

Data sparse nonparametric regression with ϵ -insensitive losses: supplementary material

Maxime Sangnier

MAXIME.SANGNIER@UPMC.FR

Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France

Olivier Fercoq

OLIVIER.FERCOQ@TELECOM-PARISTECH.FR

Université Paris-Saclay, Télécom ParisTech, LTCI, Paris, France

Florence d’Alché-Buc

FLORENCE.DALCHE@TELECOM-PARISTECH.FR

Université Paris-Saclay, Télécom ParisTech, LTCI, Paris, France

Editors: Yung-Kyun Noh and Min-Ling Zhang

Appendix A. Remarks

Remark 1 *It is easy to see that, for a unidimensional loss ℓ , ℓ_ϵ is obtained in the following manner:*

$$\begin{aligned} \forall \xi \in \mathbb{R}: \quad \ell_\epsilon(\xi) &= \ell(\xi - \min(|\xi|, \epsilon) \operatorname{sign}(\xi)) \\ &= \begin{cases} 0 & \text{if } |\xi| \leq \epsilon \\ \ell\left(\xi\left(1 - \frac{\epsilon}{|\xi|}\right)\right) & \text{otherwise.} \end{cases} \end{aligned}$$

Consequently, when a multivariate loss ℓ is separable, that is $\ell(\boldsymbol{\xi}) = \sum_{j=1}^p \ell^{(j)}(\xi_j)$ (for some unidimensional losses $\ell^{(j)}$), it is tempting to consider each component separately and to define $\ell_\epsilon = \sum_{j=1}^p \ell_\epsilon^{(j)}$. Basically, this boils down to replacing $\|\cdot\|_{\ell_2}$ by $\|\cdot\|_\infty$ in the general ϵ -loss introduced in this paper.

However, this is not a good idea since this definition would result in adding an ℓ_1 -norm $\sum_{i=1}^n \|\boldsymbol{\alpha}_i\|_{\ell_1}$ instead of an ℓ_1/ℓ_2 -norm in the dual. As a consequence, we would obtain sparse vectors $\boldsymbol{\alpha}_i$, which is not the data sparsity we pursue since $\boldsymbol{\alpha}_i$ could have null components but could be different from 0, forcing us to keep the points \mathbf{x}_i for prediction.

Remark 2 *In the body of the text, omitting the intercept \mathbf{b} in Problem (P2) comes down to removing the linear constraint in Problem (P3). This practice is common for [support vector regression \(SVR\)](#) with a Gaussian kernel, but is excluded for [quantile regression \(QR\)](#) (Takeuchi et al., 2006; Sangnier et al., 2016).*

Example 1 *Examples of scalar and matrix kernels are:*

$$k(\mathbf{x}, \mathbf{x}') = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle_{\ell_2})^d \quad (\text{polynomial}),$$

where $d > 0$ is the degree (Mohri et al., 2012), and

$$K(\mathbf{x}, \mathbf{x}') = \left[\left(1 + \langle T_i(\mathbf{x}), T_j(\mathbf{x}') \rangle_{\ell_2} \right)^d \right]_{1 \leq i, j \leq p} \quad (\text{transformable}),$$

where $T_i: \mathbb{R}^p \rightarrow \mathbb{R}^p$ are any transformations (Alvarez et al., 2012).

Remark 3 As it is standard for coordinate descent methods, our implementation uses efficient updates for the computation of both $\sum_{j=1}^n K(\mathbf{x}_i, \mathbf{x}_j) \boldsymbol{\alpha}_j$ and $\bar{\boldsymbol{\theta}}^l$. In addition, convergence of Algorithm 1 can be assessed by duality gap (objective of (P2) minus objective of (P3) in the body of the text). Yet, even though we do not have closed-form expressions for the primal loss ℓ_ϵ , the duality gap can be over-estimated by upper-bounding ℓ_ϵ in the following manner:

$$\forall \boldsymbol{\xi} \in \mathbb{R}^p: \quad \ell_\epsilon(\boldsymbol{\xi}) \leq \ell \left(\boldsymbol{\xi} \left(1 - \frac{\min(\epsilon, \|\boldsymbol{\xi}\|_{\ell_2})}{\|\boldsymbol{\xi}\|_{\ell_2}} \right) \right).$$

This is true since $\left\| \frac{\min(\epsilon, \|\boldsymbol{\xi}\|_{\ell_2})}{\|\boldsymbol{\xi}\|_{\ell_2}} \boldsymbol{\xi} \right\|_{\ell_2} \leq \epsilon$.

Remark 4 Contrarily to QR, expectile regression involves a differentiable mapping ℓ^* . Consequently, it can be easily incorporated to the quadratic contribution of (P7) (see body of the text). Nevertheless, it can also be considered jointly with $\|\cdot\|_{\ell_2}$, in the same manner as for QR. In this case, the differentiable part remains the same for expectile and quantile regression, only the non-differentiable part changes. The proximal operator needed is given in the following proposition.

