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Université Paris-Saclay, Télécom ParisTech, LTCI, Paris, France
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Appendix A. Remarks

Remark 1 It is easy to see that, for a unidimensional loss `, `ε is obtained in the following
manner:

∀ξ ∈ R : `ε(ξ) = ` (ξ −min(|ξ|, ε) sign(ξ))

=

{
0 if |ξ| ≤ ε
`
(
ξ
(

1− ε
|ξ|

))
otherwise.

Consequently, when a multivariate loss ` is separable, that is `(ξ) =
∑p

j=1 `
(j)(ξj) (for some

unidimensional losses `(j)), it is tempting to consider each component separately and to

define `ε =
∑p

j=1 `
(j)
ε . Basically, this boils down to replacing ‖·‖`2 by ‖·‖∞ in the general

ε-loss introduced in this paper.
However, this is not a good idea since this definition would result in adding an `1-norm∑n
i=1 ‖αi‖`1 instead of an `1/`2-norm in the dual. As a consequence, we would obtain sparse

vectors αi, which is not the data sparsity we pursue since αi could have null components
but could be different from 0, forcing us to keep the points xi for prediction.

Remark 2 In the body of the text, omitting the intercept b in Problem (P2) comes down
to removing the linear constraint in Problem (P3). This practice is common for support
vector regression (SVR) with a Gaussian kernel, but is excluded for quantile regression
(QR) (Takeuchi et al., 2006; Sangnier et al., 2016).

Example 1 Examples of scalar and matrix kernels are:

k(x,x′) = (1 +
〈
x,x′

〉
`2

)d (polynomial),

where d > 0 is the degree (Mohri et al., 2012), and

K(x,x′) =

[(
1 +

〈
Ti(x), Tj(x

′)
〉
`2

)d]
1≤i,j≤p

(transformable),
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where Ti : Rp → Rp are any transformations (Alvarez et al., 2012).

Remark 3 As it is standard for coordinate descent methods, our implementation uses ef-

ficient updates for the computation of both
∑n

j=1K(xi,xj)αj and θ
l
. In addition, conver-

gence of Algorithm 1 can be assessed by duality gap (objective of (P2) minus objective of
(P3) in the body of the text). Yet, even though we do not have closed-form expressions
for the primal loss `ε, the duality gap can be over-estimated by upper-bounding `ε in the
following manner:

∀ξ ∈ Rp : `ε(ξ) ≤ `

(
ξ

(
1−

min(ε, ‖ξ‖`2)

‖ξ‖`2

))
.

This is true since

∥∥∥∥min(ε,‖ξ‖`2 )

‖ξ‖`2
ξ

∥∥∥∥
`2

≤ ε.

Remark 4 Contrarily to QR, expectile regression involves a differentiable mapping `?.
Consequently, it can be easily incorporated to the quadratic contribution of (P7) (see body
of the text). Nevertheless, it can also be considered jointly with ‖·‖`2, in the same manner
as for QR. In this case, the differentiable part remains the same for expectile and quantile
regression, only the non-differentiable part changes. The proximal operator needed is given
in the following proposition.

Proposition 5 Let ψ : y ∈ Rp 7→ 1
2

∑p
i=1

∣∣τj − Iyj<0

∣∣−1
y2
j . Then

∀y ∈ Rp,∀j ∈ [p][
prox

λ
(
‖·‖`2+ψ

)(y)

]
j

=

(
1 +

λ

µ
+ λ

∣∣τj − Iyj<0

∣∣−1
)−1

yj ,

if ‖y‖`2 > λ, where µ > 0 is solution to:

p∑
j=1

y2
j(

µ
(

1 + λ
∣∣τj − Iyj<0

∣∣−1
)

+ λ
)2 = 1, (1)

(such a solution exists) and prox
λ
(
‖·‖`2+ψ

)(y) = 0 if ‖y‖`2 ≤ λ,.

