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Appendix A. Remarks

Remark 1 It is easy to see that, for a unidimensional loss £, £, is obtained in the following
manner:

VEeR:  Le(§) = £ (¢ —min([¢], €) sign(£))

0 if €l < e
4 (5 (1 — ﬁ)) otherwise.
Consequently, when a multivariate loss ¢ is separable, that is ((§) = ?:1 €(j)(£j) (for some

unidimensional losses E(j)), it is tempting to consider each component separately and to

define l. = ?:1 09, Basically, this boils down to replacing |[|-[|,, by |||l in the general
e-loss introduced in this paper.

Howewver, this is not a good idea since this definition would result in adding an f1-norm
>oic1 leill,, instead of an £1/lz-norm in the dual. As a consequence, we would obtain sparse
vectors oy, which is not the data sparsity we pursue since a; could have null components

but could be different from 0, forcing us to keep the points x; for prediction.

Remark 2 In the body of the text, omitting the intercept b in Problem (P2) comes down
to removing the linear constraint in Problem (P3). This practice is common for support

vector regression (SVR) with a Gaussian kernel, but is excluded for quantile regression
(QR) (Takeuchi et al., 2006; Sangnier et al., 2016).

Example 1 Ezamples of scalar and matrix kernels are:
k(x,x') = (1+ <x,x’>62)d (polynomial),
where d > 0 is the degree (Mohri et al., 2012), and

K(x,x') = [(1 + <TZ-(X),Tj(X/)>£2)d] L (transformable),
<4,j<p

© 2017 M. Sangnier, O. Fercoq & F. d’Alché-Buc.



SANGNIER FERCOQ D’ALCHE-BUC

where T;: RP — RP are any transformations (Alvarez et al., 2012).

Remark 3 As it is standard for coordinate descent methods, our implementation uses ef-
ficient updates for the computation of both Z?:l K(xi,xj)o and 6. In addition, conver-
gence of Algorithm 1 can be assessed by duality gap (objective of (P2) minus objective of
(P3) in the body of the text). Yet, even though we do not have closed-form expressions
for the primal loss L, the duality gap can be over-estimated by upper-bounding £ in the

following manner:

min(e,

e,

This is true since S €

Remark 4 Contrarily to QR, expectile regression involves a differentiable mapping £*.
Consequently, it can be easily incorporated to the quadratic contribution of (P7) (see body
of the text). Nevertheless, it can also be considered jointly with ||-||,,, in the same manner
as for QR. In this case, the differentiable part remains the same for expectile and quantile
regression, only the non-differentiable part changes. The proximal operator needed is given
in the following proposition.

Proposition 5 Let ¥: y € RP — %Zle ‘Tj — ij<0‘_1 yf Then

Vy € RP,Vj € [p]

A\ AL
[prox)\(.ll%w) (y)]] = <1 + ; +A }Tj — ij<0| 1> Yy

if lyllg, > A, where p > 0 is solution to:

P 2
3 & S=1, (1)

7 (1 (14 A = Ly T1) )

. . N <\
(such a solution exists) and prox)\(ll'Hber) (y) =0idf |yl <A,

Similarly to Equation 1 in the body of the text, the scaling factor p in Proposition 5 can
be easily obtained by a bisection of a Newton-Raphson method.

Appendix B. Technical details
B.1. Convexity and redefinition of /.
For the sake of simplicity, let us first define:

VECRP: [ (€) = inf  L(&—u). (2)

u€RP : Hqu <e
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Since / is convex, (&,u) — £(& —u) + X|lul,, <e 18 jointly convex with respect to £ and wu.
,<

Therefore, /. is convex as the coordinate infimum of a jointly convex function (Boyd and
Vandenberghe, 2004).

Let us now show that ¢ = ¢,. First, since for any &, Slater’s constraint qualification are
satisfied for (2), strong duality holds, that is,

VEESRP,IN>0: [ (€) = inf £(€ —u)+Aull, — Ae,
uec

and thanks to the lower semi-continuity of the objective, the infimum is attained at, let us
say, . Then, when ||£][|,, < ¢, we can chose & = £ and we get ll(f) = 0, which is the
infimum of ¢. On the other hand, when [|€||,, > ¢, let us consider the Karush-Kuhn-Tucker
(KKT) conditions. By complementary slackness, either A = 0 and |||, <, or [|al|,, = .

In the first situation (A = 0 and |||, <€), £(§) = infyerr £(§ —u) = £(§ — @) = £(0) =0
and @ = £ (by uniqueness of the minimizer of £). Thus, [|€][,, < €, which is contradictory.
Consequently, we have necessarily, ||[,, = e. To summarize:

3 0 if [&ll,, <€
VEERP: (€)= inf (& —u) otherwise,

ucRP : ||u||e2 =¢
which is exactly the definition of /..