Proposition 5 Let $\psi: \mathbf{y} \in \mathbb{R}^p \mapsto \frac{1}{2} \sum_{i=1}^p |\tau_j - \mathbf{I}_{y_j < 0}|^{-1} y_j^2$. Then

$$\forall \mathbf{y} \in \mathbb{R}^p, \forall j \in [p] \\ \left[\text{prox}_{\lambda(\|\cdot\|_{\ell_2} + \psi)}(\mathbf{y}) \right]_j = \left(1 + \frac{\lambda}{\mu} + \lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1} \right)^{-1} y_j,$$

if $\|\mathbf{y}\|_{\ell_2} > \lambda$, where $\mu > 0$ is solution to:

$$\sum_{j=1}^p \frac{y_j^2}{\left(\mu \left(1 + \lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1} \right) + \lambda \right)^2} = 1, \quad (1)$$

(such a solution exists) and $\text{prox}_{\lambda(\|\cdot\|_{\ell_2} + \psi)}(\mathbf{y}) = 0$ if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$.

Similarly to Equation 1 in the body of the text, the scaling factor μ in Proposition 5 can be easily obtained by a bisection of a Newton-Raphson method.

Appendix B. Technical details

B.1. Convexity and redefinition of ℓ_ϵ

For the sake of simplicity, let us first define:

$$\forall \boldsymbol{\xi} \in \mathbb{R}^p: \quad \tilde{\ell}_\epsilon(\boldsymbol{\xi}) = \inf_{\mathbf{u} \in \mathbb{R}^p: \|\mathbf{u}\|_{\ell_2} \leq \epsilon} \ell(\boldsymbol{\xi} - \mathbf{u}). \quad (2)$$

Since ℓ is convex, $(\xi, \mathbf{u}) \mapsto \ell(\xi - \mathbf{u}) + \chi_{\|\mathbf{u}\|_{\ell_2} \leq \epsilon}$ is jointly convex with respect to ξ and \mathbf{u} . Therefore, $\tilde{\ell}_\epsilon$ is convex as the coordinate infimum of a jointly convex function (Boyd and Vandenberghe, 2004).

Let us now show that $\tilde{\ell}_\epsilon = \ell_\epsilon$. First, since for any ξ , Slater's constraint qualification are satisfied for (2), strong duality holds, that is,

$$\forall \xi \in \mathbb{R}^p, \exists \lambda \geq 0 : \tilde{\ell}_\epsilon(\xi) = \inf_{\mathbf{u} \in \mathbb{R}^p} \ell(\xi - \mathbf{u}) + \lambda \|\mathbf{u}\|_{\ell_2} - \lambda\epsilon,$$

and thanks to the lower semi-continuity of the objective, the infimum is attained at, let us say, $\hat{\mathbf{u}}$. Then, when $\|\xi\|_{\ell_2} \leq \epsilon$, we can chose $\hat{\mathbf{u}} = \xi$ and we get $\tilde{\ell}_\epsilon(\xi) = 0$, which is the infimum of ℓ . On the other hand, when $\|\xi\|_{\ell_2} > \epsilon$, let us consider the Karush-Kuhn-Tucker (KKT) conditions. By complementary slackness, either $\lambda = 0$ and $\|\hat{\mathbf{u}}\|_{\ell_2} \leq \epsilon$, or $\|\hat{\mathbf{u}}\|_{\ell_2} = \epsilon$. In the first situation ($\lambda = 0$ and $\|\hat{\mathbf{u}}\|_{\ell_2} \leq \epsilon$), $\tilde{\ell}_\epsilon(\xi) = \inf_{\mathbf{u} \in \mathbb{R}^p} \ell(\xi - \mathbf{u}) = \ell(\xi - \hat{\mathbf{u}}) = \ell(0) = 0$ and $\hat{\mathbf{u}} = \xi$ (by uniqueness of the minimizer of ℓ). Thus, $\|\xi\|_{\ell_2} \leq \epsilon$, which is contradictory. Consequently, we have necessarily, $\|\hat{\mathbf{u}}\|_{\ell_2} = \epsilon$. To summarize:

$$\forall \xi \in \mathbb{R}^p : \tilde{\ell}_\epsilon(\xi) = \begin{cases} 0 & \text{if } \|\xi\|_{\ell_2} \leq \epsilon \\ \inf_{\mathbf{u} \in \mathbb{R}^p : \|\mathbf{u}\|_{\ell_2} = \epsilon} \ell(\xi - \mathbf{u}) & \text{otherwise,} \end{cases}$$

which is exactly the definition of ℓ_ϵ .