Similarly to Equation 1 in the body of the text, the scaling factor µ in Proposition 5 can
be easily obtained by a bisection of a Newton-Raphson method.

Appendix B. Technical details

B.1. Convexity and redefinition of `ε

For the sake of simplicity, let us first define:

∀ξ ∈ Rp : ˜̀
ε(ξ) = inf

u∈Rp : ‖u‖`2≤ε
`(ξ − u). (2)
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Since ` is convex, (ξ,u) 7→ `(ξ − u) + χ‖u‖`2≤ε
is jointly convex with respect to ξ and u.

Therefore, ˜̀
ε is convex as the coordinate infimum of a jointly convex function (Boyd and

Vandenberghe, 2004).
Let us now show that ˜̀

ε = `ε. First, since for any ξ, Slater’s constraint qualification are
satisfied for (2), strong duality holds, that is,

∀ξ ∈ Rp,∃λ ≥ 0 : ˜̀
ε(ξ) = inf

u∈Rp
`(ξ − u) + λ ‖u‖`2 − λε,

and thanks to the lower semi-continuity of the objective, the infimum is attained at, let us
say, û. Then, when ‖ξ‖`2 ≤ ε, we can chose û = ξ and we get ˜̀

ε(ξ) = 0, which is the
infimum of `. On the other hand, when ‖ξ‖`2 > ε, let us consider the Karush-Kuhn-Tucker
(KKT) conditions. By complementary slackness, either λ = 0 and ‖û‖`2 ≤ ε, or ‖û‖`2 = ε.

In the first situation (λ = 0 and ‖û‖`2 ≤ ε), ˜̀
ε(ξ) = infu∈Rp `(ξ−u) = `(ξ− û) = `(0) = 0

and û = ξ (by uniqueness of the minimizer of `). Thus, ‖ξ‖`2 ≤ ε, which is contradictory.
Consequently, we have necessarily, ‖û‖`2 = ε. To summarize:

∀ξ ∈ Rp : ˜̀
ε(ξ) =

 0 if ‖ξ‖`2 ≤ ε
inf

u∈Rp : ‖u‖`2=ε
` (ξ − u) otherwise,

which is exactly the definition of `ε.

B.2. Dual and representer theorem

Since `ε is convex and can be replaced by (2), Problem (P2) from the body of the text can
be reformulated in (Lagrange multipliers are indicated on the right):

minimize
h∈H, b∈Rp,

∀i∈[n], ξi∈Rp, ri∈Rp

λ

2
‖h‖2H +

1

n

n∑
i=1

` (ξi)

s. t.


∀i ∈ [n],
yi − (h(xi) + b)

n
=
ri + ξi
n

: αi ∈ Rp

‖ri‖2`2
2εn

≤ ε

2n
: µi ∈ R+.

(P1)
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Let us compute a dual to Problem (P1). The Lagrangian reads:

L (h, b, (ξi)1≤i≤n, (ri)1≤i≤n, (αi)1≤i≤n, (µi)1≤i≤n)

=
λ

2
‖h‖2H +

1

n

n∑
i=1

` (ξi) +
1

n

n∑
i=1

〈αi,yi − (h(xi) + b)− ri − ξi〉`2

+
1

2εn

n∑
i=1

µi ‖ri‖2`2 −
ε

2n

n∑
i=1

µi

=
1

n

n∑
i=1

(
` (ξi)− 〈αi, ξi〉`2

)
+
λ

2
‖h‖2H −

〈
1

n

n∑
i=1

E∗xiαi, h

〉
H

−

〈
1

n

n∑
i=1

αi, b

〉
`2

+
1

n

n∑
i=1

(µi
2ε
‖ri‖2`2 − 〈αi, ri〉`2

)
+

1

n

n∑
i=1

〈αi,yi〉`2

− ε

2n

n∑
i=1

µi.