B.2. Dual and representer theorem

Since £ is convex and can be replaced by (2), Problem (P2) from the body of the text can
be reformulated in (Lagrange multipliers are indicated on the right):

heH,beERP,
Vi€[n], &, ERP, r; ERP

RS U &
minimize 3 \hll5, + - Z;E (&)

yi— (h(x)+b) ri+& (P1)
= o €R
s. t. , N n
rillz, e
< — ; €R
2en T 2n pi € By
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Let us compute a dual to Problem (P1). The Lagrangian reads:

£(h, b, (&) 1<i<n (Ti)1<i<n, (@i)1<i<n, (i)1<i<n)

n

A I 1
=3 B3, + o ZE (&) + o Z (@i, y; — (h(xi) + b) =i — &)y,
i=1

i=1

+ Sen Zﬂi Irille, — %Z“’
_ i1
Z a17€z>€2) |h||7-[ < ZE* g, >
H
1 1 o /i ) 1
- < Zai,b> +=) (J Irillz, — <ai>'ri>£2) +=> (e yi)y,
n 4 n 4 2¢ n 4
=1 O =1
€ n
-
i=1

The objective function of the dual problem to (P1) is obtained by minimizing the Lagrangian
with respect to the primal variables h, b, (§;)1<i<n and (7;)1<i<n. For this purpose, let us
remark that minimizing on §; boils down to introducing the Fenchel-Legendre transform of
b0 o € RP v supgepe (@, §)y, — £(€). Thus, it remains to compute:

£p (@) 1<i<n, (1i)1<i<n)

: 1, )
- he’i-?’lb]i]Rp, {—nZ;E (al |h”’H < ZE 5, >

Vig[n], r; ERP

H

1 n 1 n 11; ) 1 n
“\n Zaub + " Z (2 HTz‘HeQ - (ai,ri)32> + n Z <ai7'yz‘>€2
=1 lo =1 i=1
n
€
o)
n 4
=1

Since H is unbounded in all directions, the minimum of £ with respect to h, b and (r;)!" ;
is obtained by setting the gradients to 0, which leads to h = &= """ | By oy o =0

and r; = oy, Vi € [n]. Thus, the dual objective reads:

£p ((ai)1<i<n7 (1i)1<i<n)

S MACIEE D SECRACTH IS SEE N

n
_ £ 1 w2, +
omn 2 1 illgy T Hi | -

Then, the dual optimization problem consists in maximizing £p subject to the constraints
) . . 2
Sorya;=0andy; > 0,Vi € [n]. Remarking that infyief) pier, 5 Doreq <i eilly, + Mz’) =

4
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>ie1 leill,, (Bach et al., 2012), a dual to Problem (P1) is

minimize ZE* ;) 2)\ Pl Z <aZ,ExZE a]>£

Vi€[n],a; ERP T ]

- E al7y1, + . E ||aZHE2 (PQ)
n
=1
S. t. E a; = 0.

B.3. Generalization

Let P: f € F s E[(Y — f(X))] and Pp: f € F = 230 (Y — f(X)), as well as

respective twins P, and P, . obtained by substituting /. to £. Let us decompose P fe — Pft:
Pfo=Pft = (Pf.= Puf.) + (Pufe= Puf') + (Puf' = PF').

First, by concentration inequalities (Bartlett and Mendelson, 2002; Maurer, 2016; Sangnier

et al., 2016), we have, with probability greater that 1 — ¢:

Pj. — Pofi < sup (Pf — Puf) < 2VELR, (F) + Ly 2BU/0)
feF 2n

Second, let us decompose P, fe — P, ft:
Pofe=Puft = (Pufe = Puche) + (Pacfe = Puctt) + (Puctt = Pust).
By Lipschitz continuity, we have:
Ve u € B, Jull, < e €€) — (€ —w) < L€~ (€ — )], < Le.

Consequently, 0(€) —L(€) < Le and P, > fe — nefe < Le. In addition P, Efe — P ff <0
since f, is a minimizer of P, e over F,and f t € F. Finally, P, e fT— P, ft <0 since £ upper
bounds £,. To summarize the second point, P, f. — P,f < Le.

Third and last, by Hoeffding’s inequality (Boucheron et al., 2013), with probability at
least 1 — ¢:

log(l/&)‘

P.ff —Pfl <LM o

Gathering these three points with a union bound concludes the proof.
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B.4. Algorithms
Proof (Lemma 3, body of the text) Let ¢: p € [0,1] — <1—|—

p(1) =1+

—— . First
b ) P
]b

> 1. Second, for p > 0 sufficiently close to 0, [py]”, = py (since

w11, a||[2

entries of @ and b are positive). Therefore ¢(0) = lim, o <,u + < 1. Fi-

A — A
wllyll,, Tylle,
nally, since ¢ is a continuous mapping on [0,1] and 1 € [¢(0),¢(1)], then the equation
¢(p) = 1 has a solution in [0, 1]. [ |

Proof (Proposition 4, body of the text) The proof is in two part. First, we write optimality

conditions for the proximal operator of interest, then we show that [uy}ga satisfies these

optimality conditions when p is appropriately defined. From now on, let y € RP.