B.2. Dual and representer theorem

Since ℓ_ϵ is convex and can be replaced by (2), Problem (P2) from the body of the text can be reformulated in (Lagrange multipliers are indicated on the right):

$$\begin{aligned} & \underset{\substack{h \in \mathcal{H}, b \in \mathbb{R}^p, \\ \forall i \in [n], \xi_i \in \mathbb{R}^p, \mathbf{r}_i \in \mathbb{R}^p}}{\text{minimize}} \quad \frac{\lambda}{2} \|h\|_{\mathcal{H}}^2 + \frac{1}{n} \sum_{i=1}^n \ell(\xi_i) \\ & \text{s. t.} \quad \begin{cases} \forall i \in [n], \\ \frac{\mathbf{y}_i - (h(\mathbf{x}_i) + b)}{n} = \frac{\mathbf{r}_i + \xi_i}{n} & : \alpha_i \in \mathbb{R}^p \\ \frac{\|\mathbf{r}_i\|_{\ell_2}^2}{2\epsilon n} \leq \frac{\epsilon}{2n} & : \mu_i \in \mathbb{R}_+ \end{cases} \end{aligned} \tag{P1}$$

Let us compute a dual to Problem (P1). The Lagrangian reads:

$$\begin{aligned}
 \mathfrak{L}(h, \mathbf{b}, (\boldsymbol{\xi}_i)_{1 \leq i \leq n}, (\mathbf{r}_i)_{1 \leq i \leq n}, (\boldsymbol{\alpha}_i)_{1 \leq i \leq n}, (\mu_i)_{1 \leq i \leq n}) \\
 = \frac{\lambda}{2} \|h\|_{\mathcal{H}}^2 + \frac{1}{n} \sum_{i=1}^n \ell(\boldsymbol{\xi}_i) + \frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{\alpha}_i, \mathbf{y}_i - (h(\mathbf{x}_i) + \mathbf{b}) - \mathbf{r}_i - \boldsymbol{\xi}_i \rangle_{\ell_2} \\
 + \frac{1}{2\epsilon n} \sum_{i=1}^n \mu_i \|\mathbf{r}_i\|_{\ell_2}^2 - \frac{\epsilon}{2n} \sum_{i=1}^n \mu_i \\
 = \frac{1}{n} \sum_{i=1}^n (\ell(\boldsymbol{\xi}_i) - \langle \boldsymbol{\alpha}_i, \boldsymbol{\xi}_i \rangle_{\ell_2}) + \frac{\lambda}{2} \|h\|_{\mathcal{H}}^2 - \left\langle \frac{1}{n} \sum_{i=1}^n E_{\mathbf{x}_i}^* \boldsymbol{\alpha}_i, h \right\rangle_{\mathcal{H}} \\
 - \left\langle \frac{1}{n} \sum_{i=1}^n \boldsymbol{\alpha}_i, \mathbf{b} \right\rangle_{\ell_2} + \frac{1}{n} \sum_{i=1}^n \left(\frac{\mu_i}{2\epsilon} \|\mathbf{r}_i\|_{\ell_2}^2 - \langle \boldsymbol{\alpha}_i, \mathbf{r}_i \rangle_{\ell_2} \right) + \frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{\alpha}_i, \mathbf{y}_i \rangle_{\ell_2} \\
 - \frac{\epsilon}{2n} \sum_{i=1}^n \mu_i.
 \end{aligned}$$

The objective function of the dual problem to (P1) is obtained by minimizing the Lagrangian with respect to the primal variables h , \mathbf{b} , $(\boldsymbol{\xi}_i)_{1 \leq i \leq n}$ and $(\mathbf{r}_i)_{1 \leq i \leq n}$. For this purpose, let us remark that minimizing on $\boldsymbol{\xi}_i$ boils down to introducing the Fenchel-Legendre transform of ℓ : $\ell^* : \boldsymbol{\alpha} \in \mathbb{R}^p \mapsto \sup_{\boldsymbol{\xi} \in \mathbb{R}^p} \langle \boldsymbol{\alpha}, \boldsymbol{\xi} \rangle_{\ell_2} - \ell(\boldsymbol{\xi})$. Thus, it remains to compute:

$$\begin{aligned}
 \mathfrak{L}_D((\boldsymbol{\alpha}_i)_{1 \leq i \leq n}, (\mu_i)_{1 \leq i \leq n}) \\
 = \inf_{\substack{h \in \mathcal{H}, \mathbf{b} \in \mathbb{R}^p, \\ \forall i \in [n], \mathbf{r}_i \in \mathbb{R}^p}} \left\{ -\frac{1}{n} \sum_{i=1}^n \ell^*(\boldsymbol{\alpha}_i) + \frac{\lambda}{2} \|h\|_{\mathcal{H}}^2 - \left\langle \frac{1}{n} \sum_{i=1}^n E_{\mathbf{x}_i}^* \boldsymbol{\alpha}_i, h \right\rangle_{\mathcal{H}} \right. \\
 \left. - \left\langle \frac{1}{n} \sum_{i=1}^n \boldsymbol{\alpha}_i, \mathbf{b} \right\rangle_{\ell_2} + \frac{1}{n} \sum_{i=1}^n \left(\frac{\mu_i}{2\epsilon} \|\mathbf{r}_i\|_{\ell_2}^2 - \langle \boldsymbol{\alpha}_i, \mathbf{r}_i \rangle_{\ell_2} \right) + \frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{\alpha}_i, \mathbf{y}_i \rangle_{\ell_2} \right. \\
 \left. - \frac{\epsilon}{2n} \sum_{i=1}^n \mu_i \right\}.
 \end{aligned}$$