The objective function of the dual problem to (P1) is obtained by minimizing the Lagrangian
with respect to the primal variables h, b, (ξi)1≤i≤n and (ri)1≤i≤n. For this purpose, let us
remark that minimizing on ξi boils down to introducing the Fenchel-Legendre transform of
`: `? : α ∈ Rp 7→ supξ∈Rp 〈α, ξ〉`2 − `(ξ). Thus, it remains to compute:

LD ((αi)1≤i≤n, (µi)1≤i≤n)

= inf
h∈H, b∈Rp,
∀i∈[n], ri∈Rp

{
− 1

n

n∑
i=1

`?(αi) +
λ

2
‖h‖2H −

〈
1

n

n∑
i=1

E∗xiαi, h

〉
H

−

〈
1

n

n∑
i=1

αi, b

〉
`2

+
1

n

n∑
i=1

(µi
2ε
‖ri‖2`2 − 〈αi, ri〉`2

)
+

1

n

n∑
i=1

〈αi,yi〉`2

− ε

2n

n∑
i=1

µi

}
.

Since H is unbounded in all directions, the minimum of L with respect to h, b and (ri)
n
i=1

is obtained by setting the gradients to 0, which leads to h = 1
λn

∑n
i=1E

∗
xiαi,

∑n
i=1αi = 0

and ri = ε
µi
αi, ∀i ∈ [n]. Thus, the dual objective reads:

LD ((αi)1≤i≤n, (µi)1≤i≤n)

= − 1

n

n∑
i=1

`?(αi)−
1

2λn2

n∑
i,j=1

〈
αi, ExiE

∗
xjαj

〉
`2

+
1

n

n∑
i=1

〈αi,yi〉`2

− ε

2n

n∑
i=1

(
1

µi
‖αi‖2`2 + µi

)
.

Then, the dual optimization problem consists in maximizing LD subject to the constraints∑n
i=1αi = 0 and µi ≥ 0, ∀i ∈ [n]. Remarking that inf∀i∈[n], µi∈R+

1
2

∑n
i=1

(
1
µi
‖αi‖2`2 + µi

)
=

4
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∑n
i=1 ‖αi‖`2 (Bach et al., 2012), a dual to Problem (P1) is:

minimize
∀i∈[n],αi∈Rp

1

n

n∑
i=1

`?(αi) +
1

2λn2

n∑
i,j=1

〈
αi, ExiE

∗
xjαj

〉
`2

− 1

n

n∑
i=1

〈αi,yi〉`2 +
ε

n

n∑
i=1

‖αi‖`2

s. t.

n∑
i=1

αi = 0.

(P2)

B.3. Generalization

Let P : f ∈ F 7→ E [` (Y − f(X))] and Pn : f ∈ F 7→ 1
n

∑n
i=1 `ε (Y − f(X)), as well as

respective twins Pε and Pn,ε obtained by substituting `ε to `. Let us decompose P f̂ε−Pf †:

P f̂ε − Pf † =
(
P f̂ε − Pnf̂ε

)
+
(
Pnf̂ε − Pnf †

)
+
(
Pnf

† − Pf †
)
.

First, by concentration inequalities (Bartlett and Mendelson, 2002; Maurer, 2016; Sangnier
et al., 2016), we have, with probability greater that 1− δ:

P f̂ε − Pnf̂ε ≤ sup
f∈F

(Pf − Pnf) ≤ 2
√

2LRn (F) + LM

√
log(1/δ)

2n
.

Second, let us decompose Pnf̂ε − Pnf †:

Pnf̂ε − Pnf † =
(
Pnf̂ε − Pn,εf̂ε

)
+
(
Pn,εf̂ε − Pn,εf †

)
+
(
Pn,εf

† − Pnf †
)
.

By Lipschitz continuity, we have:

∀ξ,u ∈ Rp, ‖u‖`2 ≤ ε : `(ξ)− `(ξ − u) ≤ L ‖ξ − (ξ − u)‖`2 ≤ Lε.

