1 (xt)3(βt +1+C)≤ 3(βT +1+C)

T

∑
t

σ
2
t−1 (xt) byβT ≥ βt ,∀t ≤ T

≤ 6(βT +1+CT )γT

log(1+σ−2)
by Lem.7

Again, using the Cauchy-Schwartz inequality, we obtain

T

∑
t=1

Lt ≤
√

T

√
T

∑
t=1

L2
t ≤

√
6T (βT +1+C)γT

log(1+σ−2)
.

We further utilize Lem. 7 and the Cauchy-Schwartz again to simplify Ut that

T

∑
t=1

Ut ≤ βT

T

∑
t=1

σt−1 (x∗)≤

√
2T βT γT

log(1+σ−2)
.

Finally, we get the cumulative regret RT ≤ ∑
T
t=1 (Lt +Ut),

RT ≤

√
2T γT

log(1+σ−2)

[√
3(βT +1+C)+

√
βT

]
where C , log

[ 1
2πκ2

]
, κ > 0 is a (constant) pre-defined stopping criteria, σ2 is the measurement

noise variance, and βT is also in the form of O (logT )3. The bound of γT is kernel specific. To
have concrete regret bound, we consider the squared exponential kernel γT ∼ O

(
(logT )d+1

)
.

Therefore, we can write a sublinear rate RT ∼ O

(√
T × (logT )d+4

)
which vanishes in the limit

as limT→∞
RT
T = 0.

As the stopping criteria κ decreases, it allows more evaluations with low improvement values,
thus the cumulative regret RT increases. In contrast, if κ increases, we will not take evaluations
with low improvement, then RT decreases. We note that our convergence rate is analogous to the
sublinear regret rate for GP-UCB algorithm (Srinivas et al., 2010) and EI using maximum predictive
GP mean derived by (Wang and de Freitas, 2014) which is limT→∞

RT
T = 0. More significantly, we

are the first to incorporate the stopping criteria into the regret analysis.

5. Experiments

We compare two variants of EI using the incumbents (1) as the maximum of GP mean function
µmax

t = maxx∈X µt−1(x) (Wang and de Freitas, 2014) and (2) as the maximum on the observation
set ymax

t = maxyi∈Dt yi (Mockus et al., 1978; Jones et al., 1998) as in our analysis.
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Figure 1: Example of stopping criteria using Hartmann 3D function. The acquisition function value
at the selected point αEI(xt) = maxx∈X α(x) encodes the maximum improvement which
tends to decrease w.r.t iterations (see the magetan curve). Therefore, we can stop the
algorithm to prevent from unnecessary evaluations when the amount of improvement is
smaller than a pre-specified threshold κ . We consider κ = 10−4 (stop at iteration 60) and
κ = 10−9 (stop at iteration 90). We note that the BO will not find any significantly better
value after t = 40 (see the blue curve). Thus, if BO continues searching, it may waste
time and resource for little gain.

Experimental setting. Throughout the experiment, we use GP priors with the squared exponen-
tial kernels k(x,x′) = exp(− ||x−x′||2

l ) where l is set to the dimension size d as the default setting of
RBF kernel in LibSVM. In addition, as a common practice in implementation, we scale the feature
x ∈ [0,1]d so that each dimension of the feature vector is treated equally. Further, the output is
standardized y∼N (0,1). The results are averaged over 20 independent runs with different initial-
izations. All implementations are in Python. The performance of the algorithms is compared for a
fixed number of iterations T = 10d and the initialization point n0 = 3d. The stopping criteria is set
small as κ = 10−9. The UCB parameter is set as

√
βt = 2 as used in (Nguyen et al., 2016b). We

optimize the acquisition function using L-BFGS-B algorithm (multi-start).

5.1. Illustration of Stopping Criteria in EI

We illustrate the behavior of Bayesian optimization using stopping criteria to prevent from un-
necessary evaluations in Fig. 1. These unnecessary evaluations can happen after the function is
well-learned (or densely covered) by Bayesian optimization and there is no promising location to
explore. In this situation, Bayesian optimization should be stopped for saving cost and resource.
However, without a stopping mechanism, Bayesian optimization continues running and exploiting
until the maximum evaluation budget T is reached.