Since \mathcal{H} is unbounded in all directions, the minimum of \mathfrak{L} with respect to h , \mathbf{b} and $(\mathbf{r}_i)_{i=1}^n$ is obtained by setting the gradients to 0, which leads to $h = \frac{1}{\lambda n} \sum_{i=1}^n E_{\mathbf{x}_i}^* \boldsymbol{\alpha}_i$, $\sum_{i=1}^n \boldsymbol{\alpha}_i = 0$ and $\mathbf{r}_i = \frac{\epsilon}{\mu_i} \boldsymbol{\alpha}_i$, $\forall i \in [n]$. Thus, the dual objective reads:

$$\begin{aligned}
 \mathfrak{L}_D((\boldsymbol{\alpha}_i)_{1 \leq i \leq n}, (\mu_i)_{1 \leq i \leq n}) \\
 = -\frac{1}{n} \sum_{i=1}^n \ell^*(\boldsymbol{\alpha}_i) - \frac{1}{2\lambda n^2} \sum_{i,j=1}^n \left\langle \boldsymbol{\alpha}_i, E_{\mathbf{x}_i} E_{\mathbf{x}_j}^* \boldsymbol{\alpha}_j \right\rangle_{\ell_2} + \frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{\alpha}_i, \mathbf{y}_i \rangle_{\ell_2} \\
 - \frac{\epsilon}{2n} \sum_{i=1}^n \left(\frac{1}{\mu_i} \|\boldsymbol{\alpha}_i\|_{\ell_2}^2 + \mu_i \right).
 \end{aligned}$$

Then, the dual optimization problem consists in maximizing \mathfrak{L}_D subject to the constraints $\sum_{i=1}^n \boldsymbol{\alpha}_i = 0$ and $\mu_i \geq 0$, $\forall i \in [n]$. Remarking that $\inf_{\forall i \in [n], \mu_i \in \mathbb{R}_+} \frac{1}{2} \sum_{i=1}^n \left(\frac{1}{\mu_i} \|\boldsymbol{\alpha}_i\|_{\ell_2}^2 + \mu_i \right) =$

$\sum_{i=1}^n \|\boldsymbol{\alpha}_i\|_{\ell_2}$ (Bach et al., 2012), a dual to Problem (P1) is:

$$\begin{aligned} & \underset{\forall i \in [n], \boldsymbol{\alpha}_i \in \mathbb{R}^p}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^n \ell^*(\boldsymbol{\alpha}_i) + \frac{1}{2\lambda n^2} \sum_{i,j=1}^n \left\langle \boldsymbol{\alpha}_i, E_{\mathbf{x}_i} E_{\mathbf{x}_j}^* \boldsymbol{\alpha}_j \right\rangle_{\ell_2} \\ & \quad - \frac{1}{n} \sum_{i=1}^n \langle \boldsymbol{\alpha}_i, \mathbf{y}_i \rangle_{\ell_2} + \frac{\epsilon}{n} \sum_{i=1}^n \|\boldsymbol{\alpha}_i\|_{\ell_2} \\ & \text{s. t.} \quad \sum_{i=1}^n \boldsymbol{\alpha}_i = 0. \end{aligned} \quad (\text{P2})$$

B.3. Generalization

Let $P: f \in \mathcal{F} \mapsto \mathbb{E}[\ell(Y - f(X))]$ and $P_n: f \in \mathcal{F} \mapsto \frac{1}{n} \sum_{i=1}^n \ell_\epsilon(Y - f(X))$, as well as respective twins P_ϵ and $P_{n,\epsilon}$ obtained by substituting ℓ_ϵ to ℓ . Let us decompose $P\hat{f}_\epsilon - Pf^\dagger$:

$$P\hat{f}_\epsilon - Pf^\dagger = (P\hat{f}_\epsilon - P_n\hat{f}_\epsilon) + (P_n\hat{f}_\epsilon - P_nf^\dagger) + (P_nf^\dagger - Pf^\dagger).$$

First, by concentration inequalities (Bartlett and Mendelson, 2002; Maurer, 2016; Sangnier et al., 2016), we have, with probability greater than $1 - \delta$:

$$P\hat{f}_\epsilon - P_n\hat{f}_\epsilon \leq \sup_{f \in \mathcal{F}} (Pf - P_nf) \leq 2\sqrt{2}L\mathcal{R}_n(\mathcal{F}) + LM\sqrt{\frac{\log(1/\delta)}{2n}}.$$

Second, let us decompose $P_n\hat{f}_\epsilon - P_nf^\dagger$:

$$P_n\hat{f}_\epsilon - P_nf^\dagger = (P_n\hat{f}_\epsilon - P_{n,\epsilon}\hat{f}_\epsilon) + (P_{n,\epsilon}\hat{f}_\epsilon - P_{n,\epsilon}f^\dagger) + (P_{n,\epsilon}f^\dagger - P_nf^\dagger).$$

By Lipschitz continuity, we have:

$$\forall \boldsymbol{\xi}, \mathbf{u} \in \mathbb{R}^p, \|\mathbf{u}\|_{\ell_2} \leq \epsilon: \ell(\boldsymbol{\xi}) - \ell(\boldsymbol{\xi} - \mathbf{u}) \leq L \|\boldsymbol{\xi} - (\boldsymbol{\xi} - \mathbf{u})\|_{\ell_2} \leq L\epsilon.$$