Consequently, `(ξ) − `ε(ξ) ≤ Lε and Pnf̂ε − Pn,εf̂ε ≤ Lε. In addition Pn,εf̂ε − Pn,εf † ≤ 0

since f̂ε is a minimizer of Pn,ε over F , and f † ∈ F . Finally, Pn,εf
†−Pnf † ≤ 0 since ` upper

bounds `ε. To summarize the second point, Pnf̂ε − Pnf † ≤ Lε.
Third and last, by Hoeffding’s inequality (Boucheron et al., 2013), with probability at

least 1− δ:

Pnf
† − Pf † ≤ LM

√
log(1/δ)

2n
.

Gathering these three points with a union bound concludes the proof.
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B.4. Algorithms

Proof (Lemma 3, body of the text) Let φ : µ ∈ [0, 1] 7→
(

1 + λ

‖[µy]b−a‖`2

)
µ. First,

φ(1) = 1 + λ

‖[y]b−a‖`2
≥ 1. Second, for µ ≥ 0 sufficiently close to 0, [µy]b−a = µy (since

entries of a and b are positive). Therefore φ(0) = limµ↓0

(
µ+ λµ

µ‖y‖`2

)
= λ
‖y‖`2

≤ 1. Fi-

nally, since φ is a continuous mapping on [0, 1] and 1 ∈ [φ(0), φ(1)], then the equation
φ(µ) = 1 has a solution in [0, 1].

Proof (Proposition 4, body of the text) The proof is in two part. First, we write optimality
conditions for the proximal operator of interest, then we show that [µy]b−a satisfies these
optimality conditions when µ is appropriately defined. From now on, let y ∈ Rp.

Optimality conditions Let x? = proxλ‖·‖`2+χ−a4·4b(y) = arg min−a4x4b λ ‖x‖`2+1
2 ‖y − x‖2`2

.

1. Assume that x? 6= 0. Then, λ ‖·‖`2 + 1
2 ‖y − ·‖

2
`2

is differentiable at x? and for each
coordinate j ∈ [p], either:

(a) −aj < x?j < bj and

(
1 + λ

‖x?‖`2

)
x?j = yj ;

(b) or x?j = bj and

(
1 + λ

‖x?‖`2

)
x?j ≤ yj ;

(c) or x?j = −aj and

(
1 + λ

‖x?‖`2

)
x?j ≥ yj .

Gathering Conditions 1a-1c gives ‖x?‖`2 +λ ≤ ‖y‖`2 . Since x? 6= 0, we get λ < ‖y‖`2 .
Conversely, if ‖y‖`2 ≤ λ, then x? = 0.

2. If x? = 0, then ∀δ > 0 such that −a 4 δy 4 b, λ ‖δy‖`2 + 1
2 ‖y − δy‖

2
`2
≥ 1

2 ‖y‖
2
`2
,

that is λ ‖y‖`2 ≥
(
1− δ

2

)
‖y‖2`2 . Thus, by continuity when δ ↓ 0, we have λ ≥ ‖y‖`2 .

To sum up, x? = 0 if and only if ‖y‖`2 ≤ λ.

Proximal solution Let x = [µy]b−a, where µ is defined in Proposition 4 from the body of
the text. Assume that ‖y‖`2 ≤ λ, then µ = 0 and x = 0 satisfies the optimality conditions.

On the other hand, if ‖y‖`2 > λ, then

(
1 + λ

‖x‖`2

)
µ = 1. As a result, either:

1. −aj < xj < bj , so necessarily xj = µyj (otherwise it would be clipped to bj or −aj).

Therefore

(
1 + λ

‖x‖`2

)
xj =

(
1 + λ

‖x‖`2

)
(µyj) = yj ;

2. or xj = bj , meaning that µyj ≥ bj . So

(
1 + λ

‖x‖`2

)
(µyj) ≥

(
1 + λ

‖x‖`2

)
bj , that is(

1 + λ
‖x‖`2

)
xj ≤ yj ;

6
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3. or xj = −aj , meaning that µyj ≤ −aj . So

(
1 + λ

‖x‖`2

)
(µyj) ≤

(
1 + λ

‖x‖`2

)
(−aj),

that is

(
1 + λ

‖x‖`2

)
xj ≥ yj .