Because EI is a function of the variance and the improvement quantity (encoded by σ and τ in
Lem. 1), the value of EI tends to decrease w.r.t iterations (see Fig. 1). We consider two cases of
the stopping criteria κ = 10−4 and κ = 10−9 when the amount of improvement is smaller than a
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Func Hartmann Ackley Hartmann Alpine2 gSobol gSobol
Dim 3 5 6 10 10 12

Stopping criteria
yes yes no no no no

is active
EI µmax

t -3.57±.2 13.299±1.0 -2.87±.04 -519±353 2k±1k 3k±2k
EI ymax

t -3.46±.3 9.754±3.2 -2.93±.05 -922±608 367±273 2k±1k

Table 1: Performance comparison using Best-Found-Value (max∀t≤T yt) on the benchmark mini-
mization problems between two variants of EI. Our setting using ymax

t outperforms the
counterpart using µmax

t in accuracy. We use T = 10d and κ = 10−9. Stopping criteria
row indicates if the BO algorithm is terminated before reaching T due to violating the
condition of αEI(xt)≤ κ .

threshold κ . These two settings will force the algorithm to stop at iteration 60 and 90, respectively.
This termination is essential for efficiency purpose (saving time and resource) and to ensure that
BO will not over-exploit the function. We note that the choice of kernel parameter will affect the
value of the acquisition function. However, we will not investigate it in the current paper since our
primary focus is on the convergent analysis for EI over the best-observed value.

5.2. Comparison on Benchmark Functions

We assess the performance of the Bayesian optimization using EI in finding the optimum of the
chosen benchmark functions in a range of dimensions D from 3 to 12. We empirically show that
our setting consistently performs better than the setting of µmax

t (Wang and de Freitas, 2014) both in
computational complexity and accuracy. The performance is in line with our intuition about taking
another global optimization step for µmax

t . This is because estimating µmax
t in Rd is expensive and

sometimes inaccurate while finding ymax
t from the observed set of {y1...yt} ∈ Dt is much cheaper

and accurate. Therefore, the error in estimating µmax
t at some iterations can result in misleading

acquisition function αEI
t and be inefficient for the whole process. We present the quantitative results

in Table 1 for optimizing the minimization problems.
We also empirically observe that the stopping criteria is only active for low dimensional func-

tions (e.g., d ≤ 5). This is because the search space goes exponentially large with the dimension.
Thus, it requires a very large number of evaluations to cover the high dimensional space. As a result,
BO may take more iterations ( than the currently used 10d iterations) so that the stopping criteria is
violated.

5.3. Computational Time

We study the computational time spent per iteration w.r.t. increasing dimensions from 5 to 12. For
fair comparison, all simulations are done using the same Windows machine Core i7, Ram 24GB. We
learn that the extra step for estimating µmax occurs with an additional computation than the original
counterpart of EI (with ymax). As a result, the CPU time per iteration of EI using µmax (Wang and
de Freitas, 2014) will be more expensive than our EI using ymax. We note that the stopping criteria
will not affect the computational time per iteration for a fair comparison. We present the numerical
comparison in Fig. 2.
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Figure 2: EI using µmax takes an additional optimization step of estimating µmax. On the other hand,
EI using ymax does not require the optimization step to find the incumbent. Thus, EI ymax

is computationally more efficient with sublinear theoretical guarantee on convergence.
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Figure 3: Configuration tuning for robot design. We maximize the horizontal velocity.

5.4. Real-world Applications

We consider tuning configurations for robot control and hyper-parameters for machine learning
algorithm. We again aim to highlight that EI strategy using the original ymax is more robust and
computational efficient than EI using µmax (Wang and de Freitas, 2014). In this experiment, the
stopping criteria κ = 10−9 is not violated due to the relatively high dimensional functions of d = 6
and d = 8, respectively. Thus, the algorithm will run until the maximum budget T = 10d is reached.

ROBOT CONTROL CONFIGURATION TUNING

One of the key challenges in robotic bipedal locomotion is finding gait parameters that optimize
a desired performance metric, such as speed. Typically, gait optimization requires extensive robot
experiments and specific expert knowledge. Instead, in this setting, we utilize Bayesian optimization
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Figure 4: Machine learning hyper-parameter tuning.

to search for the best configuration to speed up the process of gait optimization. In particular, we
consider the Walker, an eight-dimensional control problem where the inputs are fed into a simulator
which returns the horizontal velocity of a bipedal robot (Westervelt et al., 2007). We use the released
Matlab source code available at 1 and convert the algorithm to a black-box function for optimization.