Consequently, $\ell(\boldsymbol{\xi}) - \ell_\epsilon(\boldsymbol{\xi}) \leq L\epsilon$ and $P_n\hat{f}_\epsilon - P_{n,\epsilon}\hat{f}_\epsilon \leq L\epsilon$. In addition $P_{n,\epsilon}\hat{f}_\epsilon - P_{n,\epsilon}f^\dagger \leq 0$ since \hat{f}_ϵ is a minimizer of $P_{n,\epsilon}$ over \mathcal{F} , and $f^\dagger \in \mathcal{F}$. Finally, $P_{n,\epsilon}f^\dagger - P_nf^\dagger \leq 0$ since ℓ upper bounds ℓ_ϵ . To summarize the second point, $P_n\hat{f}_\epsilon - P_nf^\dagger \leq L\epsilon$.

Third and last, by Hoeffding's inequality (Boucheron et al., 2013), with probability at least $1 - \delta$:

$$P_nf^\dagger - Pf^\dagger \leq LM\sqrt{\frac{\log(1/\delta)}{2n}}.$$

Gathering these three points with a union bound concludes the proof.

B.4. Algorithms

Proof (Lemma 3, body of the text) Let $\phi: \mu \in [0, 1] \mapsto \left(1 + \frac{\lambda}{\|\mu\mathbf{y}\|_{-\mathbf{a}}\|_{\ell_2}}\right) \mu$. First, $\phi(1) = 1 + \frac{\lambda}{\|\mathbf{y}\|_{-\mathbf{a}}\|_{\ell_2}} \geq 1$. Second, for $\mu \geq 0$ sufficiently close to 0, $[\mu\mathbf{y}]_{-\mathbf{a}}^{\mathbf{b}} = \mu\mathbf{y}$ (since entries of \mathbf{a} and \mathbf{b} are positive). Therefore $\phi(0) = \lim_{\mu \downarrow 0} \left(\mu + \frac{\lambda\mu}{\mu\|\mathbf{y}\|_{\ell_2}}\right) = \frac{\lambda}{\|\mathbf{y}\|_{\ell_2}} \leq 1$. Finally, since ϕ is a continuous mapping on $[0, 1]$ and $1 \in [\phi(0), \phi(1)]$, then the equation $\phi(\mu) = 1$ has a solution in $[0, 1]$. \blacksquare

Proof (Proposition 4, body of the text) The proof is in two part. First, we write optimality conditions for the proximal operator of interest, then we show that $[\mu\mathbf{y}]_{-\mathbf{a}}^{\mathbf{b}}$ satisfies these optimality conditions when μ is appropriately defined. From now on, let $\mathbf{y} \in \mathbb{R}^p$.

Optimality conditions Let $\mathbf{x}^* = \text{prox}_{\lambda\|\cdot\|_{\ell_2} + \chi_{-\mathbf{a} \preccurlyeq \cdot \preccurlyeq \mathbf{b}}}(\mathbf{y}) = \arg \min_{-\mathbf{a} \preccurlyeq \mathbf{x} \preccurlyeq \mathbf{b}} \lambda \|\mathbf{x}\|_{\ell_2} + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_{\ell_2}^2$.

1. Assume that $\mathbf{x}^* \neq 0$. Then, $\lambda \|\cdot\|_{\ell_2} + \frac{1}{2} \|\mathbf{y} - \cdot\|_{\ell_2}^2$ is differentiable at \mathbf{x}^* and for each coordinate $j \in [p]$, either:

- (a) $-a_j < x_j^* < b_j$ and $\left(1 + \frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}}\right) x_j^* = y_j$;
- (b) or $x_j^* = b_j$ and $\left(1 + \frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}}\right) x_j^* \leq y_j$;
- (c) or $x_j^* = -a_j$ and $\left(1 + \frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}}\right) x_j^* \geq y_j$.

Gathering Conditions 1a-1c gives $\|\mathbf{x}^*\|_{\ell_2} + \lambda \leq \|\mathbf{y}\|_{\ell_2}$. Since $\mathbf{x}^* \neq 0$, we get $\lambda < \|\mathbf{y}\|_{\ell_2}$. Conversely, if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$, then $\mathbf{x}^* = 0$.

2. If $\mathbf{x}^* = 0$, then $\forall \delta > 0$ such that $-\mathbf{a} \preccurlyeq \delta\mathbf{y} \preccurlyeq \mathbf{b}$, $\lambda \|\delta\mathbf{y}\|_{\ell_2} + \frac{1}{2} \|\mathbf{y} - \delta\mathbf{y}\|_{\ell_2}^2 \geq \frac{1}{2} \|\mathbf{y}\|_{\ell_2}^2$, that is $\lambda \|\mathbf{y}\|_{\ell_2} \geq (1 - \frac{\delta}{2}) \|\mathbf{y}\|_{\ell_2}^2$. Thus, by continuity when $\delta \downarrow 0$, we have $\lambda \geq \|\mathbf{y}\|_{\ell_2}$. To sum up, $\mathbf{x}^* = 0$ if and only if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$.