Thus, when ‖y‖`2 > λ, x satisfies the optimality conditions. This concludes the proof.

Corollary 6 Let two n-tuples A = (a1, . . . ,an) and B = (b1, . . . , bn) of vectors from Rp
with positive entries. For any n-tuple Y = (y1, . . . ,yn) of vectors from Rp, let:

(x1, . . . ,xn) = proxλ‖·‖`1/`2+χ−A4·4B(Y ),

where ‖Y ‖`1/`2 =
∑n

i=1 ‖yi‖`2. Then, ∀i ∈ [n]:

xi = proxλ‖·‖`2+χ−ai4·4bi
(yi).

Proof This is a direct consequence of the separability of λ ‖·‖`1/`2 + χ−A4·4B.

Proof (Proposition 5) The proof is similar to the one for Proposition 4 (see body of the
text). Let y ∈ Rp.

Optimality conditions Let x? = prox
λ
(
‖·‖`2+ψ

)(y) = arg minx∈Rp λ ‖x‖`2 + λψ(x) +

1
2 ‖y − x‖2`2 .

1. Assume that x? 6= 0. Then, λ ‖·‖`2 + λψ + 1
2 ‖y − ·‖

2
`2

is differentiable at x? and for
each coordinate j ∈ [p]:

yj =

(
λ

‖x?‖`2
+ λ

∣∣∣τj − Ix?j<0

∣∣∣−1
+ 1

)
x?j .

It appears that x?j and yj have same sign. Therefore, Ix?j<0 = Iyj<0 and

x?j =

(
λ

‖x?‖`2
+ λ

∣∣τj − Iyj<0

∣∣−1
+ 1

)−1

yj .

Now, the previous relation implies:

‖x?‖2`2 =

p∑
j=1

y2
j(

λ
‖x?‖`2

+ λ
∣∣τj − Iyj<0

∣∣−1
+ 1

)2 .

Since x? 6= 0, we get:

1 =

p∑
j=1

y2
j(

λ+ ‖x?‖`2
(
λ
∣∣τj − Iyj<0

∣∣−1
+ 1
))2 .

7
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But ‖x?‖`2 > 0, so:

1 =

p∑
j=1

y2
j(

λ+ ‖x?‖`2
(
λ
∣∣τj − Iyj<0

∣∣−1
+ 1
))2 <

p∑
j=1

y2
j

λ2
,

that is λ < ‖y‖`2 . Conversely, if ‖y‖`2 ≤ λ, then x? = 0.

2. If x? = 0, then ∀δ > 0, λ ‖δy‖`2 +λψ(δy) + 1
2 ‖y − δy‖

2
`2
≥ 1

2 ‖y‖
2
`2
, that is λ(‖y‖`2 +

δψ(y)) ≥
(
1− δ

2

)
‖y‖2`2 . Thus, by continuity when δ ↓ 0, we have λ ≥ ‖y‖`2 . To sum

up, x? = 0 if and only if ‖y‖`2 ≤ λ.

Proximal solution If ‖y‖`2 ≤ λ, then x = 0 is satisfies trivially the optimality conditions.

On the other hand, if ‖y‖`2 > λ, then
∑p

j=1

y2
j

λ2 > 1 and limµ→+∞
∑p

j=1

y2
j(

µ

(
1+λ

∣∣∣τj−Iyj<0

∣∣∣−1
)

+λ

)2 =

0. Thus, by continuity, Equation 1 has a solution µ > 0. Let µ be such a solution and let
x ∈ Rp such that for each coordinate j ∈ [p],

xj =

(
1 +

λ

µ
+ λ

∣∣τj − Iyj<0

∣∣−1
)−1

yj .

Then:
‖x‖2`2
µ2

=

p∑
j=1

y2
j

µ2
(

1 + λ
µ + λ

∣∣τj − Iyj<0

∣∣−1
)2 = 1.