. . .. . 2
Optimality conditions Letx* = PLOX ||, +x—ax L(Y) =argmin_g_y A HX”ZQ‘F% |y — x|,

1. Assume that x* # 0. Then, A |||, + 5 [y — -||?2 is differentiable at x* and for each
coordinate j € [p], either:

A — s

(a) —a; < m]* < bj and <1 + x*z2> 13; = Yj;
—p. A .
(b) or 7 = b; and (1 + ”x*”€2> z; < yj;

— . A )
(c) or 7 = —a; and (1 + ||X*”42> i > yj.

Gathering Conditions la-1c gives [|[x*||,, + A < [lyl|,,. Since x* # 0, we get A < ||y,
Conversely, if [|y||,, < A, then x* = 0.

2. If x* = 0, then V6 > 0 such that —a < dy < b, A||dyll,, + 3 3 lly — 5y|]§2 > %||y||§2,
that is Al[y|l,, > (1- %) ||y||?2 . Thus, by continuity when § | 0, we have A > [ly|[,, .
To sum up, x* = 0 if and only if [y, <.

Proximal solution Letx = [uy]li o> Where p is defined in Proposition 4 from the body of
the text. Assume that [y, < A, then u =0 and x = 0 satisfies the optimality conditions.

On the other hand, if [y||,, > A, then (1 + IIX/I\Ie) w=1. As a result, either:
2

1. —a; < z; < bj, so necessarily x; = ,uyj (otherwise it would be clipped to b; or —a;).

Therefore <1 + IEZ PN ” > (1 + HXH ) (1y5) = vy

_ . A by .
2. or x; = bj, meaning that uy; > b;. So (1 + |x||é2) (nyj) = <1 + X|z2> b;, that is

L+ ) 2 < g
P
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3. or x; = —aj, meaning that uy; < —a;. So (1 + ”x)|‘|£2> (py;) < (1 + x)|‘|[2> (—aj),
that is (1 + ||X)|\|e> Tj > Y.
2

Thus, when |y||,, > A, x satisfies the optimality conditions. This concludes the proof. M

Corollary 6 Let two n-tuples A = (a1,...,a,) and B = (by,...,by,) of vectors from RP
with positive entries. For any n-tuple Y = (yq,...,y,,) of vectors from RP, let:

(X1y.eyXp) = prox)\H,||ll/£2+X7A<<B(Y),

where Yy, j, = 22521 [ille,- Then, Vi € [n]:
X = PTOXA |, x—ay<.<b; (Yi):

Proof This is a direct consequence of the separability of A [|[|,, /s T X-A<x<B- [ |
Proof (Proposition 5) The proof is similar to the one for Proposition 4 (see body of the
text). Let y € RP.
Optimality conditions Let x* = prox)\(H_”QW) (y) = argmingegs A x|, + Ap(x) +
3 lly = xlIZ, -

1. Assume that x* # 0. Then, A ||-[|,, + Ay + Ty — -||?2 is differentiable at x* and for
each coordinate j € [p]:

py -1

%1l

It appears that x; and y; have same sign. Therefore, IIJ*_<0 = Iy, <0 and

-1

A -1

o= = AT - Ly<ol +1]
[[x Hzg

Now, the previous relation implies:

p

2
2 Yj
M7, = ’

5
j= A -1
o~ <x*e2+)\}7—j_13}j<0| +1>

Since x* #£ 0, we get:

2
1= Yi

= (Al (M~ Lo 1))

7
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But [|x*[|,, > 0, so:

2 p
s S

- 2
= <A+||x*||42 ()\‘Tj _ij<0} 1+1)) j=1

that is A < ||yl|,,. Conversely, if [|y[[,, < A, then x* = 0.

2. 1f x* = 0, then V3 > 0, A [|dyll,, +M)(6y) + 5 ly — 6yll7, = 5 [lyll7, , that is A(l[yll,, +
§Y(y)) > (1 - g) ||y\|?2 . Thus, by continuity when § | 0, we have A > [|y|[,,. To sum
up, x* = 0 if and only if [y|l,, < A.

Proximal solution If [|y||,, < A, then x = 0 is satisfies trivially the optimality conditions.
vi
—1 2
(,u(1+)\‘7'jflyj<o‘ >+)\>
0. Thus, by continuity, Equation 1 has a solution x > 0. Let p be such a solution and let
x € RP such that for each coordinate j € [p],

2
On the other hand, if [|yl[,, > A, then 330_, % > 1and limy, 400 D5y

A S\ !
‘T;j:<1+u+)\}7—j_:[yj<o| > Yj-

Then: ) , )
1xl, Yj
2z N i 1.
j=1 /ﬂ <1 + m + A ‘Tj — Iy].<0‘ )
Consequently
-1
A -1
vj= |14 o A [m = Iy <o Yj-
||XH22
and x satisfies the optimality conditions. This concludes the proof. |

Appendix C. Numerical experiments

Table 1 reports the average empirical loss (scaled by 100) along with the standard deviations.
It completes Talbe 2 from the body of the text. For each dataset, the bold-face numbers
are the two lowest losses. These values should be compared to the loss for € = 0.
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Table 1: Empirical pinball loss x100 along with percentage of support vectors (the less, the

better).
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