Proximal solution Let $\mathbf{x} = [\mu\mathbf{y}]_{-\mathbf{a}}^{\mathbf{b}}$, where μ is defined in Proposition 4 from the body of the text. Assume that $\|\mathbf{y}\|_{\ell_2} \leq \lambda$, then $\mu = 0$ and $\mathbf{x} = 0$ satisfies the optimality conditions.

On the other hand, if $\|\mathbf{y}\|_{\ell_2} > \lambda$, then $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) \mu = 1$. As a result, either:

1. $-a_j < x_j < b_j$, so necessarily $x_j = \mu y_j$ (otherwise it would be clipped to b_j or $-a_j$). Therefore $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) x_j = \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) (\mu y_j) = y_j$;
2. or $x_j = b_j$, meaning that $\mu y_j \geq b_j$. So $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) (\mu y_j) \geq \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) b_j$, that is $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right) x_j \leq y_j$;

3. or $x_j = -a_j$, meaning that $\mu y_j \leq -a_j$. So $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right)(\mu y_j) \leq \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right)(-a_j)$, that is $\left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}}\right)x_j \geq y_j$.

Thus, when $\|\mathbf{y}\|_{\ell_2} > \lambda$, \mathbf{x} satisfies the optimality conditions. This concludes the proof. \blacksquare

Corollary 6 Let two n -tuples $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ and $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of vectors from \mathbb{R}^p with positive entries. For any n -tuple $\mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$ of vectors from \mathbb{R}^p , let:

$$(\mathbf{x}_1, \dots, \mathbf{x}_n) = \text{prox}_{\lambda \|\cdot\|_{\ell_1/\ell_2} + \chi_{-\mathbf{A} \preccurlyeq \cdot \preccurlyeq \mathbf{B}}}(\mathbf{Y}),$$

where $\|\mathbf{Y}\|_{\ell_1/\ell_2} = \sum_{i=1}^n \|\mathbf{y}_i\|_{\ell_2}$. Then, $\forall i \in [n]$:

$$\mathbf{x}_i = \text{prox}_{\lambda \|\cdot\|_{\ell_2} + \chi_{-\mathbf{a}_i \preccurlyeq \cdot \preccurlyeq \mathbf{b}_i}}(\mathbf{y}_i).$$

Proof This is a direct consequence of the separability of $\lambda \|\cdot\|_{\ell_1/\ell_2} + \chi_{-\mathbf{A} \preccurlyeq \cdot \preccurlyeq \mathbf{B}}$. \blacksquare

Proof (Proposition 5) The proof is similar to the one for Proposition 4 (see body of the text). Let $\mathbf{y} \in \mathbb{R}^p$.

Optimality conditions Let $\mathbf{x}^* = \text{prox}_{\lambda(\|\cdot\|_{\ell_2} + \psi)}(\mathbf{y}) = \arg \min_{\mathbf{x} \in \mathbb{R}^p} \lambda \|\mathbf{x}\|_{\ell_2} + \lambda \psi(\mathbf{x}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_{\ell_2}^2$.

1. Assume that $\mathbf{x}^* \neq 0$. Then, $\lambda \|\cdot\|_{\ell_2} + \lambda \psi + \frac{1}{2} \|\mathbf{y} - \cdot\|_{\ell_2}^2$ is differentiable at \mathbf{x}^* and for each coordinate $j \in [p]$:

$$y_j = \left(\frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}} + \lambda \left| \tau_j - \mathbf{I}_{x_j^* < 0} \right|^{-1} + 1 \right) x_j^*.$$

It appears that x_j^* and y_j have same sign. Therefore, $\mathbf{I}_{x_j^* < 0} = \mathbf{I}_{y_j < 0}$ and

$$x_j^* = \left(\frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}} + \lambda \left| \tau_j - \mathbf{I}_{y_j < 0} \right|^{-1} + 1 \right)^{-1} y_j.$$

Now, the previous relation implies:

$$\|\mathbf{x}^*\|_{\ell_2}^2 = \sum_{j=1}^p \frac{y_j^2}{\left(\frac{\lambda}{\|\mathbf{x}^*\|_{\ell_2}} + \lambda \left| \tau_j - \mathbf{I}_{y_j < 0} \right|^{-1} + 1 \right)^2}.$$

Since $\mathbf{x}^* \neq 0$, we get:

$$1 = \sum_{j=1}^p \frac{y_j^2}{\left(\lambda + \|\mathbf{x}^*\|_{\ell_2} \left(\lambda \left| \tau_j - \mathbf{I}_{y_j < 0} \right|^{-1} + 1 \right) \right)^2}.$$

But $\|\mathbf{x}^*\|_{\ell_2} > 0$, so:

$$1 = \sum_{j=1}^p \frac{y_j^2}{\left(\lambda + \|\mathbf{x}^*\|_{\ell_2} \left(\lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1} + 1\right)\right)^2} < \sum_{j=1}^p \frac{y_j^2}{\lambda^2},$$

that is $\lambda < \|\mathbf{y}\|_{\ell_2}$. Conversely, if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$, then $\mathbf{x}^* = 0$.