Consequently

xj =

(
1 +

λ

‖x‖`2
+ λ

∣∣τj − Iyj<0

∣∣−1

)−1

yj .

and x satisfies the optimality conditions. This concludes the proof.

Appendix C. Numerical experiments

Table 1 reports the average empirical loss (scaled by 100) along with the standard deviations.
It completes Talbe 2 from the body of the text. For each dataset, the bold-face numbers
are the two lowest losses. These values should be compared to the loss for ε = 0.
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Table 1: Empirical pinball loss ×100 along with percentage of support vectors (the less, the
better).

Data set ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.5 ε = 0.75 ε = 1 ε = 1.5 ε = 2 ε = 3

caution 67.50 ± 12.96 67.40 ± 13.12 67.17 ± 12.68 67.54 ± 13.00 69.93 ± 12.51 73.24 ± 13.10 76.80 ± 12.51 83.42 ± 14.97 100.22 ± 16.63 142.19 ± 16.11
ftcollinssnow 109.07 ± 5.88 109.12 ± 5.95 109.14 ± 6.00 109.15 ± 6.00 109.11 ± 6.30 110.39 ± 7.10 109.05 ± 6.72 110.90 ± 6.87 109.81 ± 6.22 113.50 ± 9.29
highway 79.29 ± 17.06 78.10 ± 16.15 76.75 ± 15.42 76.66 ± 19.11 75.09 ± 18.82 70.94 ± 21.58 75.10 ± 21.02 97.67 ± 22.91 112.30 ± 20.10 112.09 ± 20.12
heights 91.05 ± 1.12 91.00 ± 1.20 90.98 ± 1.19 90.98 ± 1.21 91.18 ± 1.09 91.21 ± 1.27 90.98 ± 1.13 91.09 ± 1.02 91.51 ± 1.20 93.34 ± 1.84
sniffer 32.34 ± 5.14 31.40 ± 4.81 32.31 ± 5.19 31.40 ± 2.98 34.64 ± 3.85 39.84 ± 5.03 41.82 ± 4.14 52.06 ± 5.88 62.21 ± 11.77 103.76 ± 16.42
snowgeese 49.62 ± 19.38 50.51 ± 18.23 51.25 ± 18.64 51.08 ± 17.69 52.88 ± 15.11 53.81 ± 13.97 62.81 ± 19.66 90.15 ± 23.97 107.53 ± 23.13 94.25 ± 24.65
ufc 57.87 ± 3.09 57.90 ± 3.07 57.78 ± 2.99 57.84 ± 3.01 57.67 ± 2.84 57.84 ± 2.76 58.19 ± 2.92 61.04 ± 3.68 66.81 ± 4.00 86.23 ± 4.79
birthwt 99.93 ± 8.51 99.95 ± 8.53 99.93 ± 8.63 99.70 ± 8.64 99.25 ± 8.66 100.50 ± 10.31 99.80 ± 11.29 98.71 ± 10.04 99.56 ± 9.43 103.39 ± 8.83
crabs 8.59 ± 0.66 8.52 ± 0.68 8.49 ± 0.73 9.44 ± 0.57 19.94 ± 1.38 23.08 ± 1.59 31.44 ± 3.75 44.08 ± 4.64 53.45 ± 5.65 86.91 ± 9.48
GAGurine 44.30 ± 5.85 44.26 ± 5.79 44.25 ± 5.76 44.86 ± 6.04 46.20 ± 5.35 49.87 ± 4.88 52.88 ± 3.94 57.06 ± 3.47 65.89 ± 3.88 103.32 ± 24.62
geyser 77.81 ± 5.36 78.15 ± 5.39 78.12 ± 5.38 78.45 ± 5.35 78.40 ± 5.77 78.28 ± 5.88 78.54 ± 5.82 80.55 ± 6.34 85.15 ± 6.18 99.92 ± 8.65
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