MACHINE LEARNING HYPER-PARAMETER TUNING

We select to tune the hyper-parameters for the multi-label classification machine learning algorithm
of BNMC (Nguyen et al., 2016a)2. The main advantage of BNMC is that it maintains high accu-
racy while training in a fraction of the time compared to the previous state-of-the-art. The BNMC
algorithm has 6 parameters and the performance depends on these hyper-parameters to a reasonable
amount. In particular, our task is to optimize these 6 hyper-parameters: Dirichlet symmetric for
feature and for label, learning rate for SVI and for SGD, truncation threshold and stick-breaking
parameter. We aim to maximize the F1 score. While the authors of (Nguyen et al., 2016a) run
extensive tests on a variety of datasets, we pick a Scene dataset for our experiment.

RESULTS

We compare the performances of two EI variants using ymax and using µmax on real-word tasks.
We also include the performance of Random, POI and GP-UCB in Fig. 4. We see that EI and
GP-UCB performs generally better than POI because POI tends to exploit quite aggressively. In
addition, the EI using ymax is more stable and performs better than the µmax counterpart. Although
the performance gap between two EI variants is marginal, the original version of EI using ymax is
advantageous since we do not need an additional optimization step for estimating µmax.

6. Conclusion

We have derived the sublinear convergence rate for the expected improvement using the best-
observed value as the incumbent. The previous analyses of expected improvement either assume

1. http://web.eecs.umich.edu/∼grizzle/biped_book_web/
2. https://github.com/ntienvu/ACML2016_BNMC
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zero noise of the observations or using the maximum of the Gaussian process predictive mean func-
tion as the incumbent. The maximum of the GP predictive mean is more expensive to compute and
is rarely used in practice. For the first time, we take the original EI and prove the sublinear regret
under noise setting and stopping condition. Our experiments on benchmark functions and real ex-
periments indicate that the original setting of EI (using the best-observed value) performs relatively
better than the maximum GP mean counterpart while being more efficient.
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Appendix A. Derivation of the Expected Improvement

Let Dt =
{

xi ∈Rd ,yi ∈R
}t

i=1 be the observation set including a feature xi and an outcome yi.
We define the improvement function IEI (x) = max{0, f (x)− y+} where y+ = maxyi∈Dt yi. The
likelihood of improvement IEI (x) (for brevity, we write I) on a normal posterior distribution is as
follows

p(I) =
1√

2πσ (x)
exp

(
−1

2
[µ (x)− y+− I]2

σ2 (x)

)
. (5)

The expected improvement (EI) is then defined as αEI (x) = E
[
IEI (x)

]
. Using the likelihood func-

tion in Eq. (5), we obtain

α
EI (x) =

∫
∞

0
I× 1√

2πσ (x)
exp

(
−1

2
[µ (x)− y+− I]2

σ2 (x)

)
dI.

Let t = µ(x)−y+−I
σ(x) , then I =−t×σ (x)+µ(x)− y+ and dt =− 1

σ(x)dI. We write αEI (x) as

α
EI (x) =

∫ −∞

t= µ(x)−y+
σ(x)

[
−t×σ (x)+µ (x)− y+

] 1√
2πσ (x)

exp(−1
2

t2)× [−σ (x)]dt

= σ (x)
∫ −∞

t= µ(x)−y+
σ(x)

t√
2π

exp(−1
2

t2)dt +
[
µ (x)− y+

]∫ t= µ(x)−y+

σ(x)

−∞

1√
2π

exp(−1
2

t2)dt. (6)

Let denote u = t2 =
[

µ(x)−y+−I
σ(x)

]2
,du = 2zdz, we compute the first term in Eq. (6) as follows

σ (x)
∫ −∞

t= µ(x)−y+
σ(x)

t√
2π

exp
(
−1

2
t2
)

dt =
σ (x)√

2π

∫ −∞

u=t2
exp
(
−1

2
u
)

du
2

=
σ (x)√

2π

[
−exp

(
−1

2

[
µ (x)− y+− I

σ (x)

]2
)]I=−∞

I=0

= σ(x)N
(

µ (x)− y+

σ (x)
| 0,1

)
.
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We compute the second term in Eq. (6) as

[
µ (x)− y+

]∫ t= µ(x)−y+

σ(x)

−∞

exp
(
−1

2 t2
)

√
2π

dt =
[
µ (x)− y+

]∫ 0

∞

1√
2π

exp

(
−1

2

[
µ (x)− y+− I

σ (x)

]2
)

dz

=
[
µ (x)− y+

]
Φ

(
µ (x)− y+

σ (x)

)
.

Explicitly, denoting z = µ(x)−y+

σ(x) , we obtain the acquisition function as follows

α
EI (x) = σ (x)φ (z)+

[
µ (x)− y+

]
Φ(z) (7)

where φ (z) = N (z | 0,1) is the standard normal pdf and Φ(z) is the cdf.
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