2. If $\mathbf{x}^* = 0$, then $\forall \delta > 0$, $\lambda \|\delta \mathbf{y}\|_{\ell_2} + \lambda \psi(\delta \mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \delta \mathbf{y}\|_{\ell_2}^2 \geq \frac{1}{2} \|\mathbf{y}\|_{\ell_2}^2$, that is $\lambda(\|\mathbf{y}\|_{\ell_2} + \delta \psi(\mathbf{y})) \geq (1 - \frac{\delta}{2}) \|\mathbf{y}\|_{\ell_2}^2$. Thus, by continuity when $\delta \downarrow 0$, we have $\lambda \geq \|\mathbf{y}\|_{\ell_2}$. To sum up, $\mathbf{x}^* = 0$ if and only if $\|\mathbf{y}\|_{\ell_2} \leq \lambda$.

Proximal solution If $\|\mathbf{y}\|_{\ell_2} \leq \lambda$, then $\mathbf{x} = 0$ is satisfies trivially the optimality conditions.

On the other hand, if $\|\mathbf{y}\|_{\ell_2} > \lambda$, then $\sum_{j=1}^p \frac{y_j^2}{\lambda^2} > 1$ and $\lim_{\mu \rightarrow +\infty} \sum_{j=1}^p \frac{y_j^2}{\left(\mu \left(1 + \lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1}\right) + \lambda\right)^2} = 0$.

Thus, by continuity, Equation 1 has a solution $\mu > 0$. Let μ be such a solution and let $\mathbf{x} \in \mathbb{R}^p$ such that for each coordinate $j \in [p]$,

$$x_j = \left(1 + \frac{\lambda}{\mu} + \lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1}\right)^{-1} y_j.$$

Then:

$$\frac{\|\mathbf{x}\|_{\ell_2}^2}{\mu^2} = \sum_{j=1}^p \frac{y_j^2}{\mu^2 \left(1 + \frac{\lambda}{\mu} + \lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1}\right)^2} = 1.$$

Consequently

$$x_j = \left(1 + \frac{\lambda}{\|\mathbf{x}\|_{\ell_2}} + \lambda |\tau_j - \mathbf{I}_{y_j < 0}|^{-1}\right)^{-1} y_j.$$

and \mathbf{x} satisfies the optimality conditions. This concludes the proof. ■

Appendix C. Numerical experiments

Table 1 reports the average empirical loss (scaled by 100) along with the standard deviations. It completes Table 2 from the body of the text. For each dataset, the bold-face numbers are the two lowest losses. These values should be compared to the loss for $\epsilon = 0$.

References

M.A. Alvarez, L. Rosasco, and N.D. Lawrence. Kernels for Vector-Valued Functions: a Review. *Foundations and Trends in Machine Learning*, 4(3):195–266, 2012.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with Sparsity-Inducing Penalties. *Foundations and Trends in Machine Learning*, 4(1):1–106, January 2012.

Table 1: Empirical pinball loss $\times 100$ along with percentage of support vectors (the less, the better).

Data set	$\epsilon = 0$	$\epsilon = 0.05$	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 0.5$	$\epsilon = 0.75$	$\epsilon = 1$	$\epsilon = 1.5$	$\epsilon = 2$	$\epsilon = 3$
caution	67.50 \pm 12.96	67.40 \pm 13.12	67.17 \pm 12.68	67.54 \pm 13.00	69.93 \pm 12.51	73.24 \pm 13.10	76.80 \pm 12.51	83.42 \pm 14.97	100.22 \pm 16.63	142.19 \pm 16.11
ftcollinsnow	109.07 \pm 5.88	109.12 \pm 5.95	109.14 \pm 6.00	109.15 \pm 6.00	109.11 \pm 6.30	110.39 \pm 7.10	109.05 \pm 6.72	110.90 \pm 6.87	109.81 \pm 6.22	113.50 \pm 9.29
highway	79.29 \pm 17.06	78.10 \pm 16.15	76.75 \pm 15.42	76.66 \pm 19.11	75.09 \pm 18.82	70.94 \pm 21.58	75.10 \pm 21.02	97.67 \pm 22.91	112.30 \pm 20.10	112.09 \pm 20.12
heights	91.05 \pm 1.12	91.00 \pm 1.20	90.98 \pm 1.19	90.98 \pm 1.21	91.18 \pm 1.09	91.21 \pm 1.27	90.98 \pm 1.13	91.09 \pm 1.02	91.51 \pm 1.20	93.34 \pm 1.84
sniffer	32.34 \pm 5.14	31.40 \pm 4.81	32.31 \pm 5.19	31.40 \pm 2.98	34.64 \pm 3.85	39.84 \pm 5.03	41.82 \pm 4.14	52.06 \pm 5.88	62.21 \pm 11.77	103.76 \pm 16.42
snowgeese	49.62 \pm 19.38	50.51 \pm 18.23	51.25 \pm 18.64	51.08 \pm 17.69	52.88 \pm 15.11	53.81 \pm 13.97	62.81 \pm 19.66	90.15 \pm 23.97	107.53 \pm 23.13	94.25 \pm 24.65
ufc	57.87 \pm 3.09	57.90 \pm 3.07	57.78 \pm 2.99	57.84 \pm 3.01	57.67 \pm 2.84	57.84 \pm 2.76	58.19 \pm 2.92	61.04 \pm 3.68	66.81 \pm 4.00	86.23 \pm 4.79
birthwt	99.93 \pm 8.51	99.95 \pm 8.53	99.93 \pm 8.63	99.70 \pm 8.64	99.25 \pm 8.66	100.50 \pm 10.31	99.80 \pm 11.29	98.71 \pm 10.04	99.56 \pm 9.43	103.39 \pm 8.83
crabs	8.59 \pm 0.66	8.52 \pm 0.68	8.49 \pm 0.73	9.44 \pm 0.57	19.94 \pm 1.38	23.08 \pm 1.59	31.44 \pm 3.75	44.08 \pm 4.64	53.45 \pm 5.65	86.91 \pm 9.48
GAGurine	44.30 \pm 5.85	44.26 \pm 5.79	44.25 \pm 5.76	44.86 \pm 6.04	46.20 \pm 5.35	49.87 \pm 4.88	52.88 \pm 3.94	57.06 \pm 3.47	65.89 \pm 3.88	103.32 \pm 24.62
geyser	77.81 \pm 5.36	78.15 \pm 5.39	78.12 \pm 5.38	78.45 \pm 5.35	78.40 \pm 5.77	78.28 \pm 5.88	78.54 \pm 5.82	80.55 \pm 6.34	85.15 \pm 6.18	99.92 \pm 8.65
gilgais	32.96 \pm 4.09	33.12 \pm 3.99	33.27 \pm 4.11	33.42 \pm 3.88	35.08 \pm 3.35	36.62 \pm 3.59	37.94 \pm 3.68	48.17 \pm 9.44	94.65 \pm 4.98	104.12 \pm 5.92
topo	47.49 \pm 7.93	48.93 \pm 7.43	48.74 \pm 7.10	48.17 \pm 7.01	41.65 \pm 5.60	45.24 \pm 3.53	51.19 \pm 7.92	53.68 \pm 8.39	58.21 \pm 13.35	80.57 \pm 15.18
BostonHousing	34.54 \pm 3.34	34.68 \pm 3.46	34.70 \pm 3.39	34.09 \pm 3.37	35.27 \pm 3.02	37.65 \pm 3.18	41.31 \pm 3.41	55.04 \pm 5.61	73.39 \pm 12.35	112.22 \pm 12.91
CobarOre	0.50 \pm 0.38	5.05 \pm 1.90	8.75 \pm 3.44	12.47 \pm 4.27	23.84 \pm 6.03	35.82 \pm 8.20	47.35 \pm 10.94	66.15 \pm 14.56	84.51 \pm 17.70	106.89 \pm 15.52
engel	43.57 \pm 6.05	43.50 \pm 6.02	43.47 \pm 6.08	43.44 \pm 5.99	57.36 \pm 46.14	43.98 \pm 5.37	46.31 \pm 6.29	53.15 \pm 5.45	69.43 \pm 9.22	100.48 \pm 11.63
mcycle	63.95 \pm 5.25	63.88 \pm 5.20	64.26 \pm 5.99	64.90 \pm 6.68	65.89 \pm 5.89	67.29 \pm 6.13	70.11 \pm 7.65	74.78 \pm 6.43	86.49 \pm 6.77	109.79 \pm 12.67
BigMac2003	49.94 \pm 12.85	49.97 \pm 12.84	50.00 \pm 12.83	50.27 \pm 13.19	51.16 \pm 13.37	51.44 \pm 10.57	53.63 \pm 14.29	77.40 \pm 24.48	106.38 \pm 13.97	136.76 \pm 61.70
UN3	71.27 \pm 4.69	70.94 \pm 4.57	71.03 \pm 4.68	71.49 \pm 5.06	71.37 \pm 5.01	71.53 \pm 5.90	72.68 \pm 6.17	76.72 \pm 6.13	84.50 \pm 7.00	109.59 \pm 4.71
cpus	11.31 \pm 9.32	13.32 \pm 8.95	15.57 \pm 9.16	20.16 \pm 8.06	25.88 \pm 8.93	35.66 \pm 11.61	55.27 \pm 14.69	65.05 \pm 9.70	65.02 \pm 9.65	

P.L. Bartlett and S. Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

S. Boucheron, G. Lugosi, and P. Massart. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. Oxford University Press, Oxford, New York, 2013.

S.P. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.

A. Maurer. A vector-contraction inequality for Rademacher complexities. In *Proceedings of The 27th International Conference on Algorithmic Learning Theory*, 2016.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. *Foundations of Machine Learning*. The MIT Press, 2012.

M. Sangnier, O. Fercoq, and F. d’Alché Buc. Joint quantile regression in vector-valued RKHSs. In *Advances in Neural Information Processing Systems 29*, 2016.

I. Takeuchi, Q.V. Le, T.D. Sears, and A.J. Smola. Nonparametric Quantile Estimation. *Journal of Machine Learning Research*, 7:1231–1264, 2006.